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Abstract

The CORDIC (Coordinate Rotation Digital Computer) algorithm is used for solving vast
sets of functions such as trigonometric functions, hyperbolic functions and natural log-
arithms. This thesis is going to discuss how the algorithm works and its architecture
implementation. It is also going to explore potential applications of the algorithm in
digital communication systems, specifically for the realization of DDS (Direct Digital
Synthesis) and digital modulation.
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Chapter 1

Introduction

The CORDIC algorithm (COrdinate Rotation DIgital Computer) is an iterative method to
efficiently compute trigonometric, hyperbolic and logarithmic functions. Since it requires
only addition/subtraction, bit-shifting operation and ROM look-up tables the computa-
tional complexity is extremely low, making it suitable for low cost implementation when
no hardware multiplier is available.

1.1 The basics of CORDIC

1.1.1 Intuitive approach

Before understanding the CORDIC algorithm let’s take a step back and consider the
following problem:

• A straight line of fixed distance, from 0 to 100

• A target placed inside the line at an unknown distance

• We can move at fixed distances to the left or right

• The fixed distances are progressively smaller

To find the distance of the target from the origin, we can use a binary search approach.
Begin from the origin and move to the midpoint of the line (50), if the target is on the
left, divide the line in half and move left by half the lenght of the new line (25), otherwise
take the right half of the line and move right. Repeat the process and by progressively
halving the line we get closer and closer to the target until we reach the target.
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Figure 1.1: Graphic representation of target distance search using a binary search approach

With each step our computed distance approximation gets closer and closer until we
get to the real distance value of the target.

The CORDIC algorithm works with a similar pattern, but on a circumference1, and
instead of fixed linear addition/subtraction of progressively smaller distances it requires
trigonometric identities using fixed angle rotations.

1The CORDIC algorithm can be further generalized for hyperbolic functions, the generalized algorithm
will be introduced later in the thesis
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1.1.2 Functional description

Given a vector a⃗ on the Cartesian plane with magnitude R and phase θ, the new vector
b⃗ corresponding to the rotation of a⃗ by an angle α about the origin can be described as:

a⃗ =

[
R cos θ

R sin θ

]
=

[
x

y

]
b⃗ =

[
R cos(θ + α)

R sin(θ + α)

]
=

[
x′

y′

]
(1.1)

And with these trigonometric identities in mind:

cos(α + β) = cosα cos β − sinα sin β

sin(α + β) = cosα sin β + sinα cos β
(1.2)

The vector b⃗ can be rewritten as:

b⃗ =

[
R cos(θ + α)

R sin(θ + α)

]
=

[
R cos θ cosα−R sin θ sinα

R cos θ sinα +R sin θ cosα

]

=

[
x cosα− y sinα

x sinα + y cosα

]

=

[
cosα − sinα

sinα cosα

][
x

y

] (1.3)

O

θ

a⃗ = (x, y)

b⃗ = (x ′, y ′)

α

R

Figure 1.2: Rotation of vector a⃗ to vector b⃗ on a Cartesian plane
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We just learned that given any vector with coordinates (x, y), to compute the rotated
vector (x′, y′) by an angle of α about the origin we only need the pre-computed values of
cosα, sinα and basic math operations of addition/subtraction/multiplication.

We can then define a rotation matrix R(α) that relates the two vectors:[
x′

y′

]
=

[
cosα − sinα

sinα cosα

][
x

y

]
= R(α)

[
x

y

]
(1.4)

Suppose we need to find the coordinates of the vector (1, 0) after a rotation of an angle
ϕ between [0, π/2]. With a binary search approach pre-compute the sine and cosine values
of half the full range angle pi/2 which is 45◦, then the quarter 22.5◦, then 11.25◦ and so
on. With each step rotation b⃗1, b⃗2 and b⃗3 are computed, which are progressively closer to
the value of b⃗ = (xθ, yθ).

θ

b⃗ = (xθ, yθ)

y

x
a⃗ = (1,0)

45°

b⃗1 = (x1, y1)

θ

b⃗ = (xθ, yθ)

y

x

b⃗2 = (x2, y2)

Step 1 Step 2

25°

θ

b⃗ = (xθ, yθ)

y

x

b⃗3 = (x3, y3)

Step 3

-12.5°

Figure 1.3: First 3 steps rotations of vector a⃗ to vector b⃗1 b⃗2 and b⃗3.
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In other words, we have decomposed the rotation θ into N smaller fixed rotations with
the aid of a decision coefficient di that can assume either 1 or −1 depending on the current
step.

θ =
N∑
i=0

diθi with θ0 = 0

θi =
π

4i
∀i > 0

(1.5)

The steps can be either finite (we can define θ with limited θi) or infinite; in the latter
with a big enough N we can eventually converge to the real value of θ . This is an iterative
algorithm with input vector a⃗ and each iteration output b⃗i closer or equal to b⃗. The step
0 which corresponds to a rotation of θ0 is introduced in case the rotation is 0 degrees; the
algorithm will end immediately since no rotation is needed, in fact b⃗ = a⃗.

We basically find the vector b⃗ with rotation matrices containing progressively smaller
angles. Let’s analyze the first 3 iteration steps:

b⃗1 =

[
cos π

4
− sin π

4

sin π
4

cos π
4

][
1

0

]
= R

(π
4

)
a⃗

b⃗2 = R
(π
8

)
b⃗1

b⃗3 = R
(
− π

16

)
b⃗2

(1.6)

To generalize this algorithm:

b⃗ =

[
xθ

yθ

]
= R

(π
4

)
R
(π
8

)
R
(
− π

16

)
. . .

[
1

0

]

=
N∏
i=1

R(diθi)

[
1

0

] (1.7)
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1.2 Basic CORDIC iteration

The algorithm we just covered can be implemented with minimum hardware cost with
just a few optimization exploiting some binary operation properties, in particular the
transformation of multiplication into shift operations. Let’s normalize the rotation matrix
by cosα = K−1 and defining a new pseudorotation matrix Rc:[

x′

y′

]
=

[
cosα − sinα

sinα cosα

][
x

y

]

= cosα

[
1 − tanα

tanα 1

][
x

y

]
=

1

K
Rc(α)

[
x

y

] (1.8)

What if tanα = 2−n? In the base-2 numeral system the multiplication with 2−n (as-
suming n > 0) is essentially a right shift operation. The pseudo-rotation matrix is now
given by :

Rc(α) = Rc(tan
−1(2−n)) =

[
1 − tan(tan−1(2−n))

tan(tan−1(2−n)) 1

]

=

[
1 −2−n

2−n 1

] (1.9)

To find the coordinates of b⃗ = (xθ, yθ) of a generic vector a⃗ = (xa, ya) after a θ angle
rotation by the origin we apply the algorithm defined in the previous section, with the
only difference being that the angle decomposition equation (1.5) is now using a different
set of angles:

θ =
N∑
i=0

diθi with θ0 = 0

θi = arctan 2−i ∀i > 0

(1.10)

And the coordinates of the vector b⃗ using the new pseudorotation matrix Rc:

b⃗ =
N∏
i=1

R(diθi)

[
xa

ya

]
=

N∏
i=1

1

Ki

Rc(diθi)

[
xa

ya

]
(1.11)

Volder [3] introduced another simplification to the algorithm , in fact the product of the
scale factors will eventually converge to a finite number, in the case of our set of angles:

K = lim
N→∞

N∏
i=1

Ki ≃ 1.6467605 (1.12)

Therefore, we can begin by computing the pseudo-rotated vector using the pseudo-rotation
matrix that only requires shift/add operations and then one sigle K factor scaling at the
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end, which is well known in advance:

b⃗′ =
N∏
i=1

Rc(diθi)

[
xa

ya

]

b⃗ =
N∏
i=1

1

Ki

b⃗′ =
1

K
· b⃗′

(1.13)

O

b⃗i = (xi , yi )

⃗bi+1 = (xi+1, yi+1)

θi

x

y

xi+1 ·K −1
i

yi+1 ·K −1
i

Figure 1.4: Visualization of the pseudo-rotation after each iteration.

To summarize, the CORDIC algorithm is an iterative algorithm which performs a full
vector rotation by decomposing it into smaller microrotations using a predetermined set
of angles θi = arctan 2−i and decision coefficient di = ±1 decided at the i-th iteration.
Each i-th iteration has an input of the vector (xi, yi) and angle zi, after the microrotation
we obtain the pseudo-rotated vector (xi+1, yi+1) and angle zi+1 given by :

xi+1 = xi − yi · di · 2−i

yi+1 = yi + yi · di · 2−i

zi+1 = zi − di · θi with z0 = 0

(1.14)

The CORDIC iteration step of equation 1.14 can be used in two operating modes, the
rotation mode (RM) and vectoring mode (VM); what determines the decision coefficient
at the i-th iteration depends on which mode the algorithm is set to work with.
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1.2.1 Rotation Mode

In RM, we input the vector (x0, y0) we want rotated by an angle z0. After each iteration di

is determined by the sign of zi: if zi is positive then di = 1 otherwise di = −1. If zi = 0 or
after a fixed number of iterations we can end the algorithm and output the pseudo-rotated
vector. Scale the pseudo-rotated factor by K to compute the rotated vector.
After n iterations we get the following results:

xn = K (x0 cos(z0)− y0 sin(z0))

yn = K (y0 cos(z0) + x0 sin(z0))

zn = 0

(1.15)

b⃗

y

x

a⃗

b⃗1

b⃗2

b⃗3

z0

Figure 1.5: Visualization of the rotation mode, the scale factor has been omitted. a⃗ = (x0, y0) input
and b⃗ output

1.2.2 Vectoring Mode

In VM, we input the vector (x0, y0) which will rotate towards the x-axis until the y-
component reaches to zero. After each iteration if di is determined by the sign of yi: if yi
is positive then di = −1 otherwise di = 1. If yi = 0 or after a fixed number of iterations
we can end the algorithm and output the angle of rotation zi of the vector (x0, y0).
After n iterations we get the following results:

xn = K
√

x2
0 + y20

yn = 0

zn = z0 + tan− 1

(
y0
x0

) (1.16)
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y

x

b⃗1

b⃗2

b⃗3

a⃗

(1,0)

z0

Figure 1.6: Visualization of the vectoring mode, the scale factor has been omitted. a⃗ = (x0, y0) is the
input.

1.2.3 Generalized CORDIC algorithm

The CORDIC iterations can be generalized to not only compute trigonometric functions,
but also hyperbolic functions [4]; the CORDIC algorithm has then been reformulated in to
a generalized and unified algorithm capable of performing rotations in circular, hyperbolic
and linear coordinates system. Consider a coordinate system parametrized in m , given
a vector P = (x, y) with radius R and angle A are defined as:

R =
(
x2 +my2

)1/2
A = m−1/2 tan−1

(
m1/2 y

x

) (1.17)

By setting the parameter m we can decide in which coordinates system the vector will
rotate. A proper angle decomposition αi is chosen for each coordinates system in order
to exploit the multiplication-to-shift property of the base-2 numeral system. Let’s break
down equations 1.17 to better understand how the parameter m influences the radius R

and angle A.

Circular coordinates m = 1

R =
(
x2 + y2

)1/2
A = tan−1

(y
x

)
= arg (x, y)

(1.18)

The equations describe all vectors on a circle of radius R and angle A. We use αi =

tan−1(2−i).
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Linear coordinates m = 0

R = x

A = lim
m→0

m−1/2 tan−1
(
m1/2 y

x

)
=

y

x

(1.19)

The equations describe all vectors on a the line x = R, A is the inclination of the vector.
We use αi = 2−i.

Hyperbolic coordinates m = −1

With these mathematical definitions in mind:

j ≡
√
−1

tan−1(j · a) ≡ j tanh−1(a)
(1.20)

The equations of the vector P are:

R =
(
x2 − y2

)1/2
A = (−1)−1/2 tan−1

(
(−1)1/2

y

x

)
=

1

j
tan−1

(
j
y

x

)
= tanh−1

(y
x

) (1.21)

The equations describe all vectors on an hyperbole of radius R and hyperbolic angle A.
We use αi = tanh−1(2−i).

The pseudo-rotation of the vector P = (xi, yi) by αi into P ′ = (xi+1, yi+1) can be
obtained in a similar manner as the iteration step of (1.13):

xi+1 = xi −m · yi · di · 2−i

yi+1 = yi + yi · di · 2−i

zi+1 = zi − di · αi

(1.22)

With the decision coefficient di depending on the mode:

di =

sign(zi) for rotation mode

−sign(yi) for vectoring mode
(1.23)

We can also describe this rotation using the radius and angle:

Ai+1 = Ai − αi

Ri+1 = Ri ·Ki with Ki =
(
1 +m · 2−2i

)1/2 (1.24)

Note that we are doing a pseudo-rotation by αi. Even in different coordinates system the

10



products of the scaling factor Ki at the end of the algorithm still converges2 to a finite
number:

Kc = lim
N→∞

N∏
i=1

√
1 + 2−2i ≃ 1.6467605 with m = 1

Kl = lim
N→∞

N∏
i=1

√
1 = 1 with m = 0

Kh = lim
N→∞

N∏
i=1

√
1− 2−2i ≃ 0.8281 with m = −1

(1.25)

We can summarize the input-output vectors (input is the vector P = (x0, y0) with angle
z0, output is the vector Pn = (xn, yn) with the angle zn) of the generalized CORDIC
algorithm after n iterations with the following table:

Table 1.1: Generalized CORDIC Algorithm

m rotation mode vectoring mode

1
xn = Kc (x0 cos(z0)− y0 sin(z0)) xn = Kc

√
x2
0 + y20

yn = Kc (y0 cos(z0) + x0 sin(z0)) yn = 0
zn = 0 zn = z0 + tan−1(y0/x0)

0
xn = x0 xn = x0

yn = y0 + x0z0 yn = 0
zn = 0 zn = z0 + (y0/x0)

-1
xn = Kh (x0 cosh(z0)− y0 sinh(z0)) xn = Kh

√
x2
0 − y20

yn = Kh (y0 cosh(z0) + x0 sinh(z0)) yn = 0
zn = 0 zn = z0 + tanh−1(y0/x0)

2The hyperbolic CORDIC requires the execution of iterations i = 4, 13, 40... twice in order to converge
[2]

11



To better understand how the generalized CORDIC works, let’s visualize one i-th iter-
ation of the vector P = (xi, yi) with radius R and angle A to the vector P = (xi+1, yy+1)

with different coordinates system on the cartesian plane. Note that the vector rotation αi

on the linear and hyperbolic coordinates system is not by a geometric angle, but vector
”inclination” and hyperbolic angle respectively.

O

b⃗i = (xi , yi )

⃗bi+1K −1
i = (xi+1, yi+1)K −1

i

x

y

R ·arg(xi , yi )

αi

Figure 1.7: Rotation of the vector P = (xi, yi) with hyperbolic coordinates on cartesian plane

O

b⃗i = (xi , yi )

⃗bi+1K −1
i = (xi+1, yi+1)K −1

i

x

y

R

αi

Figure 1.8: Rotation of the vector P = (xi, yi) with linear coordinates on cartesian plane

1.2.4 Convergence

Returning to the CORDIC algorithm on circular coordinates, the angle decomposition
using n microrotations (1.9) is limited by the satisfaction of the convergence theorem [4]
:

θ =
n∑

i=0

diθi with θ0 = 0; θi = arctan 2−i ∀i > 0

θi ≤ θn−1 +
n−1∑

j=i+1

θj ∀i, i = 0, 1, 2, . . . , n− 2

(1.26)

A convergence range for z0 with a large iteration number n is therefore obtained [5] :

|z0| ≤ tan−1(2−n) +
n∑

i=0

tan−1(2−i) ≃ 1.74329 = 99.9 (1.27)

12



Generally, we would like to expand the convergence range to ±π. To do so, an extra iter-
ation is performed, which is a rotation through ±π/2 and it is represented as a ”negative”
iteration step (since it takes place before the actual CORDIC iterations):

x0 = −d−i · y−i

y0 = d−i · x−i

z0 = z−i − d−i · α−i where α−i ±
π

2

(1.28)
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Chapter 2

Hardware implementation

2.1 Basic CORDIC structure
Taking the basic CORDIC iteration step of (1.13) we can try to build its hardware imple-
mentation structure:

xi+1 = xi − yi · di · 2−i

yi+1 = yi + yi · di · 2−i

zi+1 = zi − di · θi with z0 = 0

(2.1)

+/- +/- +/-

xi

>> i << i

yi zi

tan−1(2−i )

−didi−di

xi+1 yi+1 zi+1

Figure 2.1: Draft of a hardware implementation of a CORDIC iteration
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Considering that the input coordinates of the vector and the precomputed θi are actually
n bits stored in a register we can build a more accurate hardware structure:

+/- +/- +/-

xi

>> i << i

yi zi

tan−1(2−i )

xi+1 yi+1 zi+1

mux

register

mux mux

register register

sgn(zi )sgn(yi )

−di +di −di

Figure 2.2: Hardware implementation of a CORDIC iteration with circular coordinates

The decision coefficient di that commands the adder/subtractor can be extracted di-
rectly from the sign bits sgn(yi) or sgn(zi) depending on which mode the CORDIC algo-
rithm is operating, VM and RM respectively.
Each i-th iteration will take place in one single clock cycle (considering a clock cycle slow
enough for the circuit to reach the desired state), the output will then get transferred
to the input through a multiplexer, shifted by the desired shift depending on the i-th
iteration and then addiction/subtraction to compute the output vector.

2.2 Reconfigurable CORDIC architecture

Taking the generalized CORDIC iteration step parametrized by m depending on the
coordinates system we want to work with:

xi+1 = xi −m · yi · di · 2−i

yi+1 = yi + yi · di · 2−i

zi+1 = zi − di · αi

(2.2)

We highlight the pseudo-rotation of the i-th iteration matrix Ri that relates the input-
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output vectors: [
xi+1

yi+1

]
=

[
1 −m · di · 2−i

di · 2−i 1

][
xi

yi

]
= Ri

[
xi

yi

]
(2.3)

In order to design a good reconfigurable architecture we need to maximize the sharing
of common hardware; we note that the iteration for circular and hyperbolic coordinates
system only differs by a sign factor in the pseudo-rotation matrix. So, we can repurpose
the basic CORDIC iteration hardware implementation with select signals sely and selx

[6] in function of the sign bits sgn(yi), sgn(zi) and parameter m; these select signals will
then command the adders/subtractors:

Table 2.1: Determination of sely and selx for reconfigurable CORDIC

Trajectory m di selx sely

Circular 1 1 Sub Add
-1 Add Sub

Hyperbolic -1 1 Add Add
-1 Sub Sub

In the proposed hardware implementation a new signal t is defined in order to choose the
trajectory of operation, t = 1 for circular coordinates system and t = 0 for hyperbolic
coordinates system. The mode signal is set to mode = 1 for vectoring mode and mode = 0

for rotation mode.

(a)

+/- +/-

xi

>> i << i

yi

selyselx

xi+1 yi+1

mux

sgn(zi )

sgn(yi )

mode

t

sely

selx

(b)

Figure 2.3: (a) Reconfigurable coordinate computation unit. (b) Select signals generation
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The angle computation does not depend on the type of trajectory, but still depends on
the mode. We need at least 2 look-up tables with the pre-computed set of angles ( αhi

hyperbolic angles and αci circular angles) for the computation of zi.

zi

zi+1

i-th iteration

LUT of Hyperbolic
set of angles

LUT of Circular
set of angles

t

+/-

sgn bit of (zi ) or (yi )

1

−1
di

αhi

αci

Figure 2.4: Reconfigurable angle computation unit

We can now build the structure of a single i-th iteration for the generalized CORDIC
algorithm. Note that the sely corresponds to the di with the mode selected.

+/- +/- +/-

xi

>> i << i

yi zi

xi+1 yi+1 zi+1

register

mux

register registersgn(zi )sgn(yi )

mode t

sely

selx

αhi αci

sgn bit

Figure 2.5: Hardware implementation of a single iteration generalized CORDIC algorithm
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2.2.1 Pipelined CORDIC architecture

We can exploit the fact that all CORDIC iterations are identical and map the datapath
with n iterations all in cascade in order to gain throughput at the cost of a higher circuit
complexity. The proposed solution of Figure 2.6 is simply an n stages of single CORDIC
iteration structure chained together.

+/- +/- +/-

x0

>> 0 << 0

y0 z0

tan−1(20)

−d0d0−d0

+/- +/- +/-

>> 1 << 1

tan−1(2−1)

−d1

+/- +/- +/-

>> 2 << 2

tan−1(2−2)

−d2

+/- +/- +/-

>> n −1 << n −1

tan−1(2−(n−1))

−dn−1

xn yn zn

−d1d1

d2 −d2

dn−1 −dn−1

Figure 2.6: Hardware implementation of pipelined CORDIC

To further optimize the hardware cost we can note that the shifters at each stage always
shifts a fixed amount depending on the i-th stage. The shift operation could be hardwired
with adders thus removing the need of shift structures altogether.

The pipelined CORDIC architecture can be considered a fully combinational logic cir-
cuit, in order to properly function the clock period should allow enough time at each stage
for the 3 adders to complete its addiction/subtraction operation. The critical-path that
define the optiman TCLK amounts to:

TCLK ≃ TADD + TMUX + T2C (2.4)
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Where TADD, TMUX and T2C are the time required for addiction, 2:1 multiplexing and 2’s
complement operation respectively. The multiplexing time is due to the extra computation
of the decision coefficient at each stage di. For known and constant angle rotations the sign
could be predetermined, removing the need of multiplexing and reducing the critical-path.

The generalized CORDIC algorithm hardware implementation can also be pipelined,
as shown in the figure 2.7 .

+/- +/- +/-

x0 y0
z0

sgn(z0)sgn(y0)

mode t

αh0 αc0

+/- +/- +/-

sgn(z1)sgn(y1)

αh1 αc1

+/- +/- +/-

sgn(zn−1)sgn(yn−1)

αh(n−1) αc(n−1)

xn yn zn

Figure 2.7: Pipelined generalized reconfigurable CORDIC
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2.3 Hybrid CORDIC algorithm
The main bottleneck of the CORDIC algorithm is regarding the limited throughput caused
by its sequential nature since computing the i-th decision coefficient di requires the (i-1)-
th iteration step to be completed. In fact, knowing the decision coefficient beforehand
the CORDIC algorithm could be implemented with purely combinational logic circuits
[7]. The Hybrid CORDIC algorithm is a special configuration that can effectively derive
2/3 of the rotations in parallel without any error by the introduction of two arctangent
radices [1].

2.3.1 Hybrid Radix Sets

In the conventional CORDIC the angle is decomposed by a set of angles that satisfy the
condition θi = tan−1(2−i), this exploits the base-2 product operation of the pseudorotation
matrix Rc and converting it into a shifting operation, discussed in the section 1.2.
When the i-th microroation angle is small enough:

lim
k→0

tan−1(2−k)

(2−k)
= 1

Therefore tan−1(2−i) ≃ (2−i) with sufficiently large i

(2.5)

(a) (b)

Figure 2.8: (a) Radix-2 and circular ATR (classic CORDIC) computed values. (b) Computation of
error between Radix-2 and circular ATR. Adapted from [1]
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What’s the gain of having the angles in a radix-2 form? From the generalized CORDIC
algorithm introduces in the section 1.2.3 , an angle decomposition with αi = 2−i is essen-
tially the algorithm working with linear coordinates:

θ =
n∑

i=0

diαi = 2−i with di = ±1 (2.6)

Note that we are working in the rotation mode, so our final goal is to decrease z0 to zero.
We can then rewrite the equation 2.7 considering that the angles are actually a binary
sequence.

θ =
n∑

i=0

ziαi = 2−i with zi = 1, 0 (2.7)

Therefore, having the z0 as the input in a linear coordinates system means having all the
di simultaneously. We introduce two typical approaches of the Hybrid algorithm angle
decomposition, the Mixed-Hybrid and the Partitioned-Hybrid radix sets.

Mixed-Hybrid Circular ATR

The rotation angle θ is partitioned as:

{

most significant part︷ ︸︸ ︷
tan−1(2−0), tan−1(2−1), . . . , tan−1(2−n+1), 2−n, . . . , 2−N+1︸ ︷︷ ︸

least significant part

} (2.8)

To increase the performance, the computation of the most significant part must be com-
pletely separated from the least significant one while preserving full accuracy [1]. We now
partition the θ angle with a binary representation of N − 1 bits:

θ =
N−1∑
i=0

θi2
−i (2.9)

The θ angle has been effectively decomposed into two terms θH and θL, which can be also
referred as coarse and fine angular decomposition:

θH =
n−1∑
i=0

θi2
−i θL =

N−1∑
i=n

θi2
−i (2.10)

The angle θH is completely independent from θL only if it does not change the N − n

significant bits of the residue rotation angle with respect to θH . In order to achieve this,
the exact rotation of θH is independent from θL.

The first processor will use the full angle θ and generate xn, yn and zn at the end of n
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iterations. The second processor will compute starting from the vector (xn, yn) and zn to
generate (xN , yN) and zN (with all the decision coefficients di known) at the end of the
remaining N − n iterations.

It has been demonstrated that n ≃ N/3 iterations must be computed in a strictly se-
quential way in order to preserve full accuracy [1]. Note that the two processors work
differently, the processor I is performs conventional CORDIC operations and the proces-
sor II can perform an optimized version of CORDIC even without the look-up table or
ROM since there are no precomputed angles that needs to be stored, only a shift-add
processor is enough.

CORDIC

Processor

I

CORDIC

Processor

II

θ

z0

Register

x0

y0

xn

yn

xN

yN

zn

Figure 2.9: Architecture for Mixed-Hybrid CORDIC algorithm

The di prediction in the linear coordinates system can also be applied in circular and
hyperbolic coordinates with the presence of a correction term. The maximum prediction
error is proven to be limited [8] . Consequently, both coarse and fine rotations can then
be implemented without ROM look-up tables, with the appropriate modification of the
CORDIC algorithm structure.
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Partitioned-Hybrid Circular ATR

In order to speed up the Hybrid-CORDIC even further we assume that θH rotation is
performed in a single rotation; the rotation angle θ is now partitioned as:

{

most significant part︷ ︸︸ ︷
tan−1(2−n+1) , 2−n, . . . , 2−N+1︸ ︷︷ ︸

least significant part

} (2.11)

The computation of the θH rotation can’t be implemented as an ordinary CORDIC
iteration since more than one angle is actually taken into account [1]. Processor I per-
forms a pair of ROM look-up operations followed by addiction to realize the rotation of
the coarse angle.

CORDIC

Processor

I

CORDIC

Processor

II

θ

θH

Register

x0

y0

xn

yn

xN

yN

θL

(shift-add)(ROM-based)

Figure 2.10: Architecture for Partitioned-Hybrid CORDIC algorithm

A form of Hybrid-CORDIC decomposition using a ROM based coarse operation has
been proposed in [9] for a very high-precision CORDIC processor with a contained ROM
size, namely the P-CORDIC.

2.4 Scaling, quantization and accuracy issues

As previously discussed, the CORDIC algorithm is powerful because the K factor con-
verges to a finite number for large enough n iterations. Note that after 9 iterations we
get pretty close to the converged value of K = 1.6467605.

A naive student may note that we still need at least one single multiplication at the
end of the algorithm which defeats the purpose of its simplicity. Since we are scaling by a
constant factor, there are efficiently implemented scaling units designed by canical signed
digit (CSD)-based technique [10] and common sub-expression elimination (CSE) approach
[11] [12]. Furthermore, the CORDIC algorithm has also been modified to implement on-
line scaling [13] and even scaling-free CORDIC [14].
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Table 2.2: Kn in function of n finite iterations

n Kn

1 1.414213
2 1.581139
3 1.629801
4 1.645689
5 1.646492
6 1.646693
7 1.646744
8 1.646756
9 1.646759

Since we only have a fixed amount of n CORDIC iterations, and the output of the
algorithm is only an approximation of the ideal value. Various papers have shown that
the error are within acceptable ranges, with potential optimization through normalization
of the input vector [15].

With the introduction of the pipelined CORDIC we can clearly see that there is some
kind of trade-offs between throughput and hardware complexity. The trade-off for area,
accuracy and latency of the algorithm depend mainly on the iteration count and its
implementation [16]. In fact, to achieve an n-bit accuracy with fixed-point arithmetic, a
wordlength of x and y datapath of (n+ 2 + log 2(n)) and for the angle z a (n+ log 2(n))

is required. [17]
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Chapter 3

Applications of the CORDIC
algorithm
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Figure 3.1: Summary of CORDIC functions

3.1 Computation of functions

An immediate application of the generalized CORDIC algorithm is the computation of
various functions; some functions can be directly extracted from the output after n itera-
tions while others require some post-processing computation.
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3.1.1 Rotation Mode

Using the circular coordinates (CC) system CORDIC algorithm with the input vector
(1, 0) and angle θ we get the following output:

C
O

R
D

IC
K

-scaled

x0 = 1

y0 = 0

z0 = θ

xn = (
x0 cos(z0)− y0 sin(z0)

)= cosθ

yn = (
y0 cos(z0)+x0 sin(z0)

)= sinθ

zn = 0

n
iteratio

n
s

RM

Figure 3.2: CC-RM Cordic to compute sin θ, cos θ and tan θ

It directly computes sin θ and cos θ; tan θ can then be derived.
We can also do a polar to rectangular conversion operation by inputting (R, 0) and the

output vector will be (R cos θ,R sin θ). Note that if the value of R is too big or too small
the output vector error increases [15].
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zn = 0

n
iteratio

n
s

RM

Figure 3.3: CC-RM Cordic to compute sin θ, cos θ and tan θ

Using the hyperbolic coordinates (HC) system, with an input of (1, 0) and zn = θ we can
directly compute sinh θ and cosh θ; tanh θ = (sinh θ/ cosh θ) and exp(θ) = (sinh θ+cosh θ)

can be subsequently computed.
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Figure 3.4: HC-RM Cordic to compute sinh θ, cosh θ
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3.1.2 Vectoring Mode

Using the CC-CORDIC in vectoring mode with the input vector (1, a) and zn = 0 we can
get at the output tan−1(a).
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Figure 3.5: CC-VM Cordic to compute tan−1(a)

With CC-RM we computed polar-to-rectangular conversion; using CC-VM we can do
the opposite conversion by inputting (b, a) and z0 = 0 and the output xn =

√
a2 + b2 and

tan−1(a/b).
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Figure 3.6: CC-VM Cordic to compute tan−1(a/b)

With HC-CORDIC in vectoring mode we can compute the square root function and
natural logarithm with the input (a+ 1/4, a− 1/4) and z0 = 0 we can get at the output
xn =

√
a. The computation of ln(a) can be done through this mathematical identity:

ln a = 2 tanh−
∣∣∣∣a− 1

a+ 1

∣∣∣∣ (3.1)
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Figure 3.7: HC-VM Cordic to compute
√
a
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3.1.3 Multiplication and division using LC-CORDIC

Using the linear coordinates (LC) system CORDIC algorithm multiplications and division
could also be computed.
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Figure 3.8: LC-RM Cordic to compute a · b
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Figure 3.9: LC-VM Cordic to compute b/a

3.2 Applications to communication

In digital communication systems, the RM-CORDIC can be used to generate mixed signals
removing the need of big ROM look-up tables that store sine/cosine values while the VM-
CORDIC can be used to estimate phase and frequency parameters.

3.2.1 Direct Digital Synthesis (DDS)

The Direct Digital Synthesis is a technique used in digital communications to generate
precise and stable waveforms starting from a known clock frequency fC . The generation
of any arbitrary wave requires the following components:

• A digital phase accumulator, it increments at a constant number depending on
the required frequency of the wave we need to generate and the clock frequency;
the output of the accumulator can be seen as a discrete sawtooth waveform which
represents the phase change of the wave.

• A phase-to-amplitude converter, with the input of the phase of the wave it outputs
its corresponding amplitude.

• A digital-to-analog converter (DAC), converts the outpt of the previous block to a
signal in the analog domain.
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Usually the DDS is employed for the generation of sine/cosine waves and the phase-to-
amplitude converter is basically a ROM look-up table with all the amplitudes of the
sinusoid mapped accordingly.

∆θ

CLK

Phase
Accumulator

sin / cosθ N
DAC

ROM

sinθ or cosθ
phase-to-amplitude

Figure 3.10: Simplified block diagram of the direct digital synthesizer for sine/cosine waves.

The system of the figure 3.10 represents the main blocks for the DDS. The first two
blocks are also referred as a numerically controlled oscillator (NCO) since the output of
the phase-to-amplitude converter is a sine/cosine wave at a controlled frequency fout in
function of fCLK and ∆θ given by :

fout =
fCLK ·∆θ

2N
(3.2)

∆θ is the phase increment value and N is the length in bits of the accumulator. Observe
that with increased step size of ∆θ, the frequency of the discrete sawtooth frequency
increases since looping through the phase accumulator register requires less time.

The phase to amplitude converter could be switched to a CC-CORDIC in RM (Figure
3.3) in order to compute the sine value sin θ for an input θ value. Unfortunately, despite
the CORDIC structure being more area effective than the ROM look-up table the trade-
offs are the lower latency and the introduction of arithmetic circuitry1 [18].

∆θ

CLK

Phase
Accumulator

CC-CORDIC RM
K-scaledθ

x0 = 1
y0 = 0

sinθ

cosθ
θ→ z0

N

sel

DAC
sinθ or cosθ

Figure 3.11: Simplified block diagram of the DDS using the CC-CORDIC in RM

1Depending on the specific CORDIC algorithm implementation further trade-offs can be observed,
discussed in the section 2.4
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Additionally, we can exploit the periodic nature of sinudoidal waves in particular by
studying the 3 most significant bits (MSB) of the θ angle in order to determine which π/2

quadrant it corresponds, in fact the amplitude values of the sine of the other 3 quadrants
are simply the first quadrant mirrored/flipped. The remaining N − 3 are then inputted
in the CC-CORDIC in RM. A control circuit is required in order to get the correct sin θ

and cos θ values. Additionally we can get a better sine resolution or better area usage
using the same CC-CORDIC since the input bits are fewer.
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0 → π
4

0 → 2π

⇐

sinθ

sinθ

Figure 3.12: Optimized diagram of the DDS using the CC-CORDIC in RM and additional control
circuitry

3.2.2 Analog and digital modulation

The CORDIC in RM can also be implemented for digital modulation, for instance in the
computation of the in-phase and quadrature components.
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Figure 3.13: Generic scheme to use CORDIC in RM for digital modulation. Adapted from [2]

The figure 3.13 is a modified version of the block diagram in figure 3.10 with more
freedom in parameters. θ =

∑
(fm+fc)+ϕm depends on the normalized carrier and mod-

ulating frequencies, fc and fm respectively. The modulating phase ϕm is also inputted
in the phase accumulator. This generic scheme could be used for analog amplitude mod-
ulation (AM), phase modulation (PM), and frequency modulation (FM), as well as the
digital modulations such as amplitude key shifting (ASK), phase-shift keying (PSK) and
frequency-shift keying (FSK) modulators [2].
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Chapter 4

Conclusion

This academic work is merely an introduction to the intricate world surrounding the
CORDIC algorithm. This powerful computation technique has proven to be extremely
versatile in a wide range of fields; while this thesis only scratches the surface about the ap-
plications to communications, CORDIC can also be applied in signal and image processing,
matrix computations, robotics and graphics. Despite the simplicity of the CORDIC im-
plementation initially proposed by J.E. Volder [3] and its generalized form by J.S. Walther
[4], more than 60 years have passed. Significant modification to the original structure and
subsequent refinements increased the throughput capabilities of the CORDIC processor
while simultaneously maintaining optimal hardware resource consumption.

33



34



Bibliography

[1] S. Wang, V. Piuri, and E. Wartzlander, “Hybrid cordic algorithms,” IEEE Trans-
actions on Computers, vol. 46, no. 11, pp. 1202–1207, 1997.

[2] P. K. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna, “50 years of
cordic: Algorithms, architectures, and applications,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 56, no. 9, pp. 1893–1907, 2009.

[3] J. E. Volder, “The cordic trigonometric computing technique,” IRE Transactions
on Electronic Computers, vol. EC-8, no. 3, pp. 330–334, 1959.

[4] J. S. Walther, “A unified algorithm for elementary functions,” in Proceedings of
the May 18-20, 1971, Spring Joint Computer Conference, ser. AFIPS ’71 (Spring).
New York, NY, USA: Association for Computing Machinery, 1971, p. 379–385.
[Online]. Available: https://doi.org/10.1145/1478786.1478840

[5] X. Hu, R. Harber, and S. Bass, “Expanding the range of convergence of the cordic
algorithm,” IEEE Transactions on Computers, vol. 40, no. 1, pp. 13–21, 1991.

[6] S. Aggarwal and P. K. Meher, “Reconfigurable cordic architectures for multi-mode
and multi-trajectory operations,” in 2014 IEEE International Symposium on Cir-
cuits and Systems (ISCAS), 2014, pp. 2490–2494.

[7] B. Hosticka, D. Timmermann, and H. Hahn, “Low latency time cordic algorithms,”
IEEE Transactions on Computers, vol. 41, no. 08, pp. 1010–1015, aug 1992.

[8] C.-Y. Chen and W.-C. Liu, “Architecture for cordic algorithm realization without
rom lookup tables,” in 2003 IEEE International Symposium on Circuits and Systems
(ISCAS), vol. 4, 2003, pp. IV–IV.

[9] K. Parhi and K. Martin, “P-cordic: a precomputation based rotation cordic algo-
rithm,” EURASIP Journal on Advances in Signal Processing, vol. 2002, 09 2002.

[10] R. Hartley, “Subexpression sharing in filters using canonic signed digit multipliers,”
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,
vol. 43, no. 10, pp. 677–688, 1996.

[11] G. Gilbert, D. Al-Khalili, and C. Rozon, “Optimized distributed processing of scal-
ing factor in cordic,” in The 3rd International IEEE-NEWCAS Conference, 2005.,
2005, pp. 35–38.

[12] O. Gustafsson, A. Dempster, K. Johansson, M. Macleod, and L. Wanhammar, “Sim-
plified design of constant coefficient multipliers,” Circuits Systems and Signal Pro-
cessing, vol. 25, pp. 225–251, 01 2006.

35

https://doi.org/10.1145/1478786.1478840


[13] H. K. Samudrala, S. Qadeer, S. Azeemuddin, and Z. Khan, “Parallel and pipelined
vlsi implementation of the new radix-2 dit fft algorithm,” in 2018 IEEE International
Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), 2018, pp. 21–26.

[14] J. Villalba, T. Lang, and E. Zapata, “Parallel compensation of scale factor for the
cordic algorithm,” Journal of VLSI Signal Processing, vol. 19, pp. 227–241, 08 1998.

[15] E. Antelo, J. Bruguera, T. Lang, and E. Zapata, “Error analysis and reduction for
angle calculation using the cordic algorithm,” IEEE Transactions on Computers,
vol. 46, no. 11, pp. 1264–1271, 1997.

[16] K. Kota and J. Cavallaro, “Numerical accuracy and hardware tradeoffs for cordic
arithmetic for special-purpose processors,” IEEE Transactions on Computers,
vol. 42, no. 7, pp. 769–779, 1993.

[17] H. Dawid and H. Meyr, “The differential cordic algorithm: Constant scale factor
redundant implementation without correcting iterations,” IEEE Transactions on
Computers, vol. 45, no. 3, pp. 307–318, 1996.

[18] D. De Caro and A. Strollo, “High-performance direct digital frequency synthesizers
using piecewise-polynomial approximation,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 52, no. 2, pp. 324–337, 2005.

36


	Abstract
	List of Figures
	List of Tables
	Introduction
	The basics of CORDIC
	Intuitive approach
	Functional description

	Basic CORDIC iteration
	Rotation Mode
	Vectoring Mode
	Generalized CORDIC algorithm
	Convergence


	Hardware implementation
	Basic CORDIC structure
	Reconfigurable CORDIC architecture
	Pipelined CORDIC architecture

	Hybrid CORDIC algorithm
	Hybrid Radix Sets

	Scaling, quantization and accuracy issues

	Applications of the CORDIC algorithm
	Computation of functions
	Rotation Mode
	Vectoring Mode
	Multiplication and division using LC-CORDIC

	Applications to communication
	Direct Digital Synthesis (DDS)
	Analog and digital modulation


	Conclusion
	Bibliography

