211 research outputs found

    On the hardware reduction of z-datapath of vectoring CORDIC

    No full text
    In this article we present a novel design of a hardware optimal vectoring CORDIC processor. We present a mathematical theory to show that using bipolar binary notation it is possible to eliminate all the arithmetic computations required along the z-datapath. Using this technique it is possible to achieve three and 1.5 times reduction in the number of registers and adder respectively compared to conventional CORDIC. Following this, a 16-bit vectoring CORDIC is designed for the application in Synchronizer for IEEE 802.11a standard. The total area and dynamic power consumption of the processor is 0.14 mm2 and 700?W respectively when synthesized in 0.18?m CMOS library which shows its effectiveness as a low-area low-power processor

    Implementation of a Combined OFDM-Demodulation and WCDMA-Equalization Module

    Get PDF
    For a dual-mode baseband receiver for the OFDMWireless LAN andWCDMA standards, integration of the demodulation and equalization tasks on a dedicated hardware module has been investigated. For OFDM demodulation, an FFT algorithm based on cascaded twiddle factor decomposition has been selected. This type of algorithm combines high spatial and temporal regularity in the FFT data-flow graphs with a minimal number of computations. A frequency-domain algorithm based on a circulant channel approximation has been selected for WCDMA equalization. It has good performance, low hardware complexity and a low number of computations. Its main advantage is the reuse of the FFT kernel, which contributes to the integration of both tasks. The demodulation and equalization module has been described at the register transfer level with the in-house developed Arx language. The core of the module is a pipelined radix-23 butterfly combined with a complex multiplier and complex divider. The module has an area of 0.447 mm2 in 0.18 ¿m technology and a power consumption of 10.6 mW. The proposed module compares favorably with solutions reported in literature

    A 16-bit CORDIC rotator for high-performance wireless LAN

    No full text
    In this paper we propose a novel 16-bit low power CORDIC rotator that is used for high-speed wireless LAN. The algorithm converges to the final target angle by adaptively selecting appropriate iteration steps while keeping the scale factor virtually constant. The VLSI architecture of the proposed design eliminates the entire arithmetic hardware in the angle approximation datapath and reduces the number of iterations by 50% on an average. The cell area of the processor is 0.7 mm2 and it dissipates 7 mW power at 20 MHz frequency

    Hough Transform recursive evaluation using Distributed Arithmetic

    Get PDF
    Paper submitted to the IFIP International Conference on Very Large Scale Integration (VLSI-SOC), Darmstadt, Germany, 2003.The Hough Transform (HT) is a useful technique in image segmentation, concretely for geometrical primitive detection. A Convolution-Based Recursive Method (CBRM) is presented for generic function evaluation. In this approach, calculations are carried out by a unique parametric formula which provides all function points by successive iteration. The case of combined trigonometric functions involved in the calculation of the HT is analyzed under this scope. An architecture for reconfigurable FPGA-based hardware, using Distributed Arithmetic (DA) implements the design. It provides memory and hardware resource saving as well as speed improvements according to the experiments carried out with the HT

    CORDIC algorithm and its applications

    Get PDF
    openThe CORDIC (Coordinate Rotation Digital Computer) algorithm is used for solving vast sets of functions such as trigonometric functions, hyperbolic functions and natural logarithms. This thesis is going to discuss how the algorithm works and its architecture implementation. It is also going to explore potential applications of the algorithm in digital communication systems, specifically for the realization of the DDS (Direct Digital Synthesis) and digital modulation.The CORDIC (Coordinate Rotation Digital Computer) algorithm is used for solving vast sets of functions such as trigonometric functions, hyperbolic functions and natural logarithms. This thesis is going to discuss how the algorithm works and its architecture implementation. It is also going to explore potential applications of the algorithm in digital communication systems, specifically for the realization of the DDS (Direct Digital Synthesis) and digital modulation

    FPGA Implementation of Fast Fourier Transform Core Using NEDA

    Get PDF
    Transforms like DFT are a major block in communication systems such as OFDM, etc. This thesis reports architecture of a DFT core using NEDA. The advantage of the proposed architecture is that the entire transform can be implemented using adder/subtractors and shifters only, thus minimising the hardware requirement compared to other architectures. The proposed design is implemented for 16-bit data path (12–bit for comparison) considering both integer representation as well as fixed point representation, thus increasing the scope of usage. The proposed design is mapped on to Xilinx XC2VP30 FPGA, which is fabricated using 130 nm process technology. The maximum on board frequency of operation of the proposed design is 122 MHz. NEDA is one of the techniques to implement many signal processing systems that require multiply and accumulate units. FFT is one of the most employed blocks in many communication and signal processing systems. The FPGA implementation of a 16 point radix-4 complex FFT is proposed. The proposed design has improvement in terms of hardware utilization compared to traditional methods. The design has been implemented on a range of FPGAs to compare the performance. The maximum frequency achieved is 114.27 MHz on XC5VLX330 FPGA and the maximum throughput, 1828.32 Mbit/s and minimum slice delay product, 9.18. The design is also implemented using synopsys DC synthesis in both 65 nm and 180 nm technology libraries. The advantages of multiplier-less architectures are reduced hardware and improved latency. The multiplier-less architectures for the implementation of radix-2^2 folded pipelined complex FFT core are based on NEDA. The number of points considered in the work is sixteen and the folding is done by a factor of four. The proposed designs are implemented on Xilinx XC5VSX240T FPGA. Proposed designs based on NEDA have reduced area over 83%. The observed slice-delay product for NEDA based designs are 2.196 and 5.735

    Studio e realizzazione di un'architettura VLSI di un processore per l'implementazione dell'algoritmo FFT

    Get PDF
    Poiché lo standard di connessione 5G è utilizzato da un numero sempre crescente di dispositivi e si sta evolvendo per soddisfare nuove esigenze e requisiti, è diventato fondamentale studiare e progettare nuovi trasmettitori e ricevitori più veloci ed efficienti. Un ruolo fondamentale nella connessione 5G è svolto dal multiplexing a divisione di frequenza ortogonale (OFDM), una metodologia di modulazione. Poiché la demodulazione è basata sulla trasformata di Fourier, lo scopo di questa tesi è realizzare un processore in grado di implementare algoritmi FFT e DFT su sequenze di lunghezza variabile che rispetti i criteri dello standard 5G. Per fare ciò, è stata prima condotta un'analisi del rapporto dell'Unione internazionale delle telecomunicazioni ITU-R M.2410-0 per definire i requisiti minimi per il processore. Successivamente, uno studio dello stato dell'arte per dispositivi simili ha portato allo sviluppo di un'architettura VLSI adatta all'applicazione. Una versione RTL dell'architettura è stata implementata in VHDL e testata.Since the 5G connection standard is utilized by a rising number of devices and is evolving to meet new needs and requirements, it has become crucial to study and design new, faster, and more efficient transmitters and receivers. A fundamental role in the 5G connection is played by Orthogonal frequency-division multiplexing (OFDM), an encoding methodology. Since the demodulation is based on the Fourier Transform, the purpose of this thesis is to realize a processor capable of implementing FFT and DFT algorithms on variable length sequences that complies with the 5G standard criteria. In order to do so, first an analysis of the International Telecommunication Union report ITU-R M.2410-0 has been conducted to define the minimum requirements for the processor. Then, a study of the state of the art for similar devices led to the development of a VLSI architecture suitable for the application. An RTL version of the architecture has been implemented in VHDL and tested

    The implementation and applications of multiple-valued logic

    Get PDF
    Multiple-Valued Logic (MVL) takes two major forms. Multiple-valued circuits can implement the logic directly by using multiple-valued signals, or the logic can be implemented indirectly with binary circuits, by using more than one binary signal to represent a single multiple-valued signal. Techniques such as carry-save addition can be viewed as indirectly implemented MVL. Both direct and indirect techniques have been shown in the past to provide advantages over conventional arithmetic and logic techniques in algorithms required widely in computing for applications such as image and signal processing. It is possible to implement basic MVL building blocks at the transistor level. However, these circuits are difficult to design due to their non binary nature. In the design stage they are more like analogue circuits than binary circuits. Current integrated circuit technologies are biased towards binary circuitry. However, in spite of this, there is potential for power and area savings from MVL circuits, especially in technologies such as BiCMOS. This thesis shows that the use of voltage mode MVL will, in general not provide bandwidth increases on circuit buses because the buses become slower as the number of signal levels increases. Current mode MVL circuits however do have potential to reduce power and area requirements of arithmetic circuitry. The design of transistor level circuits is investigated in terms of a modern production technology. A novel methodology for the design of current mode MVL circuits is developed. The methodology is based upon the novel concept of the use of non-linear current encoding of signals, providing the opportunity for the efficient design of many previously unimplemented circuits in current mode MVL. This methodology is used to design a useful set of basic MVL building blocks, and fabrication results are reported. The creation of libraries of MVL circuits is also discussed. The CORDIC algorithm for two dimensional vector rotation is examined in detail as an example for indirect MVL implementation. The algorithm is extended to a set of three dimensional vector rotators using conventional arithmetic, redundant radix four arithmetic, and Taylor's series expansions. These algorithms can be used for two dimensional vector rotations in which no scale factor corrections are needed. The new algorithms are compared in terms of basic VLSI criteria against previously reported algorithms. A pipelined version of the redundant arithmetic algorithm is floorplanned and partially laid out to give indications of wiring overheads, and layout densities. An indirectly implemented MVL algorithm such as the CORDIC algorithm described in this thesis would clearly benefit from direct implementation in MVL
    corecore