525 research outputs found

    Enabling Machine Understandable Exchange of Energy Consumption Information in Intelligent Domotic Environments

    Get PDF
    In the 21st century, all the major countries around the world are coming together to reduce the impact of energy generation and consumption on the global environment. Energy conservation and its efficient usage has become a top agenda on the desks of many governments. In the last decade, the drive to make homes automated and to deliver a better assisted living picked pace and the research into home automation systems accelerated, usually based on a centralized residential gateway. However most devised solutions fail to provide users with information about power consumption of different house appliances. The ability to collect power consumption information can lead us to have a more energy efficient society. The goal addressed in this paper is to enable residential gateways to provide the energy consumption information, in a machine understandable format, to support third party applications and services. To reach this goal, we propose a Semantic Energy Information Publishing Framework. The proposed framework publishes, for different appliances in the house, their power consumption information and other properties, in a machine understandable format. Appliance properties are exposed according to the existing semantic modeling supported by residential gateways, while instantaneous power consumption is modeled through a new modular Energy Profile ontolog

    Services and Policies for Care at Home

    Get PDF
    It is argued that various factors including the increasingly ageing population will require more care services to be delivered to users in their own homes. Desirable characteristics of such services are outlined. The Open Services Gateway initiative has been adopted as a widely accepted framework that is particularly suitable for developing home care services. Service discovery in this context is enhanced through ontologies that achieve greater flexibility and precision in service description. A service ontology stack allows common concepts to be extended for new services. The architecture of a policy system for home care is explained. This is used for flexible creation and control of new services. The core policy language and its extension for home care are introduced, and illustrated through typical examples. Future extensions of the approach are discussed

    Equipment management trial : TAHI summary

    Get PDF
    The Equipment Management (EM) trial was one of the practical initiatives conceived and implemented by members of The Application Home Initiative (TAHI) with strong support from the DTI, to demonstrate the feasibility of interoperability between white and brown goods, and other domestic equipment. The trial ran from October 2002 to June 2005, over which period it achieved its core objectives through the deployment in early 2005 of an integrated system in trials in 15 occupied homes. Prior to roll out into the field, the work was underpinned by soak testing, validation, laboratory experiments, case studies, user questionnaires, simulations and other research, conducted in a single demonstration home in Loughborough, as well as in Universities in the East Midlands and Scotland. The trial was conducted against a backdrop of continual commercial change. Despite this difficult operating environment, the trial met its objectives, although not entirely as envisaged initially – a tribute to the determination of the trial’s membership, the strength of its formal governance and management processes, and especially, the financial support of the dti. The equipment on trial featured a central heating/hot water boiler, washing machine, security system, gas alarm and utility meters, all connected to a home gateway, integrated functionally and presented to the users via a single interface. The trial met its principal objective to show that by connecting appliances to each other and to a support system, benefits in remote condition monitoring, maintenance, appliance & home controls optimisation and convenience to the customer & service supplier could be provided. The EM trial identified exciting opportunities for the UK’s domestic white and brown goods manufacturing sector. Despite the relative immaturity of some of the enabling technologies people seem interested in the use of smart home devices to improve their quality of life or just generally make things easier at home in their busy schedules. Whilst the enabling technology behind future smart homes is being developed at a rapid pace, it is the intelligent application and integration of this technology that will make the difference to the home consumer. Just because the technology provider can make a ‘useful’ device it does not necessarily mean that the consumer actually wants to buy the ‘new’ invention. The EM trial has successfully shown where certain technology can be deployed successfully and also identified areas where further work is required

    Equipment management trial : final report

    Get PDF
    Executive Summary The Equipment Management (EM) trial was one of the practical initiatives conceived and implemented by members of The Application Home Initiative (TAHI) to demonstrate the feasibility of interoperability between white and brown goods, and other domestic equipment. The trial ran from October 2002 to June 2005, over which period it achieved its core objectives through the deployment in early 2005 of an integrated system in trials in 15 occupied homes. Prior to roll out into the field, the work was underpinned by soak testing, validation, laboratory experiments, case studies, user questionnaires, simulations and other research, conducted in a single demonstration home in Loughborough, as well as in Universities in the East Midlands and Scotland. Throughout its life, the trial faced significant membership changes, which had a far greater impact than the technical issues that were tackled. Two blue chip companies withdrew at the point of signing the collaborative agreement; another made a major change in strategic direction half way through and withdrew the major portion of its backing; another corporate left at this point, a second one later; one corporate was a late entrant; the technical leader made a boardroom decision not to do the engineering work that it had promised; one company went into liquidation; another went up for sale whilst others reorganised. The trial was conducted against this backdrop of continual commercial change. Despite this difficult operating environment, the trial met its objectives, although not entirely as envisaged initially – a tribute to the determination of the trial’s membership, the strength of its formal governance and management processes, and especially, the financial support of the dti. The equipment on trial featured a central heating/hot water boiler, washing machine, security system, gas alarm and utility meters, all connected to a home gateway, integrated functionally and presented to the users via a single interface. The trial met its principal objective to show that by connecting appliances to each other and to a support system, benefits in remote condition monitoring, maintenance, appliance & home controls optimisation and convenience to the customer & service supplier could be provided. This is one of two main reports that form the trial output (the other, the Multi Home Trial Report, is available to EM Trial members only as it contains commercially sensitive information). A supporting library of documents is also available and is held in the virtual office hosted by Loughborough University Centre for the Integrated Home Environment

    Context-aware management of multi-device services in the home

    Get PDF
    MPhilMore and more functionally complex digital consumer devices are becoming embedded or scattered throughout the home, networked in a piecemeal fashion and supporting more ubiquitous device services. For example, activities such as watching a home video may require video to be streamed throughout the home and for multiple devices to be orchestrated and coordinated, involving multiple user interactions via multiple remote controls. The main aim of this project is to research and develop a service-oriented multidevice framework to support user activities in the home, easing the operation and management of multi-device services though reducing explicit user interaction. To do this, user contexts i.e., when and where a user activity takes place, and device orchestration using pre-defined rules, are being utilised. A service-oriented device framework has been designed in four phases. First, a simple framework is designed to utilise OSGi and UPnP functionality in order to orchestrate simple device operation involving device discovery and device interoperability. Second, the framework is enhanced by adding a dynamic user interface portal to access virtual orchestrated services generated through combining multiple devices. Third the framework supports context-based device interaction and context-based task initiation. Context-aware functionality combines information received from several sources such as from sensors that can sense the physical and user environment, from user-device interaction and from user contexts derived from calendars. Finally, the framework supports a smart home SOA lifecycle using pre-defined rules, a rule engine and workflows

    A Scalable Home Care System Infrastructure Supporting Domiciliary Care

    Get PDF
    Technology-mediated home care is attractive for older people living at home and also for their carers. It provides the information necessary to give confidence and assurance to everyone interested in the wellbeing of the older person. From a care delivery perspective, however, widespread deployment of home care technologies presents system developers with a set of challenges. These challenges arise from the issues associated with scaling from individual installations to providing a community-wide service, particularly when each installation is to be fitted to the particular but changing needs of the residents, their in-home carers and the larger healthcare community. This paper presents a home care software architecture and services that seek to address these challenges. The approach aims to generate the information needed in a timely and appropriate form to inform older residents and their carers about changing life style that may indicate a loss of well-being. It unites sensor-based services, home care policy management, resource discovery, multimodal interaction and dynamic configuration services. In this way, the approach offers the integration of a variety of home care services with adaptation to the context of use

    Ubiquitous Computing

    Get PDF
    The aim of this book is to give a treatment of the actively developed domain of Ubiquitous computing. Originally proposed by Mark D. Weiser, the concept of Ubiquitous computing enables a real-time global sensing, context-aware informational retrieval, multi-modal interaction with the user and enhanced visualization capabilities. In effect, Ubiquitous computing environments give extremely new and futuristic abilities to look at and interact with our habitat at any time and from anywhere. In that domain, researchers are confronted with many foundational, technological and engineering issues which were not known before. Detailed cross-disciplinary coverage of these issues is really needed today for further progress and widening of application range. This book collects twelve original works of researchers from eleven countries, which are clustered into four sections: Foundations, Security and Privacy, Integration and Middleware, Practical Applications

    Dependable distributed OSGi environment

    Get PDF
    As the concept of Service Oriented Computing matures the need for well defined architectures and protocols to address this trend is essential if IT is going to properly embrace SOC. The SOC paradigm has several requirements to work properly such as service composition and cooperation in a loosely coupled fashion, ability to adapt autonomously to environmental and business changes and address concerns such as modularity, dynamicity and proper integration between services. The popularization of the OSGi platform its another effort towards the SOC paradigm by issuing key aspects such as modularity and dynamicity in its service oriented design. However there is much room for improvement namely on the creation of architectures and mechanisms to improve the dependability of the overall solution by strengthening key properties such as the availability, reliability, integrity, safety and maintainability of the platform. In this work we propose a middleware layer that offers the strong modular and dynamic properties required in an SOC environment by relying on OSGi while addressing dependability concerns. The starting point to achieve this is by instrumenting an OSGi implementation and providing means to monitor and manage it accordingly to business and environmental requirements. By relying on group communication facilities and some properties from the OSGi specification we are able to migrate OSGi environments between nodes thus minimizing service delivery disruption in the presence of faults and addressing, at the same time SLA properties by migrating (or shutting down) services that are consuming more resources than agreed/expected.(undefined

    An Online Environmental Approach to Service Interaction Management in Home Automation

    Get PDF
    Home automation is maturing with the increased deployment of networks and intelligent devices in the home. Along with new protocols and devices, new software services will emerge and work together releasing the full potential of networked consumer devices. Services may include home security, climate control or entertainment. With such extensive interworking the phenomenon known as service interaction, or feature interaction, appears. The problem occurs when services interfere with one another causing unexpected or undesirable outcomes. The main goal of this work is to detect undesired interactions between devices and services while allowing positive interactions between services and devices. If the interaction is negative, the approach should be able to handle it in an appropriate way. Being able to carry out interaction detection in the home poses certain challenges. Firstly, the devices and services are provided by a number of vendors and will be using a variety of protocols. Secondly, the configuration will not be fixed, the network will change as devices join and leave. Services may also change and adapt to user needs and to devices available at runtime. The developed approach is able to work with such challenges. Since the goal of the automated home is to make life simpler for the occupant, the approach should require minimal user intervention. With the above goals, an approach was developed which tackles the problem. Whereas previous approaches solving service interaction have focused on the service, the technique presented here concentrates on the devices and their surrounds, as some interactions occur through conflicting effects on the environment. The approach introduces the concept of environmental variables. A variable may be room temperature, movement or perhaps light. Drawing inspiration from the Operating Systems domain, locks are used to control access to the devices and environmental variables. Using this technique, undesirable interactions are avoided. The inclusion of the environment is a key element of this approach as many interactions can happen indirectly, through the environment. Since the configuration of a home’s devices and services is continually changing, developing an off-line solution is not practical. Therefore, an on-line approach in the form of an interaction manager has been developed. It is the manager’s role to detect interactions. The approach was shown to work successfuly. The manager was able to successfully detect interactions and prevent negative interactions from occurring. Interactions were detected at both device and service level. The approach is flexible: it is protocol independent, services are unaware of the manager, and the manager can cope with new devices and services joining the network. Further, there is little user intervention required for the approach to operate

    Exploration of Game Consoles as a legitimate computing platform for in-the-field biomedical data acquisition and management

    Full text link
    Biomedical research increasingly requires for testings be conducted outside the lab, in the field such as the participant’s home or work environment. This type of research requires semi-autonomous computer systems that collect such data and send it back to the lab for processing and dissemination. A key aspect of this type of research is the selection of the required software and hardware components. These systems need to be reliable, allow considerable customizability and be readily accessible but also able to be locked down. In this paper we report a set of requirements for the hardware and software for such a system. We then utilise these requirements to evaluate the use of game consoles as a hardware platform in comparison to other hardware choices
    corecore