2,009 research outputs found

    A Comparative and Analytical Review of Iot-Enabled Smart Accidental Management Systems

    Get PDF
    One of the most important issues that emerging nations are addressing is road accidents. It is important to develop smart accidental management systems with low cost and efforts to prevent accidents and causalities. The amalgamation of Intelligent Transportation Systems (ITS) and Information and Communications Technology (ICT) is expected to dramatically change how people experience driving by enabling cutting-edge traffic monitoring and incident detection strategies. This analysis focuses on various components of SAMS, such as sensor networks, communication protocols, data processing techniques, and decision-making algorithms. It examines how these components work together to create a connected infrastructure capable of detecting and responding to accidents promptly. The review highlights the role of data analytics in enhancing accident prediction and prevention. By processing and analyzing enormous real-time data from cameras, sensors, and other sources, IoT-driven SAMS can identify patterns and anomalies, allowing for proactive measures to avoid accidents in various settings, including transportation, industries, and public spaces

    Requirement analysis for building practical accident warning systems based on vehicular ad-hoc networks

    Get PDF
    An Accident Warning System (AWS) is a safety application that provides collision avoidance notifications for next generation vehicles whilst Vehicular Ad-hoc Networks (VANETs) provide the communication functionality to exchange these notifi- cations. Despite much previous research, there is little agreement on the requirements for accident warning systems. In order to build a practical warning system, it is important to ascertain the system requirements, information to be exchanged, and protocols needed for communication between vehicles. This paper presents a practical model of an accident warning system by stipulating the requirements in a realistic manner and thoroughly reviewing previous proposals with a view to identify gaps in this area

    Cognitive Vehicular Networks: An Overview

    Get PDF
    AbstractCognitive Radio (CR) is extending the applications of wireless communications worldwide. Cognitive radio verifies the electromagnetic spectrum availability and permits the modification of the transmission parameters using the interaction with the environment. The goal is to opportunistically occupy spectral bands with minimum interference to other users or applications. Cognitive radio for Vehicular Ad hoc Networks (CRVs or CR-VANETs) is a new trend in the automotive market. Recent and future vehicles will offer functionalities for the transmission of intra-vehicular commands and dynamic access to wireless services, while the car is in transit. This paper describes the cognitive radio technology and its signal processing perspectives for the automotive market

    Making Transport Safer: V2V-Based Automated Emergency Braking System

    Get PDF
    An important goal in the field of intelligent transportation systems (ITS) is to provide driving aids aimed at preventing accidents and reducing the number of traffic victims. The commonest traffic accidents in urban areas are due to sudden braking that demands a very fast response on the part of drivers. Attempts to solve this problem have motivated many ITS advances including the detection of the intention of surrounding cars using lasers, radars or cameras. However, this might not be enough to increase safety when there is a danger of collision. Vehicle to vehicle communications are needed to ensure that the other intentions of cars are also available. The article describes the development of a controller to perform an emergency stop via an electro-hydraulic braking system employed on dry asphalt. An original V2V communication scheme based on WiFi cards has been used for broadcasting positioning information to other vehicles. The reliability of the scheme has been theoretically analyzed to estimate its performance when the number of vehicles involved is much higher. This controller has been incorporated into the AUTOPIA program control for automatic cars. The system has been implemented in Citroën C3 Pluriel, and various tests were performed to evaluate its operation

    A Sensor Network System for Monitoring Short-Term Construction Work Zones

    Get PDF
    Safety hazards encountered near construction work zones are high, both in number and in the kind. There is a need to monitor traffic in such construction zones in order to improve driver and vehicle safetyIn the past traffic monitoring systems were built with high cost equipment such as inductive plates, video cameras etc. These solutions are too cost{prohibitive and invasive to be used in the large. Wireless sensor networks provide an opportunity space that can be used to address this problem. This thesis specifically targets temporary or short-term construction work zones. We present the design and implementation of a sensor network system targeted at monitoring the flow of traffic through these temporary construction work zones. As opposed to long-term work zones which are common on highways, short-term or temporary work zones remain active for a few hours or a few days at most. As such, instrumenting temporary work zones with monitoring equipment similar to those used in long-term work zones is not practical. Yet, these temporary work zones present an important problem in terms of crashes occurring in and around them. The design for this sensornet-based system for monitoring traffic is (a) inexpensive, (b) rapidly deployable, (c) requires minimal maintenance and (d) non-invasive. In this thesis we present our experiences in building this system, and testing this system in live work zones in the Greater Cleveland are

    FRIEND: A Cyber-Physical System for Traffic Flow Related Information Aggregation and Dissemination

    Get PDF
    The major contribution of this thesis is to lay the theoretical foundations of FRIEND — A cyber-physical system for traffic Flow-Related Information aggrEgatioN and Dissemination. By integrating resources and capabilities at the nexus between the cyber and physical worlds, FRIEND will contribute to aggregating traffic flow data collected by the huge fleet of vehicles on our roads into a comprehensive, near real-time synopsis of traffic flow conditions. We anticipate providing drivers with a meaningful, color-coded, at-a-glance view of flow conditions ahead, alerting them to congested traffic. FRIEND can be used to provide accurate information about traffic flow and can be used to propagate this information. The workhorse of FRIEND is the ubiquitous lane delimiters (a.k.a. cat\u27s eyes) on our roadways that, at the moment, are used simply as dumb reflectors. Our main vision is that by endowing cat\u27s eyes with a modest power source, detection and communication capabilities they will play an important role in collecting, aggregating and disseminating traffic flow conditions to the driving public. We envision the cat\u27s eyes system to be supplemented by road-side units (RSU) deployed at regular intervals (e.g. every kilometer or so). The RSUs placed on opposite sides of the roadway constitute a logical unit and are connected by optical fiber under the median. Unlike inductive loop detectors, adjacent RSUs along the roadway are not connected with each other, thus avoiding the huge cost of optical fiber. Each RSU contains a GPS device (for time synchronization), an active Radio Frequency Identification (RFID) tag for communication with passing cars, a radio transceiver for RSU to RSU communication and a laptop-class computing device. The physical components of FRIEND collect traffic flow-related data from passing vehicles. The collected data is used by FRIEND\u27s inference engine to build beliefs about the state of the traffic, to detect traffic trends, and to disseminate relevant traffic flow-related information along the roadway. The second contribution of this thesis is the development of an incident classification and detection algorithm that can be used to classify different types of traffic incident Then, it can notify the necessary target of the incident. We also compare our incident detection technique with other VANET techniques. Our third contribution is a novel strategy for information dissemination on highways. First, we aim to prevent secondary accidents. Second, we notify drivers far away from the accident of an expected delay that gives them the option to continue or exit before reaching the incident location. A new mechanism tracks the source of the incident while notifying drivers away from the accident. The more time the incident stays, the further the information needs to be propagated. Furthermore, the denser the traffic, the faster it will backup. In high density highways, an incident may form a backup of vehicles faster than low density highways. In order to satisfy this point, we need to propagate information as a function of density and time

    A Sensor Network System for Monitoring Short-Term Construction Work Zones

    Get PDF
    Safety hazards encountered near construction work zones are high, both in number and in the kind. There is a need to monitor traffic in such construction zones in order to improve driver and vehicle safetyIn the past traffic monitoring systems were built with high cost equipment such as inductive plates, video cameras etc. These solutions are too cost{prohibitive and invasive to be used in the large. Wireless sensor networks provide an opportunity space that can be used to address this problem. This thesis specifically targets temporary or short-term construction work zones. We present the design and implementation of a sensor network system targeted at monitoring the flow of traffic through these temporary construction work zones. As opposed to long-term work zones which are common on highways, short-term or temporary work zones remain active for a few hours or a few days at most. As such, instrumenting temporary work zones with monitoring equipment similar to those used in long-term work zones is not practical. Yet, these temporary work zones present an important problem in terms of crashes occurring in and around them. The design for this sensornet-based system for monitoring traffic is (a) inexpensive, (b) rapidly deployable, (c) requires minimal maintenance and (d) non-invasive. In this thesis we present our experiences in building this system, and testing this system in live work zones in the Greater Cleveland are

    A Sensor Network System for Monitoring Short-Term Construction Work Zones

    Get PDF
    Safety hazards encountered near construction work zones are high, both in number and in the kind. There is a need to monitor traffic in such construction zones in order to improve driver and vehicle safetyIn the past traffic monitoring systems were built with high cost equipment such as inductive plates, video cameras etc. These solutions are too cost{prohibitive and invasive to be used in the large. Wireless sensor networks provide an opportunity space that can be used to address this problem. This thesis specifically targets temporary or short-term construction work zones. We present the design and implementation of a sensor network system targeted at monitoring the flow of traffic through these temporary construction work zones. As opposed to long-term work zones which are common on highways, short-term or temporary work zones remain active for a few hours or a few days at most. As such, instrumenting temporary work zones with monitoring equipment similar to those used in long-term work zones is not practical. Yet, these temporary work zones present an important problem in terms of crashes occurring in and around them. The design for this sensornet-based system for monitoring traffic is (a) inexpensive, (b) rapidly deployable, (c) requires minimal maintenance and (d) non-invasive. In this thesis we present our experiences in building this system, and testing this system in live work zones in the Greater Cleveland are
    • …
    corecore