
An Online Environmental Approach to Service

Interaction Management in Home Automation

A Thesis

submitted to the

University of Stirling

for the Degree of

Doctor of Philosophy

by

Michael E. J. Wilson

Department of Computing Science and Mathematics

University of Stirling

Stirling. FK9 4LA

Scotland

September 2005

Declaration

I, Michael Wilson, hereby declare that this work has not been submitted for any

other degree at this University or any other institution and that, except where

reference is made to the work of other authors, the material presented is original.

Michael Wilson

Abstract

Home automation is maturing with the increased deployment of networks and

intelligent devices in the home. Along with new protocols and devices, new

software services will emerge and work together releasing the full potential of

networked consumer devices. Services may include home security, climate control

or entertainment. With such extensive interworking the phenomenon known as

service interaction, or feature interaction, appears. The problem occurs when

services interfere with one another causing unexpected or undesirable outcomes.

The main goal of this work is to detect undesired interactions between devices

and services while allowing positive interactions between services and devices.

If the interaction is negative, the approach should be able to handle it in an

appropriate way.

Being able to carry out interaction detection in the home poses certain challenges.

Firstly, the devices and services are provided by a number of vendors and will

be using a variety of protocols. Secondly, the configuration will not be fixed,

the network will change as devices join and leave. Services may also change and

adapt to user needs and to devices available at runtime. The developed approach

is able to work with such challenges.

Since the goal of the automated home is to make life simpler for the occupant,

the approach should require minimal user intervention.

With the above goals, an approach was developed which tackles the problem.

Whereas previous approaches solving service interaction have focused on the

service, the technique presented here concentrates on the devices and their sur-

rounds, as some interactions occur through conflicting effects on the environment.

The approach introduces the concept of environmental variables. A variable may

be room temperature, movement or perhaps light. Drawing inspiration from

the Operating Systems domain, locks are used to control access to the devices

and environmental variables. Using this technique, undesirable interactions are

avoided. The inclusion of the environment is a key element of this approach as

many interactions can happen indirectly, through the environment.

Since the configuration of a home’s devices and services is continually changing,

developing an off-line solution is not practical. Therefore, an on-line approach in

the form of an interaction manager has been developed. It is the manager’s role

to detect interactions.

The approach was shown to work successfuly. The manager was able to suc-

cessfully detect interactions and prevent negative interactions from occurring.

4

Interactions were detected at both device and service level. The approach is flex-

ible: it is protocol independent, services are unaware of the manager, and the

manager can cope with new devices and services joining the network. Further,

there is little user intervention required for the approach to operate.

5

Acknowledgements

There have been so many friends and colleagues through the course of this work

who have helped me. Without their suggestions, encouragement and support, it

is unlikely I would have successfully completed the thesis. There are, however a

few special people who I have to express special thanks to.

Firstly, Professor Evan Magill for introducing me to the field of feature interac-

tion. His help, patience and and encouragement have made my time at Stirling

both interesting and thoroughly enjoyable. I also want to thank Dr. Mario Kol-

berg for his valuable discussions and time spent watching while I drew boxes and

arrows on Canadian beer mats!

A big thank you to Alison Martin and John Willison who were there to proof

read and provide editorial comments.

I know there are many other people who I have met along the way, given me

support, ideas, and who have listened to me looking interested and nodding at

suitable moments. There are far too many to even start to list, but you know

who you are. To everyone, thank you so much.

... for my parents

Abbreviations

AC Automatic Callback

AR Automatic Recall

ARP Address Resolution Protocol

BCNB Blocking Calling Number Delivery

CF Call Forwarding

CFB Call Forwarding on Busy

CFU Call Forwarding Unconditional

CNB Calling Number Blocking

CND Calling Number Delivery

CNDB Calling Number Delivery Blocking

CSS Communications Support Service

CUSY CUstomer SYstem

CW Call Waiting

DER Device and Environmental Representation

DHCP Dynamic Host Configuration Protocol

i

ii

DIS Device Information Service

DLI Device Location Information

FIM Feature Interaction Manager

GENA General Event Notification Architecture

HAVi Home Video and Audio Interoperability

HES Home Entertainment Service

HTTP Hyper Text Transfer Protocol

HVAC Heating, Ventilation and Air Conditioning

HSS Home Security Service

IP Internet Protocol

JES Java Embedded Server

JPEG Joint Picture Expert Group

LDAP Lightweight Directory Access Protocol

LI Looping Interaction

LTT Linear Temporal Logic

MAI Multiple Action Interaction

MUMC Multiple User, Multiple Component

MUSC Multiple User, Single Component

MMS Multimedia Messaging Service

MTI Missed Trigger Interaction

NA Networked Appliance

iii

OCS Originating Call Screening

OSGi Open Services Gateway Initiative

PCS Power Control Service

SAI Shared Action Interaction

SCP Service Control Point

SIHP Service Interaction Handling Process

SIM Service Interaction Manager

SINPC Service Interaction Network Protocol Converter

SIP Session Initiation Protocol

SOAP Simple Object Access Protocol

SMF Service Management Framework

SMS Short Messaging Service

SSDP Simple Service Description Protocol

STI Shared Trigger Interaction

SUMC Single User, Multiple Component

SUSC Single User, Single Component

TCP Transmission Control Protocol

TLA Temporal Logic of Actions

UDP User Datagram Protocol

UPnP Universal Plug and Play

X.10 A simple powerline protocol for home automation

List of Publications

The work reported in this thesis has produced the following publications to date:

1. M. Wilson, and E. Magill, Service Interaction in Home Networks: A Re-

source Centric Approach, pp372-377 in Proceedings of 3rd Annual Post

Graduate Symposium on the Convergence of Telecommunications, Net-

working and Broadcasting, Liverpool, June 2002

2. M. Wilson, and EH. Magill An Environmental Model for Service Interaction

In Home Networks, in Proceedings of Prep 2003, Exeter, April 2003.

3. M. Kolberg, EH. Magill, and M. Wilson, Compatibility Issues Between Ser-

vices and Supporting Networked Appliances, IEEE Communications Maga-

zine, Vol. 41, No. 11, pp. 136-147, 2003.

4. M. Wilson, and E. Magill, A Model for Service Interaction Avoidance in

Home Networks, in Proceedings of 5th Annual Post Graduate Symposium

on the Convergence of Telecommunications, Networking and Broadcasting,

Liverpool, June 2004.

iv

v

5. M. Wilson, EH. Magill and M. Kolberg, An Online Approach for the Ser-

vice Interaction Problem in Home Automation, IEEE Consumer Commu-

nications and Networking Conference, 2005.

6. M. Wilson, EH. Magill, M. Kolberg, P. Burtwistle, and O. Ohlstenius, Con-

trolling Appliances with Pen and Paper, IEEE Consumer Communications

and Networking Conference, 2005.

Contents

1 Introduction 1

1.1 The Problem . 5

1.2 Aims of this work . 7

1.3 Contributions of this work . 8

1.4 Achievements and limitations of this work 9

1.5 Structure of the thesis . 11

2 The Networked Home 14

2.1 Protocols used in the home network 17

2.1.1 X.10 . 19

2.1.1.1 Addressing of devices 20

2.1.2 Universal Plug and Play (UPnP) 22

vi

CONTENTS vii

2.1.2.1 Addressing . 24

2.1.2.2 Discovery . 25

2.1.2.3 Description . 28

2.1.2.4 Control . 29

2.1.2.5 Eventing . 32

2.1.2.6 Presentation . 34

2.1.3 Summary of UPnP . 34

2.1.4 Other protocols used for home networking 35

2.2 A middleware solution from the OSGi Alliance 38

2.2.1 The OSGi framework . 40

2.2.1.1 The framework 40

2.2.1.2 The bundle . 40

2.2.1.3 The bundle life-cycle 42

2.2.2 The Service Registry in OSGi 44

2.2.3 Standard services . 47

2.2.4 Services working together 47

2.3 Summary . 49

CONTENTS viii

3 The Feature Interaction Problem 50

3.1 Taxonomies for feature interaction 52

3.1.1 Cameron’s taxonomy . 52

3.1.1.1 Nature of the interaction 53

3.1.1.2 Causes of interactions 55

3.1.2 Marples’ taxonomy . 57

3.1.3 Discussion: Cameron and Marples 59

3.1.4 A taxonomy for networked appliances 62

3.1.4.1 Multiple Action Interaction (MAI) 62

3.1.4.2 Shared Trigger Interaction (STI) 63

3.1.4.3 Sequential Action Interaction (SAI) 64

3.1.4.4 Missed Trigger Interaction (MTI) 65

3.1.5 Discussion: taxonomy for networked appliances 66

3.2 Approaches to the problem in telephony 66

3.2.1 Off-line approaches . 67

3.2.1.1 Software engineering approaches 67

3.2.1.2 Formal methods 69

CONTENTS ix

3.2.2 On-line approaches . 70

3.3 General limitations of previous approaches 75

3.4 Feature interaction in home networks 76

3.4.1 Current approaches for feature interaction in the home . . 77

4 Services Enabling Home Automation 80

4.1 User Services . 82

4.1.1 Home Ventilation and Air Conditioning (HVAC) 82

4.1.2 Home Security Service (HSS) 83

4.1.3 Power Control Service (PCS) 84

4.1.4 Home Entertainment Service (HES) 85

4.1.5 Communications Support Service (CSS) 86

4.2 Conflicts between services (Interactions) 86

4.2.1 Inter-service interaction 87

4.2.2 Intra-service interaction 88

4.3 Interaction examples . 88

4.3.1 Security vs. Power Control Service 88

4.3.2 Security vs. Entertainment 89

CONTENTS x

4.3.3 Security vs. Climate Control 90

4.3.4 Climate control vs. Security 90

4.3.5 Power Control Service vs. Climate Control 91

4.3.6 Within climate control . 91

4.3.6.1 Action conflicts: energy waste 92

4.3.6.2 Action conflicts: energy waste through looping . 93

4.3.7 Within Security . 93

4.4 Summary of the problem . 94

4.5 A new approach to the problem in home networks 95

4.6 Summary . 98

5 An Environmental Approach 99

5.1 Introduction . 99

5.2 The approach . 102

5.2.1 The 3-layered model . 104

5.2.2 Controlling access to components 107

5.2.3 Locality . 111

5.2.4 Service priorities . 111

CONTENTS xi

5.2.5 The remote device database 113

5.2.5.1 Describing devices 114

5.3 The service interaction manager 117

5.3.1 Keeping the manager up to date and consistent 119

5.3.1.1 Monitor the gateway for devices joining and leav-

ing the network 120

5.3.1.2 Service commands which are authorised by the

manager . 121

5.3.1.3 Direct device control by the user 121

5.4 Operation of the approach . 122

5.4.1 Model . 122

5.4.2 A worked example:

Interaction between climate control and security 125

5.4.2.1 Setting the scene 126

5.4.2.2 The static setup 127

5.4.2.3 Arming the security service 129

5.4.2.4 Avoiding the interaction 130

5.4.2.5 Avoiding the interaction under different circum-

stances . 133

CONTENTS xii

5.5 Summary . 136

6 Architecture of the Test-bed 138

6.1 Introduction . 138

6.2 Design of the basic test-bed . 139

6.2.1 Devices . 139

6.2.1.1 X.10 devices . 140

6.2.1.2 UPnP devices . 142

6.2.1.3 Auxiliary devices 145

6.2.2 The service management platform 147

6.2.2.1 The UPnP OSGi driver 149

6.2.2.2 The X.10 OSGi driver 152

6.2.3 Services . 154

6.3 Configuration of the basic test-bed 160

6.3.1 Setting up the X.10 devices 160

6.3.2 Setting up the UPnP devices 160

6.3.3 Configuration of the services 161

6.4 Testing of the basic test-bed . 163

CONTENTS xiii

6.4.1 Testing the devices . 163

6.4.2 Testing the services . 164

6.5 Design of the approach . 166

6.5.1 Service Interaction Manager (SIM) 168

6.5.2 Service Interaction Network Protocol Converters

(SINPC) . 171

6.5.3 Device Information . 173

6.5.3.1 Device information database 174

6.5.3.2 The Device Information Service (DIS) 175

6.5.4 Device Location Information and the Device &

Environment Representation component 177

6.5.4.1 Managing devices and locks 181

6.5.5 Priority service . 182

6.5.6 Summary of the flow data 183

6.5.6.1 Flow of data when service sends to device 184

6.5.6.2 Flow of data when device sends update 186

6.6 Testing of the approach . 187

6.7 Summary . 189

CONTENTS xiv

7 Experimentation and Results 190

7.1 The test cases . 190

7.1.1 Scenario 1: HSS:AFH vs PCS 192

7.1.2 Scenario 2: HSS:Alarm vs HES 194

7.1.3 Scenario 3: HSS:AFH vs HVAC 195

7.1.4 Scenario 4: HVAC vs HSS:Alarm 197

7.1.5 Scenario 5: Within HVAC – Issue 1 197

7.1.6 Scenario 6: Within HVAC – Issue 2 199

7.1.7 Scenario 7: within HSS . 200

7.1.8 Scenario 8: within HVAC 201

7.1.9 Scenario 9: HES and HVAC 203

7.1.10 Scenario 10: CMSS vs HSS 204

7.1.11 Scenario 11: HCS and HVAC 207

7.2 Summary of results . 209

7.3 Support for multiple rooms . 210

7.4 Summary . 211

CONTENTS xv

8 Conclusions and Further Work 213

8.1 Achievements of the approach . 213

8.2 Strengths of the approach . 215

8.3 Limitations of the approach . 218

8.4 Further work . 219

8.5 How this approach compares to others for the home domain . . . 226

8.6 Summary . 229

List of Figures

2.1 The Home Network (from [1]) . 15

2.2 Example X.10 Home Network . 19

2.3 Example X.10 Adapters (from [2]) 20

2.4 Example UPnP configurations . 23

2.5 Example SSDP alive message . 25

2.6 Example SSDP discover message 26

2.7 Example reply message from UPnP router from search 27

2.8 Example SSDP byebye message 27

2.9 Example SOAP message to get device state 30

2.10 Example SOAP reply message . 31

2.11 Example GENA subscribe message 32

2.12 Example Device accepts subscribe message 32

xvi

LIST OF FIGURES xvii

2.13 Example GENA unsubscribe . 33

2.14 OSGi home network (from [3]) 39

2.15 OSGi protocol stack (from [4]) 41

2.16 OSGi bundle states (from [5]) . 42

2.17 Example bundle manifest file . 43

2.18 OSGi service registration (from [6]) 45

2.19 Example service registry properties for UPnP lamp device 46

2.20 An example alarm service using many services 48

3.1 Looping interactions within CFU 58

3.2 Multiple Action Interaction (adapted from [1]) 63

3.3 Shared Trigger Interaction (adapted from [1]) 64

3.4 Sequential Action Interaction (adapted from [1]) 64

3.5 Missed Trigger Interaction (adapted from [1]) 65

5.1 Service issues request to device 103

5.2 Three Layered Model . 105

5.3 Example lamp description . 116

5.4 Internal representation . 119

LIST OF FIGURES xviii

5.5 Service to device via SIM . 121

5.6 Device to SIM . 122

5.7 3-layered model populated . 123

5.8 Static model of security and climate control service setup 128

5.9 Security service armed . 130

5.10 Avoiding Interaction between Climate and Security service 131

5.11 Avoiding interaction when climate control is active first 133

5.12 Security service and climate control service both active 134

6.1 The test bed used for experimentation 141

6.2 Service details for UPnP bundle, including service registry entry. . 151

6.3 X.10 setup servlet . 153

6.4 HVAC setup servlet . 155

6.5 Home alarm setup servlet . 156

6.6 Television recording setup of Entertainment Service 157

6.7 Example service entry for an X.10 lamp 161

6.8 Intel UPnP device validator tool 164

6.9 Bundles for the approach . 168

LIST OF FIGURES xix

6.10 Service interaction manager log 170

6.11 Extract from OSGi service registry for UPnP protocol converter . 172

6.12 Relationship diagram of device information database 175

6.13 Example return value from the device information service (output) 176

6.14 Example return value from the device information service (input) 177

6.15 Set location of device . 178

6.16 DER servlet to show internal view 180

6.17 Service priority configuration servlet 183

6.18 Flow of information sent from service to device 184

6.19 Flow of information sent by device update 186

6.20 Locked room temperature variable 188

7.1 The representation created by the DER at runtime 192

7.2 Interaction avoided between HSS:AFH and PCS 193

7.3 Interaction between HSS:Alarm and HES 194

7.4 Interaction avoided between AFH and HVAC 196

7.5 Interaction within HVAC . 198

7.6 Interaction within HSS . 200

LIST OF FIGURES xx

7.7 Interaction within HVAC . 202

7.8 Interaction between HES and HVAC 203

7.9 Interaction between CMSS and HSS 205

7.10 Interaction between HCS and HVAC 208

8.1 Heater’s relationship with the environment when active 220

8.2 Interaction between climate control service and humidity service . 221

8.3 Interaction between climate control and security using SE 223

List of Tables

2.1 Networking protocols used in home networking 37

4.1 Interactions identified from examples 95

5.1 Locking – allowed pairs . 110

7.1 Summary of results . 209

7.2 Interaction types handled by the approach 210

xxi

Chapter 1

Introduction

People have been intrigued by the home of the future for generations. Such

fascinations have been fuelled by science fiction movies and futuristic television

programmes. As far back as the early 1960’s the popular children’s television

series, the Jetsons, depicted a futuristic family living in an automated home.

This home included regular household appliances: television, washing machine,

cooker, etc. along with Rosie (a robot maid), who carried out general household

chores. More than three decades later, the vision of an intelligent, self maintaining

home is becoming a reality.

Currently, the general consensus of a smart home is relatively conservative. The

smart home can be defined as a collection of networked appliances connected to a

home LAN and controlled by one or a number of software services. By networked

appliances we mean traditional household appliances with additional internal

1

CHAPTER 1. INTRODUCTION 2

software and a network interface. These devices may include displays, heaters,

air-conditioners, fridges or even music stereos. The added value of networking

these appliances is that they can be controlled by one or a number of software

services remotely. These software services can be purchased by the user from

either one or many service providers. These services may include entertainment,

security or even climate control services – all of which run from a central point

in the home, a residential gateway. It is envisaged that new devices joining the

network will automatically configure themselves and become integrated into the

home system. This allows the software services to use the most appropriate device

available at the time.

Although this is the current view of the smart home, it will change. Already,

ubiquitous computing (the invisible computer) is attracting considerable atten-

tion. Computers are becoming so small and cheap that they will be embedded

into clothing and buttons. This offers the possibilities that items of clothing can

communicate with the washing machine, the washing machine can then determine

the optimum wash cycle for the load. However, there are many other possibilities

which this technology can bring.

A number of trial homes have been created to show how effective home network-

ing can be. These projects include: e2-Home in Stockholm [7]; the Internet Home

Alliances OnStar homes in Detroit [8], and the TAHI smart home in Loughbor-

ough [9].

CHAPTER 1. INTRODUCTION 3

These trial homes use devices which are generally not available off the shelf;

however, some home networking technologies are available to buy. X.10 [10] is

one such technology. X.10 devices have proved popular with home automation

enthusiasts as they are relatively cheap, both in terms of cost of equipment and

of setting up the X.10 network. Software for controlling devices is also available

off the shelf. IBM Home Director [11] is one such product.

Home automation for all is still in its infancy. Trial homes, despite being sophis-

ticated, are not truly dynamic. Software controlling devices in such a house has

been carefully engineered for the part. Products such as X.10 and Home Director

are relatively simple, and what the user can achieve is limited. The road to fully

achieving the automated home for general use is still some way off.

Issues remain to be overcome; however, the area is enjoying considerable growth

in both industry and academia. As a result of technological advances and the

drop in price of consumer electronics, the automated home for all is beginning to

come within reach.

With many software services each controlling a number of devices, it is inevitable

that two services may need to control the same device. This leads to serious

problems with compatibility. The problem may not even be due to two services

trying to control a single device, but perhaps a service controlling a device which

clashes with what a separate device (or service) is trying to achieve.

An example of this type of incompatibility is between a heater and air conditioner.

CHAPTER 1. INTRODUCTION 4

Since one device heats and the other cools, clearly they are not compatible with

one another. However, there is no direct link between a heater device and an air

conditioner device. There is another factor involved – the room temperature. The

temperature is part of the room environment, in the same way that movement

can be seen as an attribute of the room’s environment. This example shows that

the room environment is an important factor in the home as compatibility issues

arise through it.

Not only can the devices be incompatible with one another, but services can be

incompatible too. For example, one service may want to open windows for ven-

tilation, whereas another service wants to keep windows closed to keep the home

secure. There is an incompatibility here, as the opening of windows makes the

home insecure. However, like the example between the heater and air conditioner,

there is no direct link. The link is indirect and is through the environment. It

must be noted that this problem is only a problem when security is an issue. If

there was no security, opening the window would probably not cause a problem.

As the examples above show, incompatibilities in the home are a problem. Al-

though incompatibilities in the home may be a new area of research, the general

topic has been the focus of academic and industrial research for over a decade.

The problem is generally known as the Service Interaction or Feature Interaction

problem.

CHAPTER 1. INTRODUCTION 5

1.1 The Problem

The service interaction problem is where the action of one service has a negative

impact on another [12]. The fact that services conflict with one another is not

due to badly written services, but simply services with broken assumptions and

conflicting goals [13]. Broken assumptions are where the designers of a particular

service make assumptions which are then broken by another (unexpected) service.

For example, if a security service was developed then the assumption may be that

there should be no movement when no one is home. Therefore any movement

detected is interpreted as an intruder. The ventilation service may turn on a fan.

This causes movement, which is interpreted as an intruder by the security service.

The security service made the assumption that there should be no movement,

but the ventilation service broke this assumption by turning on the fan and

causing movement. No movement in the home is not a bad assumption to make

by the security service designers; it is the ventilation service which breaks this

assumption.

Although some interworking is positive, i.e. allowing devices to work together to

reach a common goal, negative interactions are not. These types of interactions

must be avoided if the networked home is to succeed [14].

The topic of feature interaction has received much research over the past decade

with work widely published on the subject, and indeed a series of workshops

CHAPTER 1. INTRODUCTION 6

held [15–21]. Much of this research has been concentrated in the telephony do-

main. However, the issue in electronic mail, elevators or web-services, among

others, has been studied. Despite good progress, an agreed universal solution

to the problem has proved elusive. To date, the home automation domain has

received little attention.

There are many causes of interactions in the home. Like all other domains, the

primary issue is that some services have conflicting goals and broken assumptions.

Solving the problem in the home is not straightforward.

Since most households will have a different make-up of services (and configura-

tions) and devices, it means it is not always clear which device a service may

use. For example, a service may have the goal of cooling a room the quickest

way possible. If an air conditioner is available, using it would be appropriate.

If an air conditioner was not available and it happened to be cooler outside, an

alternative would be to open a window. However, by opening a window, the

cooling service could interact with a security service. If the owner did not have

a security service, no interaction would occur. This highlights the problem of

detecting interactions within the home domain.

As previously stated, interactions occur due to broken assumptions and conflict-

ing goals. The first time services meet will be in the network at runtime. If all

services were developed by the same vendor, all services and service permutations

could be tested against one another. This allows interactions to be fixed before

CHAPTER 1. INTRODUCTION 7

the service is deployed. In the home networking environment this is not possible

as there will be many vendors where competition is fierce. Furthermore, vendors

are unlikely to exhibit their new service to each other.

Services are one variable in the problem; however, the problem is worsened by

the ad hoc nature of devices in the home. New home networking protocols are

developed to specifically support leaving and joining networks.

Therefore, it becomes impossible to predict the combination of devices and ser-

vices (including how they are configured) until runtime.

Although the flexibility with devices and services offers a customised home au-

tomation solution for a user, it makes automatically detecting and resolving ser-

vice interactions difficult. It is worth noting that once an interaction has been

found, it is relatively straightforward to fix [13]. However, if a customer is paying

for services they will not tolerate these surprises, regardless of how easy they are

to resolve.

1.2 Aims of this work

As discussed in the previous section, the service interaction problem is an issue in

the home. Therefore, the aim of this work will be to develop an approach which

will:

CHAPTER 1. INTRODUCTION 8

1. Avoid negative interactions from occurring in the home network between

different devices and services.

2. Consider the environment as many interactions occur though it.

3. Handle new devices and services joining the home network, as well as ex-

isting devices and services leaving the network.

4. Handle services from multiple service providers as there will be many com-

panies selling services for the home, each specialising in a particular area.

5. Have limited user intervention as the networked home is supposed to make

life easier for the occupant. Therefore, they are not likely be interested in

incompatibility issues.

1.3 Contributions of this work

The approach presented in this thesis is a novel approach for service interaction

avoidance in the home domain. It is an automatic, runtime approach which is

able to avoid negative interactions.

There are few published papers which tackle the feature interaction problem in

the home. Nakamura et al. [22] present an approach which uses the environment;

however this is an off-line approach. Metzger and Webel [23] present an approach

for service interaction in building control (which has many similarities to the home

CHAPTER 1. INTRODUCTION 9

domain) which uses the environment; however, their approach is also off-line. In

contrast, the approach presented here is a runtime approach.

The work here is novel as it is the first online approach specifically for the home.

The approach is not service specific, and therefore can support a multi-vendor

environment. Indeed, the approach here is the first device centric approach. This

means a device and the device’s environment is the focus, rather than traditional

approaches in feature interaction which focus on the service.

The approach presented here makes use of the concept of environment to detect

and avoid interactions. Within the feature interaction community, there are few

avoidance approaches.

As well as being a runtime approach, it does not require a warm-up period. That

is, it can be deployed straight into a network. It would also work immediately

with newly added devices, regardless of their underlying network protocol. This

makes it an extremely flexible approach.

However, most importantly the approach fulfils the aims stated above.

1.4 Achievements and limitations of this work

The main achievements of this work include:

• Negative interactions are avoided while positive interactions are allowed.

CHAPTER 1. INTRODUCTION 10

This allows services to work together to achieve a common goal.

• Able to detect and resolve interactions at the device and service level.

• Manager operates at runtime with negligible overhead running cost (less

than one second).

• Device protocol independent.

• Services do not need to be aware of the feature interaction manager. There-

fore the approach works with services from any vendor.

• Requires no warm-up time. As soon as the manager is deployed onto the

network, it is able to start avoiding negative interactions.

• Able to handle devices and services joining and leaving the network.

Although the results from the approach are mainly positive, the approach does

have some limitations (these limitations will be discussed in length in Chapter 8).

These limitations include:

• The approach is unable to detect interactions caused by the same service

(intra-service interactions).

• Devices and services must all be registered and controlled centrally for the

approach to work.

CHAPTER 1. INTRODUCTION 11

• Unable to avoid looping interactions. This is because when a service is

finished with a device the session has finished and devices and variables

are free for others to use them.

• Some a priori information is required regarding devices and the environ-

mental variables that the device will affect.

• Rooms in the home are considered to be independent of one another.

• Side effects of devices are not included.

There are some slight limitations of this approach, however these derive from the

fact that this is a straightforward and simple technique. The approach presented

here is simple and is able to avoid the majority of interactions in the home. In

the worst case, a user can always override the manager.

1.5 Structure of the thesis

The thesis is laid out in the following way. Chapter two will discuss the networked

home. This will include explaining the types of devices (including protocols) in

the home and how devices can be brought together by using a service management

platform.

Chapter three will discuss the feature interaction problem, highlighting previous

work carried out. This chapter will then outline the requirements for a new

CHAPTER 1. INTRODUCTION 12

approach for the home while explaining why existing approaches are not suitable

for this domain.

Chapter four will cover the kinds of services which will be available in the home.

The service interaction problem in the home is highlighted in this section, and in-

teraction scenarios are outlined. These scenarios are used in the experimentation

section to show the effectiveness of the approach.

Chapter five reveals a new and novel approach for service interaction management

in the home. Previous approaches for feature interaction have been service centric

– requiring detailed information about the service. Due to services constantly

adapting to their surroundings, a service may behave differently each time it is

executed. Therefore, the approach presented here focuses on the device and its

surrounding environment, as the behaviour of a device does not change. For

example, a device may be a heater where the surrounding environment it affects

is room temperature. Thus, by controlling access to the device and the device

environment, negative interactions can be avoided. For controlling access to the

device and environment, inspiration has been drawn from the operating systems

domain.

Following the description of the approach, chapter six discusses the architecture

of the test-bed. It is important to show that the approach works in practice, as

well as theory, therefore a test-bed is required to achieve this. This chapter will

detail the devices and services used in the test-bed. Further, the design of the

CHAPTER 1. INTRODUCTION 13

approach will be included here.

Chapter seven presents the results from experimentation. The effectiveness of

the approach is shown by using each of the scenarios depicted in Chapter four.

Finally, chapter eight contains the conclusions and further work. The strengths

of the approach as well as its limitations are presented here. The section on

further work will explain how the approach can be improved and moved forward

into other domains.

Chapter 2

The Networked Home

The motivation for automating the home has often been questioned. However, by

connecting devices, and allowing them to work together, some exciting possibili-

ties for the home can be delivered [24]. Due to this connectivity, users will have

access to their data (e.g. audio or video collections or state of home), regardless

of their location, provided they have a network connection.

Figure 2.1 depicts an example home network where a multitude of networked

devices1 are connected using a variety of networking protocols. New possibilities

arise when this new technology is used. Three areas which can benefit are health

care, entertainment and convenience.

A key area where the automated home is expected to benefit is health care [24, 25].

1A networked device is a normal device with a network adapter. In this thesis, a networked

device is considered the same as a networked appliance.

14

CHAPTER 2. THE NETWORKED HOME 15

X10 Lamp
X10 Lamp

UPnP Air-conditioner

UPnP Heater

Washing Machine

UPnP
Thermometer

HAVi T.V.

X10 Motion
Sensor

HAVi VCR

Power line

IEEE 1394 Network

HAVi
DVD Player

IP Network

DHCP Server
& SIP Proxy

Internet

SIP
UA

Residential
Gateway

Figure 2.1: The Home Network (from [1])

It is estimated that, currently, cognitive decline and cardiovascular problems

currently cost the US economy $600 billion [25]. If these problems are detected

earlier, considerable sums of money and lives can be saved. For example, many

people do not realise they are ill until the later stages of a disease, by which time

it can be more expensive and harder to treat.

Michael J Fox, who starred in the US sitcom ‘Spincity’, was diagnosed with

Parkinson’s in 1991. When episodes were analysed, it could be seen that his

actions changed over a period of time [25]. It was only by analysing the data

which had been collected over a period of time that gradual changes were noticed.

To detect subtle changes in a person, clearly they do not want to be wired to

machines, or have to place patches on themselves each day. Tamura et. al [26]

suggest techniques which are not intrusive. These include ways to measure a

CHAPTER 2. THE NETWORKED HOME 16

person’s heart-rate while they are in the bath, their weight through the toilet,

and body temperature while the person is in bed. This data is recorded and can

then be sent via the home to their GP for analysis [25].

This technology has the potential to save lives, improve people’s quality of life,

and to save local authorities large sums of money, as pilots in the UK found [27].

Various companies provide smart home solutions for this market [28–30]. One ex-

ample of the smart home is the Hogar.es Project [31] led by the Spanish telecom-

munications company Telefonica. These homes allow those who would be placed

into a nursing home to stay in their own homes for longer. The same applies for

patients recuperating in hospital – they can return home sooner, and be moni-

tored remotely.

These homes can monitor users for falls [27], and notify a carer. Other devices

could be used to monitor a patient’s heart pattern; again, if the heart pattern goes

into a danger zone, someone can be alerted [32]. Also, the home can make sure

that the occupant has not left an unlit gas cooker ring on, or left a bath running

– both of which are common with people who suffer from dementia. It is the

confidence which these technologies bring to the users (elderly or infirm) which

allow them to be independent for longer. It leaves them, and their families, safe

in the knowledge that if anything were to go wrong, someone would be alerted

promptly [27].

As well as health care, these homes can be convenient for a busy family, where

CHAPTER 2. THE NETWORKED HOME 17

any assistance to household tasks is welcome [24]. One such use may be that

devices will have the ability to monitor themselves, sending diagnostic data to

the manufacturer. If a component in the device is about to fail, an engineer

can visit with a replacement part before the appliance fails [33]. Currently, if an

engineer has to call to service an appliance within the home, someone has to stay

at home. In the connected home, it will be possible that when the engineer calls

and rings the door bell, the owner can check it is the engineer, unlock the door,

let them in and watch them while they service the appliance. When the engineer

leaves, the front door can be locked. All this can be carried out remotely [34].

Climate control services may keep the home at a comfortable temperature, auto-

matically adjusting windows, heaters or air conditioners accordingly. A central

locking feature for the home can secure the home and turn devices off (such as

an iron) after the front door is locked.

A home described above consists of devices and user services. The devices and

the protocols they use are described in the next section, and user services are

discussed in Chapter 4.

2.1 Protocols used in the home network

Networked devices are similar to their traditional counterparts but differ in that

they have a network interface. These devices are actuators, sensors or displays.

CHAPTER 2. THE NETWORKED HOME 18

This interface allows them to be networked and controlled remotely by services.

In the home there is no single home networking protocol ; instead, there are a

plethora of protocols. Currently there are over 50 protocols developed for the

home [35]. The reason for so many is due to the number of consortia and au-

thorised standardisation bodies who are creating their own protocols. Generally,

these protocols do not interoperate [36], however with appropriate middleware

solutions, they can be made to do so.

Figure 2.1 shows a simple example of a wired home network. The figure shows four

different protocols: X.10 [10], UPnP [37], SIP for Appliances [33] and HAVi [38].

These are high level protocols and in the the OSI ISO reference model, these are

in the application layer. The underlying protocols, such as IEEE 802.3 (Ethernet)

or IEEE 802.11 (Wifi) are in the data link layer.

Of the protocols shown here, two contrasting protocol; X.10 and UPnP. X.10

is a powerline protocol, where no intelligence lies within the device: the X.10

protocol simply controls the voltage to the device through an adapter at the

power socket. In contrast, in UPnP devices the intelligence is located on the

device itself, potentially giving far more control over the device.

CHAPTER 2. THE NETWORKED HOME 19

2.1.1 X.10

The X.10 protocol is a simple powerline protocol. X.10 adapters plug into the

electrical wall socket, and traditional devices (e.g., lamp or fan) plug into the

adapter. The X.10 adapter simply controls the voltage to the normal device,

thus there is no X.10 intelligence in the device. For this reason, the protocol is

limited in what it can do, and indeed in the devices it can be used with. Figure 2.2

shows an example X.10 network within a home.

MainBedroom

!

Kitchen

" Hall

E

LivingRoom

$

Bathroom

D

Power line

"&

"'

$&

$'
$'

E&

E'

!(

!)

D&

X.10 Adapters

RGW

"(

X.10 Gateway

Figure 2.2: Example X.10 Home Network

Its functionality is limited to switching a device either on or off or, in the case

of a lamp, dimming and brightening. There are also other features which the

protocol supports. These include turning all appliances in one room on or off, all

lamps in the home on or off. However, it does no more than control the power a

CHAPTER 2. THE NETWORKED HOME 20

device receives.

(a) Gateway adapter (b) Lamp adapter

Figure 2.3: Example X.10 Adapters (from [2])

The X.10 network works by placing an X.10 gateway (Figure 2.3(a)) into a wall

socket. This is the gateway which bridges the powerline network to the personal

computer or residential gateway, shown as the triangle in Figure 2.2. The X.10

adapters (Figure 2.3(b)) simply plug into the wall socket and listen for messages

sent onto the powerline by the gateway, shown as rectangles in Figure 2.2.

2.1.1.1 Addressing of devices

Devices and addressing are set up manually. The X.10 protocol supports 256

unique addresses. There are two parts to an X.10 address: the room and the

CHAPTER 2. THE NETWORKED HOME 21

device number. The protocol defines that the room letter runs from A to P

(inclusive). Device numbers run from 1 to 16 (inclusive). Figure 2.2 shows an

example home with five rooms (A–E).

Figure 2.3(b) shows a X.10 lamp adapter with two dials, the first being the room

letter and the second being the device number. An on command to A1 would

turn device 1 on in room A.

The protocol allows many devices to share one address, which can be seen in

Figure 2.2. In this example, two adapters have the address C2 in the living room

(room C). This means when a command is sent with address C2, both adapters

will act upon the request.

It is up to the user to keep addressing consistent and ensure correct room letters

are assigned to the appropriate devices. Otherwise commands to turn all devices

in room B to an off state may turn devices off in other rooms.

The protocol has been popular with home automation enthusiasts. This is partly

due to its cost as the adapters are relatively cheap. Also, existing household

devices, e.g. lamps or fans, can be used. The purchase of new devices is not

required. Software is also freely available for controlling the home using X.10,

such as IBM Home Director [11], PowerHome [39] or open source Java APIs [40].

One of the main problems with using X.10 is limited addressing. If a neighbour

also has an X.10 network, both neighbours can affect each other’s appliances. If

CHAPTER 2. THE NETWORKED HOME 22

neighbours can control each other’s appliances, this raises another issue: security.

X.10 does not support any form of security.

Despite these limitations, X.10 is popular, with a number of web-sites selling

equipment in the UK [2]. X.10 functionality is limited due to how it works

(controlling the power supply to a device). In contrast, other protocols have

been developed which are embedded in the device. These protocols, since they

are inside the device, have the potential to be much more powerful, controlling

the device in specific ways. UPnP is an example of one such protocol.

2.1.2 Universal Plug and Play (UPnP)

The UPnP Forum [37] was set up in 1999 and is led by Microsoft and Intel. The

forum now has over 700 members from a diversity of backgrounds.

As the name suggests, UPnP is plug and play – that is, when a new UPnP device

is connected to the network, it advertises itself and makes itself available to other

network users automatically. Zero configuration is the key to UPnP [35].

Plug and play is not a new concept. The idea has been successfully used in

desktop computing for a number of years. Most new keyboards or memory sticks,

for example, can be plugged into a desktop computer and the computer has the

ability to recognise the device and start using it. No drivers and no fuss to start

using them. This is restricted to the desktop computer; broadening it out to be

CHAPTER 2. THE NETWORKED HOME 23

used in the home is where UPnP can be used.

Using a protocol which supports zero configuration for the home is important if

home automation is to move from the early adopters to mainstream users. Users

will want to buy a new device, take it home, plug it in and for the device to work

with existing devices and services. They are unlikely to tolerate the downloading

of new drivers and re-configuring existing devices and services to work with the

new item. UPnP enabled devices have the potential to be placed into the home

and to start working.

UPnP uses a number of established protocols, including: IP, TCP, UDP, XML [41],

SSDP [42] and SOAP [43]. As UPnP operates on an IP network it is independent

of any specific underlying transport protocol [44], this allows UPnP devices to be

wired or wireless.

UPnP Control
Point Stack

UPnP Enabled Printer

UPnP Device Stack

Service 1 Service 2

UPnP Device Stack

Service

UPnP Enabled Camera

Figure 2.4: Example UPnP configurations

CHAPTER 2. THE NETWORKED HOME 24

In a UPnP network there are two components: the device and the control point.

A device offers services: a thermometer may offer a temperature service or a

lamp may offer a lighting service. The control point is the component which is

able to search and make use of these services. A device cannot control another

device unless it has a control point. Figure 2.4 shows a small UPnP network with

a UPnP enabled printer which offers two services, and a UPnP enabled camera

offering one service. Since the camera has a control point, it can control the

printer. As the printer device does not have a control point, it is not able to

control the camera.

Using the example in Figure 2.4, assume the camera has not yet been added

to the network. Further, assume the home has a wireless LAN and the UPnP

network only has a UPnP enabled printer device, which is active. The home user

brings a wireless UPnP enabled digital camera into the home and wishes to print

pictures from the camera to the printer.

A number of steps are automatically carried out before the camera is able to use

the printer. There are six important stages in the UPnP specification [44, 45]:

Addressing, Discovery, Description, Control, Eventing, Presentation.

2.1.2.1 Addressing

When the new device is introduced to the network (the digital camera shown in

Figure 2.4, for example) it must obtain an IP address. If there is a DHCP server

CHAPTER 2. THE NETWORKED HOME 25

on the network, it is able to allocate the new device an IP address.

If a DHCP server is not available the device must create its own address us-

ing auto-IP. If this is the case, the device will randomly choose an address in

the 169.254.0.0/16 range. This range has been ear-marked by the IETF as the

IP range to use for end node auto-configuration when a DHCP server is not

found [46]. The device then uses ARP [47, 48] to find out whether another device

on the network is using this address, if no reply is returned, the device uses this

address. If another device uses this IP address, the selection process is repeated.

At this point, the newly joined camera has an IP address. Next, it must inform

the network of its existence.

2.1.2.2 Discovery

After the device has an IP address it can advertise itself. If it is a control point,

it can search for devices of interest on the network.

1. NOTIFY * HTTP/1.1
2. SERVER: Windows XP/5.1 UPnP/1.0 CyberLink/1.0
3. CACHE-CONTROL: max-age=1800
4. LOCATION: http://139.153.254.43:4004/description.xml
5. NTS: ssdp:alive
6. NT: upnp:rootdevice
7. USN: uuid:mewCamera::upnp:rootdevice
8. HOST: 239.255.255.250:1900

Figure 2.5: Example SSDP alive message

To broadcast its presence, a UPnP device uses SSDP. An ssdp:alive message

CHAPTER 2. THE NETWORKED HOME 26

is broadcast (Figure 2.5) across the network to a well known port (typically port

1900) using a reserved IP broadcast address, 239.255.255.250, for example. Any

control point established on the network will listen on this port for new UPnP

devices. When the new device is detected, it is added to a list of devices within

the control point. The SSDP alive message also gives a path of where the device

description can be found: this is shown in line 4 of Figure 2.5, the location.

1. M-SEARCH * HTTP/1.1
2. HOST: 239.255.255.250:1900
3. MAN: "ssdp:discover"
4. MX: 3
5. ST: upnp:rootdevice

Figure 2.6: Example SSDP discover message

A device advertises itself to all control points when it joins the network, but when

a new control point joins the network, it must find all UPnP devices on the net-

work. To do this, it also broadcasts an SSDP message. The message is slightly

different in that it is an ssdp:discover message (Figure 2.6). Devices listen-

ing (on port 1900) for this message will reply with an HTTP 200/OK message,

Figure 2.7. Line 3 of Figure 2.7 shows the IP address of the device.

The message shown in Figure 2.6 will get responses from all UPnP devices that

want to be found (it is possible for a UPnP device to be on a network, but be ‘hid-

den’). Rather than getting all devices, it is possible to refine the search and find

specific devices or services. This is achieved by changing the ST (Search Target)

parameter, line 5 of Figure 2.6. For example, ST: urn:schemas-upnp-org:-

CHAPTER 2. THE NETWORKED HOME 27

1. HTTP/1.1 200 OK ST:upnp:rootdevice
2. USN:uuid:0012172d-7225-0012-172d-72250032011c::upnp:rootdevice
3. Location: http://192.168.1.1:5431/dyndev/uuid:0012172d

-7225-0012-172d-72250032011c
4. Server: Custom/1.0 UPnP/1.0 Proc/Ver EXT:
5. Cache-Control:max-age=1800
6. DATE: Tue, 04 Jan 2005 12:46:15 GMT

Figure 2.7: Example reply message from UPnP router from search

service:SwitchPower:1 which would search for a particular service (Switch-

Power), regardless of device.

As well as broadcasting itself when joining the network, a UPnP device should

also notify the network when it leaves. Again, an SSDP message is broadcast,

ssdp:byebye (Figure 2.8).

1. NOTIFY * HTTP/1.1
2. NTS: ssdp:byebye
3. NT: upnp:rootdevice
4. USN: uuid:mewCamera::upnp:rootdevice
5. HOST: 239.255.255.250:1900

Figure 2.8: Example SSDP byebye message

Any control point with this device on its list will remove the device immediately,

and it will only be added when the device rejoins the network. If, however, a

control point leaves the network, it unsubscribes from any services it is registered

to and leaves. Devices are unaware of control points unless the control point

has subscribed to a service which a device offers (this is explained further in

section 2.1.2.5).

CHAPTER 2. THE NETWORKED HOME 28

Continuing the example of the new camera being added to the UPnP network:

currently, the new UPnP camera has joined and has obtained an IP address. By

using SSDP, it has advertised itself to other control points. Since the camera

has a control point, the camera has found all other UPnP devices, here the

UPnP enabled printer. The device component of the camera is now ready to be

interrogated and used by other control points on the network.

2.1.2.3 Description

After a device has broadcast its existence to the network, the control point will use

an HTTP GET message to get the device description. This address is ascertained

when the device replies to a control point’s search message (line 3, Figure 2.7).

An XML file is returned which the control point analyses to determine details

such as device type, manufacturer, serial number, along with services which it

offers. Types of devices are defined by the UPnP Forum, and the services certain

devices must offer are also defined.

The device description is an XML schema defined by the UPnP Forum. This

XML file contains basic device details, including: manufacturer, model number,

a serial number and a unique ID for the device. It also gives the type of service

and path where the service description files for the device can be found.

The service description files are also XML schemas, defined by the UPnP Forum.

These files specify the actions a user can invoke. The file contains Actions and

CHAPTER 2. THE NETWORKED HOME 29

State Variables.

State variables describe the run-time state of the service. For example, a state

variable within the lamp holds current state – on or off. Actions, on the other

hand, list the method calls a control point can invoke. The result of an action

can either return the actual value of a state variable, or may change the state.

In section 2.1.2.2, the control point within the camera would have found the

UPnP printer device when it searched for all devices on the network. However,

it is only after retrieving and parsing the XML device description and service

description files that a control point knows exactly the type of device this is and

what services it offers. Only then, can the control point control the device; in

this case the camera wants to control the printer.

2.1.2.4 Control

As previously discussed, it is only after a control point discovers the details of the

device and service that it can control a device. This is done by invoking actions

listed in the XML service description file.

It is worth reiterating that only a control point may control a device. A device

on its own can not control another device. If a device, such as the camera in

Figure 2.4, wants to control a device, it must be done by a control point.

Control is achieved by sending SOAP messages (Figure 2.9) to a device. The

CHAPTER 2. THE NETWORKED HOME 30

1. POST /service/printer/control HTTP/1.1
2. HOST: 139.153.254.43:4004
3. CONTENT-LENGTH: 344
4. CONTENT-TYPE: text/xml; charset="utf-8"
5. SOAPACTION:"urn:schemas-upnp-org:service:Printing:1

#GetDeviceState"
6.
7. <?xml version="1.0"?>
8. <s:Envelope
9. xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
10. s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
11. <s:Body>
12. <u:GetDeviceState xmlns:u="urn:schemas-upnp-org:

service:Printing:1"/>
13. </s:Body>
14. </s:Envelope>

Figure 2.9: Example SOAP message to get device state

SOAP message will invoke an action, defined in the service description XML file.

Figure 2.9 shows a SOAP message which requests the state of a device. In this

instance the camera requests the device state by invoking the GetDeviceState

action (Figure 2.9, line 12). No parameters are required for this call, therefore

the tag is closed.

Since SOAP messages are sent over HTTP, HTTP responses are sent back de-

pending on the outcome of the request.

The reply to the message sent in Figure 2.9 is shown in Figure 2.10. Line 1 of

Figure 2.10 is the 200/OK, acknowledging the message was received and processed

successfully. Line 11 is the response; the next line shows the device’s current state,

ready.

CHAPTER 2. THE NETWORKED HOME 31

1. HTTP/1.1 200 OK
2. CONTENT-TYPE: text/xml; charset="utf-8"
3. SERVER: Windows XP/5.1 UPnP/1.0 CyberLink/1.0
4. EXT: CONTENT-LENGTH: 326
5. DATE: Wed, 15 Sep 2004 12:26:41 GMT
6.
7. <s:Envelope
8. xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
9. s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
10. <s:Body>
11. <u:GetDeviceStateResponse xmlns:u="urn:schemas-upnp-org:

service:Printing:1">
12. <CurrentDeviceState>ready</CurrentDeviceState>
13. </u:GetDeviceStateResponse>
14. </s:Body>
15. </s:Envelope>

Figure 2.10: Example SOAP reply message

Since the camera knows the printer is ready, it can then send images to the printer

for printing. The UPnP Forum specifies a UPnP printer that prints JPEG format

image files [50]. Sending images is achieved through sending another SOAP

message which invokes an action with the image as a parameter. Provided the

camera sends JPEG format, the printer is able to print the images. Manufacturers

may support other image formats, but this is not compulsory.

Since joining the network, the UPnP enabled camera has obtained an IP address,

advertised itself (camera service) and has used its control point to find other

UPnP enabled devices on the network (the printer). After finding the printing

service, it requests the printer state and sends JPEG images to the printer for

processing. The user is quite oblivious to what has happened, they have simply

CHAPTER 2. THE NETWORKED HOME 32

selected the image and chosen the print option from the camera.

The two remaining components of the UPnP specification are eventing and presentation,

both of which are extremely valuable.

2.1.2.5 Eventing

After a control point has discovered a device and its services, it may subscribe to a

service. This means the control point will be notified of any change in the service

state. This is particularly useful as it means services do not have to periodically

poll a device to obtain its state. In the example of the UPnP enabled printer,

if the printer were to run out of paper, a monitoring service may be alerted, or

if the digital camera were subscribed, it could be alerted and in turn notify the

user.

1. SUBSCRIBE /service/heating/eventSub HTTP/1.1
2. HOST: 139.153.254.43:4004
3. CALLBACK: <http://139.153.254.69:81/eventDelivery>
4. NT: upnp:event
5. TIMEOUT: Second-1800

Figure 2.11: Example GENA subscribe message

1. HTTP/1.1 200 OK
2. CONTENT-TYPE: text/html; charset="utf-8"
3. SERVER: Windows XP/5.1 UPnP/1.0 CyberLink/1.0
4. SID: uuid:36b6-a0ff-2ec5-e0a0
5. TIMEOUT: Second-1800
6. DATE: Thu, 16 Sep 2004 10:04:24 GMT

Figure 2.12: Example Device accepts subscribe message

CHAPTER 2. THE NETWORKED HOME 33

Subscription and event notification is carried out using the General Event Noti-

fication Architecture (GENA), an IETF draft. When a control point wishes to

subscribe to a service it will send a subscribe message to the device (Figure 2.11).

The device will then send an acknowledgement back to the subscribing control

point notifying it whether the subscription has been successful (Figure 2.12) or

unsuccessful. This message also contains a unique ID for the duration of the

subscription, SID.

After receiving a subscription request and accepting it, the device will add the

control point to a list of control points. These subscribers will be notified of any

updates of the service. When the service state changes, the control point will be

notified; it is up to the control point what it does with the information received.

Figure 2.11 (line 5) shows the subscription period is set to 1800 seconds. After this

time has elapsed, if the control point is still interested in receiving updates from

the service, it can re-subscribe. Similarly, if a control point no longer requires

state updates, it is able to unsubscribe from a service (Figure 2.13). When the

control point unsubscribes, the SID must be included in the header (Figure 2.13,

line 3).

1. UNSUBSCRIBE /service/heating/eventSub HTTP/1.1
2. HOST: 139.153.254.43:4004
3. SID: uuid:36b6-a0ff-2ec5-e0a0

Figure 2.13: Example GENA unsubscribe

CHAPTER 2. THE NETWORKED HOME 34

2.1.2.6 Presentation

It is becoming more common for small devices (e.g. routers and print servers)

with little or no interface on the device to be configured via a web interface.

UPnP devices may support a presentation page, or set of pages. This can be a

web server on the device which allows the user to control the device via a web

interface. The presentation URL is found in the device description XML file.

In the case of the printer, it may be possible to check the current state of the

printer, change settings or perhaps check toner and paper levels. A presentation

facility may be extremely useful in the case of the digital camera, allowing users

to view their photographs through a web browser, television, PDA or home PC.

2.1.3 Summary of UPnP

The UPnP protocol was developed with the specific aim of being plug and play.

It has achieved this goal by using a series of existing, open protocols and stan-

dards [44]. Sections 2.1.2.1 – 2.1.2.4 have shown how a UPnP enabled camera

device has been added to the network, automatically configured, and has adver-

tised itself to control points on the network. The camera, upon finding a UPnP

enabled printer, has been able to send its images for printing. Throughout the

process, the user has been unaware of this process and simply sees the end prod-

uct – their printed photographs. This is much easier than today where the user

CHAPTER 2. THE NETWORKED HOME 35

has to install drivers and set up devices manually.

The UPnP Forum continues to grow and publish more device and service speci-

fications. The number of UPnP devices available off the shelf is slowly growing.

Routers and residential gateways were among the first UPnP devices, the Linksys

WRT54G [51] for example. However, the Nokia N80 comes with a UPnP stack

that allows music to be found and played on handsets. Philips produced the

Philips SLM5500 which is a UPnP Hi-Fi which is able to work with a UPnP

NAS device (e.g. Iomega’s Storcenter) and stream music from it. Also, Microsoft

Windows XP uses UPnP technology for Internet Connection Sharing (ICS).

There is a host of home networking protocols available. X.10 and UPnP are

examples of two contrasting protocols. Figure 2.1 shows a home with X.10 and

UPnP. However, it also shows a number of other protocols that will be briefly

described in the next section.

2.1.4 Other protocols used for home networking

The previous two sections have described, in detail, the workings of two home

networking protocols. As mentioned, there is a plethora of networking protocols

developed specifically for the home. Table 2.1 outlines a variety of wired and

wireless protocols which may be used in home networking.

Many of the networking technologies listed in Table 2.1 are used by other home

CHAPTER 2. THE NETWORKED HOME 36

networking protocols to transmit data. Other higher level protocols used in home

networking are as follows:

SIP for appliances [33] uses any IP based network. SIP for appliances is based

on the SIP [52] protocol. Extensions (DO and NOTIFY messages) [34] have

been proposed for device control. SIP is useful for controlling devices over a

series of networks as the protocol supports encryption and authentication,

which UPnP does not support.

Jini [53] is an IP based protocol similar to UPnP led by Sun Microsystems. It

also has the notion of devices and service registries (which bear a strong

resemblance to control points).

LonWorks [54] is a proprietary protocol developed by Echelon. The protocol

uses powerline and twisted pair as the physical medium. It is used for

controlling devices such as sensors and switches.

HAVi [38] uses IEEE 1394 as the physical medium. It is primarily used for

networking audio and video devices, as the medium offers high data rates.

As discussed, there is a variety of protocols used in the home. Each is suited

to a different application. For example, Zigbee (IEEE 802.15.4) is ideal to send

sensor data from small sensor devices as it uses very little battery power. At the

other extreme, IEEE 1394 is used to send high quality digital audio and video

CHAPTER 2. THE NETWORKED HOME 37

Name Wired or Wireless Maximum raw

data rate

Application

Powerline [55] Wired 10Mbps Makes use of existing power cabling in the home.

Used for electronic device control, low data rate trans-

mission.

HomePNA [56] Wired 10Mbps Uses existing telephone lines in the home. Used for

electronic device control, phone and low data rate

transmission.

IEEE 802.3

(Ethernet) [57]

Wired 100Mbps New cabling required. Used for PCs, device control,

IP data control.

IEEE 802.11 family

(802.11a, 802.11b,

802.11g, 802.11n) [58]

Wireless 802.11 (1Mbps),

802.11b (11Mbps),

802.11a &

802.11g (54Mbps),

802.11n(100Mbps)

A range of protocols with varying speed which are

used for IP data transmission in various devices, for

example, routers, PCs, WiFi enabled mobile phones.

IEEE 802.15.4

(Zigbee) [59]

Wireless 250Kbps Wireless protocol for Personal Area Networks (PANs).

Used in devices with small batteries, typically sensors.

IEEE 1394 (FireWire) [60] Wired 400Mbps Audio visual devices, for example, camcorder, music

player, television, DVD/VCR player. A newer version

of the protocol (IEEE 1394b) offers speeds of up to

3.2Gbps.

Wireless 1394 [61] Wireless 70Mbps Typically, home audio/visual devices.

HomeRF [61] Wireless 1.6Mbps Small devices, PC peripherals.

Bluetooth [62] Wireless 720Kbps Mobile phone accessories, PC peripherals (Printer,

Mouse, Keyboard).

Table 2.1: Networking protocols used in home networking

to television displays. Since these protocols are suited to particular applications,

they generally do not inter-operate. Therefore, since it is unlikely one protocol

will emerge as the standard protocol for home networking, a middleware solution

is required. This solution should allow devices and services to cooperate and

work together. The OSGi Alliance has proposed one such solution.

CHAPTER 2. THE NETWORKED HOME 38

2.2 A middleware solution from the OSGi Alliance

The OSGi Alliance is a non-profit making organisation which was set up in 1999.

The companies who formed the alliance are from a range of backgrounds including

utility companies (such as Electricit de France, Deutsche Telekom), automobile

manufacturers (BMW), OEMs (Panasonic, Philips, Siemens) and software houses

(IBM, Gatespace), to name a few. The main aim of the Alliance is (from [3]):

“. . . to define and foster rapid adoption of open specifications for the

delivery of managed broadband services to networks in homes, cars

and other environments.”

To achieve this objective, the alliance had to consider all parties involved in the

service chain. This ranges from the service providers (those who deliver home

services), through to the end devices in the home [6]. This fact is reflected in the

range of companies who have been involved in developing the specifications.

As the scenarios in Figure 2.1 and Figure 2.14 show, a home is likely to include a

variety of devices using a range of protocols. A user in the home will want their

devices to work with new services, and vice versa. They will not care whether

a device uses UPnP or X.10 or Jini, or who has developed specific services –

they will just want it to work. For the automated home to be a success, services

must be able to make use of any suitable devices in the home. In a market

where competition between hardware manufacturers and service developers is

CHAPTER 2. THE NETWORKED HOME 39

Computer ScannerPrinter Laptop

Energy Management
& Metering Service

Security
Service

Music & Video
On Demand Service

Appliance Monitoring
& Service Repair

Lighting HVAC Security Utility Meters

DVD Television A/V

Figure 2.14: OSGi home network (from [3])

fierce, it is unlikely a home would be fitted and equipped with devices from one

manufacturer and services from one service provider, using a single protocol. The

key advantage is lost where a new networked device can be added and controlled

by any service.

Therefore, a middleware solution is crucial, which has the ability to join devices

and services from different backgrounds (whether it be different manufacturers

or different protocol standards), as shown in Figure 2.14. Being able to glue

different devices and services together is fundamental for the networked home to

succeed [44]. The solution offered by the OSGi alliance offers this.

CHAPTER 2. THE NETWORKED HOME 40

2.2.1 The OSGi framework

The solution developed became the OSGi Service Platform specification. The

specification is currently on its fourth release [3] and is used commercially. The

5 Series of cars from BMW have an OSGi gateway installed [64]. The Hogar.es

and TAHI [9] Connected Home both run services from an OSGi gateway.

The service specification consists of two parts: the OSGi framework and a set of

standard service definitions.

2.2.1.1 The framework

The framework is core to the OSGi specification. The framework provides a safe

and managed execution environment for services. Since the framework is Java

based, it runs within a Java virtual machine. Applications are distributed in the

form of bundles. These are uploaded onto the framework and can be managed.

Since the framework is Java based, bundles can access standard Java libraries, as

well as the OS for bundles containing native code (Figure 2.15).

2.2.1.2 The bundle

A bundle is a Java ARchive (JAR) file containing the code (Java classes) and

resources the service may require (images and perhaps configuration or data files).

A bundle can support two tasks. A bundle may be a simple collection of Java

CHAPTER 2. THE NETWORKED HOME 41

Hardware

Driver DriverDriverDriver

Operating System

Virtual Machine

Framework

Application Application Application

Figure 2.15: OSGi protocol stack (from [4])

classes in a package. This package can be exported to the framework for other

bundles to use. Although exporting these packages makes them available to

other bundles, they are not advertised in the service registry (section 2.2.2). An

example of this may be a proprietary XML parsing class which is used by several

bundles from one vendor. The XML parsing class can then be used as normal in

Java code within other bundles, similar to standard Java libraries.

The second, more common use of a bundle is to offer services. These services are

registered within a service registry (section 2.2.2). Other services can query the

registry for a service it requires. This allows services to work together, allowing

what starts as a small bundle to become quite large and complex. After the

bundles have been downloaded to the framework they can be managed.

CHAPTER 2. THE NETWORKED HOME 42

install

Uninstalled

uninstall
update

uninstall

start stop

resolve

Installed

Resolved

Stopping

Active

Starting

Explicit transition

Automatic transition

Figure 2.16: OSGi bundle states (from [5])

2.2.1.3 The bundle life-cycle

The bundle life-cycle is shown in Figure 2.16. When a bundle is installed onto the

framework the bundle moves to the ‘installed’ state. The framework will then try

to resolve the bundle, meaning any required (imported) Java packages defined

in the bundles header file (manifest file) should be available in the framework.

Figure 2.17 shows an example Manifest file. There are three packages required

for this to function. Unless another bundle exports these packages, this bundle

will be unable to start and will remain in the installed state.

When a bundle has moved into the resolved state it can either be removed from

the framework (uninstalled) or can be started. It can also be updated, which

CHAPTER 2. THE NETWORKED HOME 43

1. Manifest-Version: 1.0
2. Bundle-ContactAddress: mew@cs.stir.ac.uk
3. Bundle-Description: UPnP Driver
4. Bundle-Name: UPnPBaseDriver
5. Bundle-Vendor: Michael Wilson
6. Bundle-Activator: uk.ac.stir.cs.osgi.

upnpBaseDriver.Activator
7. Export-Package: org.osgi.service.upnp
8. Import-Package: org.osgi.framework,

org.osgi.service.device, org.cybergarage.xml

Figure 2.17: Example bundle manifest file

uninstalls the current version of the bundle and retrieves a new copy of the

bundle from the original source. Therefore, if a vendor updates their bundle at

the source, when the update is executed, the new version would be retrieved and

installed.

When a bundle is started, the bundle moves into the active state. The bundle

will remain active until it is stopped, updated, uninstalled or the framework is

shut down. In the main class of each bundle there is a start and stop method.

When a bundle is started, the start method is called by the framework. Similarly,

when updating or uninstalling, the stop method is called to allow the bundle to

close gracefully. If a bundle is stopped, it will remain in the resolved state until

it is started or removed.

The manifest file (Figure 2.17) is an important part of every bundle. This file

holds specific details of the bundle. The format and fields of this file are defined

in the OSGi specifications, see [63] section 4.3 for full details. Figure 2.17 shows

CHAPTER 2. THE NETWORKED HOME 44

an example manifest from the UPnP driver bundle.

Sun specifies that all Java manifest files start with the manifest version, Line 1

of Figure 2.17. Lines 2–5 are optional in this example. Line 6 shows the path of

the bundle activator (the main class of a bundle), this is the class which contains

the start and stop methods, used for starting and stopping the bundles.

Lastly, line 8–9, lists the packages this bundle requires to import before it can

move into the resolved state. Line 7 declares any packages this bundle is to offer

the framework.

2.2.2 The Service Registry in OSGi

The service registry is an important component within the OSGi framework.

This is the component which allows services to advertise their services to other

bundles.

In the bundle life-cycle (Figure 2.16), when the bundle is in its active state, it

can start to offer services by registering them in the Service Registry. It is worth

noting that a bundle may offer zero or many services.

The role of the service registry is shown by an example in Figure 2.18. The figure

shows three bundles (Bundle A, Bundle B and Bundle C), where Bundle A and

Bundle C have each registered their service in the Service Registry. It can be

observed in the figure that Bundle B and Bundle C make use of the service which

CHAPTER 2. THE NETWORKED HOME 45

Bundle B

Service Registry

Register

Register

Get

Get

Bundle C

OSGi Service Framework

Java virtual machine

Platform (OS and hardware)Internet

Install,
start, stop,
update,
uninstall

Bundle A

Figure 2.18: OSGi service registration (from [6])

Bundle A offers. Bundle C, as well as offering a service, makes use of the service

which Bundle A offers.

When registering a service in the service registry, a bundle will add properties

to the service entry. These properties, can include service version, generic de-

scription or other details. Figure 2.19 shows an example of the properties from a

UPnP lamp device which has been added to the service registry. In this example,

it would be a UPnP driver bundle that would listen for the new UPnP devices

and automatically add them to the service registry.

The OSGi service specification does specify some properties which must be regis-

tered with a service, however this is only the case if OSGi has defined the service.

CHAPTER 2. THE NETWORKED HOME 46

1. ID=uuid:siemensTestDevice,
2. UPC=123456789012,
3. MODEL_NUMBER=1.0,
4. UDN=uuid:siemensTestDevice,
5. SERIAL_NUMBER=1234567890,
6. MODEL_NAME=Vanilla, DEVICE_CATEGORY=UPnP,
7. MODEL_DESCRIPTION=A Test Device for the UPnP Stack

Implementation,
8. PRESENTATION_URL=http://192.168.1.13:81/siemensTestDevice

/presentation.html,
9. MODEL_URL=/model.html,
10. DEVICE_IP_ADDRESS=192.168.1.13:81/siemensTestDevice,
11. TYPE=urn:schemas-upnp-org:device:binarylight:1,
12. FRIENDLY_NAME=Siemens Test Device,
13. MANUFACTURER=Siemens ZT SE 2

Figure 2.19: Example service registry properties for UPnP lamp device

For example, in Release 3 [63] of the specification, the OSGi alliance included

service specifications for Jini and UPnP. Thus, when a UPnP device is added as

a UPnP Device service to the gateway, there are certain properties which must

be included when added to the service registry.

These properties are included with registered services in the service registry, and

can be queried by other bundles to find the desired service.

Searching is achieved by looking for the service name (e.g., org.osgi.device

.x10.appliance) and/or an optional LDAP query selection filter [65] (e.g.

(ROOM="kitchen",DEVICE="fan")). Upon finding the service, the service reg-

istry passes a reference back to the calling bundle. If a matching service is not

found, the service registry will return a null reference.

CHAPTER 2. THE NETWORKED HOME 47

2.2.3 Standard services

As well as defining the framework specification, the OSGi Alliance has also de-

fined several standard services. A number of services have been defined in Re-

lease 4 of the specification which include; logging, security, user administration,

XML parser and service tracking. An HTTP server specification has also been

defined. This allows servlets to be used as a method of accessing bundles exter-

nally. Protocols such as Jini and UPnP specifications have also been added to

the specification.

Creating specifications for UPnP and Jini means UPnP and Jini enabled devices

can be accessed by services within the gateway. Specific Jini or UPnP drivers

could be created which would add Jini or UPnP devices to the service registry

for use by other services.

2.2.4 Services working together

The OSGi platform specification allows devices to be added and controlled by

services. Since some bundles (normally drivers) add devices to the framework

as they become available on the network, other services are able to select which

devices they use at runtime. Therefore, the behaviour of a service can vary

depending what devices, or services, it has available to it.

Devices and their protocols have been discussed. Being able to connect devices is

CHAPTER 2. THE NETWORKED HOME 48

OSGi Gateway

SIP Proxy
(guilder.myhome.net)

UPnP VCR

SIP IM UA
(sip:mike@myhome.net)

Machine address:
eagle.mywork.com

USB Web-Cam

UPnP Alarm Bell

Home Security

SIP IM UA

(sip:mike@myhome.net)

Internet

UPnP
VCR

USB
Camera

UPnP Bell
SMS

Service

Figure 2.20: An example alarm service using many services

useful, however the full power is not realised until new services which manipulate

these devices are introduced. The notion that OSGi is the glue is emphasised here

and can be clearly shown in the security service (alarm service) in Figure 2.20.

In this scenario, an alarm has been triggered. By using the service registry, the

alarm service has been able to find an SMS service to send the owner a message

that an intruder has been detected. The service also finds a USB web camera and

UPnP VCR, and streams the data from the camera to the VCR. The service also

finds a UPnP alarm bell which it rings. Finally, by using SIP instant messaging,

the owner is sent a message to notify them. This example shows how one service

is able to make use of a multitude of device protocols. It also shows how the

CHAPTER 2. THE NETWORKED HOME 49

alarm service uses other services (e.g. SMS service) to enhance the basic service.

The framework also has the ability to export devices to different networks by

using bridging bundles [66]. For example, an X.10 lamp which is registered as

an X.10 Lamp Device service in the service registry could be exported (using a

bridging bundle) to a UPnP network. This means the device which was X.10

would appear in UPnP control points as a UPnP device. OSGi becomes the glue

which allows services to use different devices regardless of the underlying device

protocol [66].

2.3 Summary

This chapter has discussed the motivation behind automating the home. There is

an array of protocols used for automating the home. Two contrasting protocols

have been reviewed in depth. Also, the chapter has discussed a selection of

other home networking protocols. A middleware solution which brings together

the devices which facilitate intelligent, smart, services has been outlined. Using

the OSGi platform, user services are deployed which carry out tasks for the

home user. These services are deployed on an OSGi gateway and make use of

the devices available. The actual services which enable home automation are

discussed in Chapter 4.

Chapter 3

The Feature Interaction Problem

A feature can be described as a component which is added to a software system

to provide additional functionality. For example, in telephony, the basic service

is being able to make a call. A feature can be introduced to enhance this basic

functionality, perhaps to forward a call while the user is taking another call. As

features are added to a system the phenomenon known as the feature interaction

problem can occur.

The feature interaction problem was first highlighted by Bowen et al. in [67] at

the Seventh International Conference on Software Engineering for Telecommu-

nication Switching Systems. Since this publication, like minded academics and

industrialists have held a series of Feature Interaction Workshops (FIW) [15–

21, 68], with the first being held in Florida in 1992. The aim of these workshops

has been to discuss the feature interaction problem and possible solutions.

50

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 51

Many interactions occur because features are developed and tested in isolation.

When features operate on their own, they execute normally with no interference.

However, problems can occur when certain features interact with one another,

causing undesirable and unexpected outcomes [12]. Zave in [69] emphasises the

point that interactions are an inevitable by-product of feature modularity. Zave

also makes the point that not all interactions are bad, indeed some interactions

are welcome.

Although the majority of the research has been within the telephony domain,

some limited work has been carried out in other domains, for example: eleva-

tors [70], e-mail [71], web-services [72] and home networks [22].

One of the most influential papers to help understand the feature interaction

problem was by Cameron et al. [12], which was later extended in [73]. These

two papers were the first to present a taxonomy to help understand the feature

interaction problem. These early papers provide a good taxonomy to show the

nature and causes of interactions. However, there are two other taxonomies

which are useful. Marples [74, 75] presents a taxonomy which is useful to classify

features and interactions. Kolberg et al. [1, 76] then uses Marples taxonomy as a

basis for a taxonomy for feature interactions (or service interactions) in networked

appliances. In telephony there is only one service and many features, whereas

in the home networking domain (which is the focus of this document) there are

many services which may have some features.

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 52

Each of the three taxonomies will be discussed in the next section. Following

this discussion, the chapter will then discuss previous approaches to the feature

interaction problem. General limitations of these approaches will then be high-

lighted. The chapter will finish by examining current feature interaction work for

the home domain.

3.1 Taxonomies for feature interaction

Section 3.1.1 and section 3.1.2 will discuss the taxonomies presented by Cameron

and Marples, respectively. A discussion will follow in section 3.1.3 which gives a

critical analysis of both taxonomies. Since the focus of this thesis is the service

interaction problem in home networks, the taxonomy presented by Kolberg et al.

will be presented in section 3.1.4.

3.1.1 Cameron’s taxonomy

Cameron et al. highlight the problem of feature interactions in telecommunica-

tion networks and discus the importance of developing approaches to tackle the

problem. The authors present ways of categorising the problem: the nature of

the interaction and the cause of the interaction.

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 53

3.1.1.1 Nature of the interaction

Three dimensions of the nature of interactions were identified:

1. Kind of features – customer features vs. system features. Customer features

are features the customer can use; these include call waiting (CW) or call

forwarding (CF). System features are concerned with the administration of

the system and include operations, billing and other system administration

features.

2. Number of users – single user vs. multiple users. Single user interactions

occur when different features are simultaneously triggered by a single user.

Multiple user interactions occur when one user’s feature interferes with

another user’s features.

3. Number of network components – single component vs. multiple compo-

nent. Single component interactions only occur when there is one network

component (switch, network node). Multiple component interactions occur

when there is more than one network component.

Using these three dimensions, five categories of interaction were defined. These

were:

SUSC (Single User, Single Component) are interactions between customer fea-

tures when incompatible features are subscribed to on the same network

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 54

node, or service control point (SCP). The interaction occurs because two

(or more features) are designed to deal with the same trigger, but in differ-

ent ways. An example of this type of interaction is between Call Waiting

(CW) and Call Forwarding on Busy (CFB), where both try to handle the

call, but in conflicting ways.

SUMC (Single User, Multiple Component) are interactions which occur when

features available to one customer are deployed on two or more network

nodes. An interaction arises here when one of the features on one node

is not aware of a feature on the other node, and therefore some features

are missed. Operator Services and Originating Call Screening (OCS) is an

example of this type of interaction: as the operator makes the call, the

subscriber’s OCS feature is bypassed. It is worth noting that this kind of

interaction is not common.

MUSC (Multiple User, Single Component) are interactions that occur when

multiple users share the one physical phone line, hence they will be forced

to share features. Some of these problems are caused when different house-

holds (e.g. those living in remote, rural areas) have to share a phone line.

However, due to advances in technology, this is no longer such a problem.

A problem can still exist between users within households. For example,

parents may have OCS set to block calls to a premium rate number. A

teenager may use CFB (on the same line as OCS) to forward all calls to a

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 55

premium rate number. Therefore, when teenagers call their own number,

the call will be forwarded to the premium rate number.

MUMC (Multiple User, Multiple Component) are interactions that can occur

when two or more users access features on multiple network components.

An example of this type of interaction is between one user’s OCS and an-

other user’s CF. User A subscribes to CF and forwards calls to number X.

User B subscribes to OCS and has number X on their OCS list. Therefore,

if user B calls user A, their call will be forwarded to number X by A’s CF.

CUSY (CUstomer SYstem) are interactions between a customer feature and a

system, operations or administrative feature. The main focus with these

types of interactions is billing.

3.1.1.2 Causes of interactions

Cameron et al. identified three main causes of interactions. These are:

Violation of feature assumptions: When features are developed, certain as-

sumptions are made. These assumptions include: naming, data availability

and signalling. When one of these assumptions is broken, an interaction

can occur. For example, an interaction can occur between Calling Number

Delivery (CND) and Calling Number Delivery Blocking (CNDB). CND de-

livers the directory number of the calling party, whereas CNDB makes the

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 56

number private. Therefore, if CNDB is used, CND is unable to work as it

does not have the available data.

Limited network support: The set of signals that can be sent from most tele-

phones is limited to *, #, flashhook, disconnect and the ten digits (0–9).

This is caused partly by the user interface on the telephone device and also

by the signalling within the telephony network. Ambiguities can arise when

two features use the same keypress. For example, an interaction can occur

between a credit card call and a voice mail service. The credit card call

allows users to make a call, paying with a credit card. When they want to

make a new call, they press the # key. The voice mail service allows users

to call a number to check voice mail by entering their PIN followed by the

key. If users check their voice mail with the pay by credit card feature,

when they press the # key, do they mean a new call or to signal they have

typed their PIN?

Intrinsic problems in distributed systems: This group of interactions re-

lates to the general issues when large, complex, real-time systems are used.

These problems include race conditions, resource contention and distributed

support of features. An example of a race condition is between Automatic

Call Back (AC) and Automatic Recall (AR). If user X dials user Y, and

Y is busy, X’s AC feature will automatically dial Y when they are idle.

However, Y’s AR feature will automatically call back the last person to call

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 57

them when they were busy, in this case X. Therefore, when Y becomes idle,

X’s AC will try calling Y and Y’s AR will try calling X. Thus, there is a

race between the features.

The taxonomy presented by Cameron et al. shows there is more than one cause

of an interaction, whether it is limited network support, or basic problems with

distributed systems. However, the main point is that there is no simple solution

to the problem.

3.1.2 Marples’ taxonomy

Marples [74, 75] presents a different taxonomy for feature interaction in telephony.

His classification is based on using a stimulus to trigger features and observing the

response in a telephony environment. Through the results from experimentation,

Marples devised a new taxonomy to classify interaction types.

Four categories were identified by Marples in this work:

Shared Trigger Interactions (STI) occur when more than one feature tries

to respond to an event. For example, if a person subscribes to both CW

and CFB, when a call is received, both features will react to the stimulus.

Sequential Action Interactions (SAI) occur when the action of one feature

triggers a second feature. For example, this may happen between CFU

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 58

and CW. Suppose person B forwards calls to person C. Person C has call

waiting, therefore, when person A calls person B, the call will be forwarded

to person C and get call waiting, which is not what person A expects.

Looping Interactions (LI) are a special case of SAI. Interactions can occur

when a feature triggers another feature, which then triggers another feature,

which triggers another, until a loop begins. An example of this may be

between CFU and CFU, shown in Figure 3.1. User A tries calling user X.

However, X’s CFU forwards the call to Y, Y’s CFU forwards the call to Z

and Z’s CFU forwards the call to X, and the loop starts again.

Missed Trigger Interactions (MTI) are types of interaction that occur when

the presence of one feature prevents another feature from being triggered.

User X

User Z

User Y

User X User Y

User A

User A

calls

forwards

forwards

forwards

Figure 3.1: Looping interactions within CFU

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 59

3.1.3 Discussion: Cameron and Marples

The taxonomies presented by Cameron et al. and Marples show that interactions

are complex with no single cause. Both taxonomies are valuable in helping to

understand the feature interaction problem, but do not offer a solution. The

list of causes of interactions Cameron presents is not complete. Since the work

by Marples is at a more technical level (the signalling level) in call control, the

taxonomy presented for his model in a particular environment is complete.

Although the single user and multiple user categories identified by Cameron are

useful, the use of the single component and multiple component categories is

doubtful. The reason is that features do not communicate directly with one

other. Therefore, it makes no difference if the features are on one node, or placed

on many [77]. Magill also states that the proximity of features is rarely exploited.

If the proximity of features was explicitly used, SC and MC would be valuable.

Marples’ taxonomy gives a better sense of interaction types than Cameron. If

single component and multiple component (SC and MC) interaction types are

removed from their taxonomy, it only leaves single user and multiple user (SU

and MU) interactions.

The deregulation of the telecommunications market has exacerbated the problem.

Nowadays, many vendors have the opportunity to deploy their features onto the

network. Detecting interactions here is made harder. Reiff-Marganiec [78] dis-

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 60

cusses intra portfolio and inter portfolio interactions. Intra portfolio interactions

are interactions which occur between features from the same vendor. Inter port-

folio interactions are interactions between different vendor’s features. Therefore,

intra portfolio interactions (whether SU or MU) should be detected at design

time. It is harder to detect SU or MU interactions if the features are from differ-

ent vendors.

The two classifications, SU and MU, do not give a sense of what has caused the

interaction. The taxonomy by Marples gives a better description of the cause of

the interaction, for example it was caused due to a missed trigger. Since these

interaction types are more focused, it allows the success of an approach to be

measured. It also allows specific approaches to be developed for the type of

interaction. For example, the approach presented by Marples is able to detect

and resolve SAI, LL, STI interactions, but is not able to detect MTI. This then

leaves MTI to be investigated further.

Both of these taxonomies help understand the problem in the telephony domain.

Since this document focuses on the service interaction problem in the home net-

working domain, some themes can be used from the telephony work. However,

there are many differences between the two domains.

In the telephony world the number of services and users involved in an interaction

is small (typically no more than two or three users). However, in the networked

appliance domain the number of services and appliances involved can be much

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 61

larger. For example, a service could try to turn all devices off.

Like the telephony market, the home networking market will be competitive.

Different vendors will sell their solution, which will be more complex and clever

in a bid to stand out from the crowd. This complexity and interworking will

exacerbate the service interaction problem in the home.

One of the main differences between the home and the telephony problem is

how the interaction occurs. The home has the possibility of many more inter-

actions occurring indirectly. For example, a service starts a device which causes

movement in a room. The movement is then detected by another service which

monitors movement. It is possible that the movement in a room causes no harm;

however, if it were a burglar alarm, unnecessary movement is clearly not welcome.

To develop a taxonomy for interaction types in the home, there are subtle dif-

ferences between the two domains which have to be considered. In the home

domain, assume there are multiple services controlling multiple devices. Here,

who is the user? Is the user the occupant of the home, or is the user the service

which control the devices? Also, what is the component? Is it the service, or is

it the device? This would depend on who the user was.

If Cameron’s taxonomy were used for the home, the taxonomy would need to be

extended to include more relationships. A relationship for occupant and service

would have to be created, and also another relationship for service and device.

However, would there then be a need for a relationship between occupant and

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 62

device?

Neither Marples or Cameron discuss indirect interactions. This may be fair as

few interactions have been identified that occur indirectly in telephony. However,

they are important in the home domain.

Clearly, modifying Cameron’s taxonomy for the home is unworkable. Since their

taxonomy was developed explicitly for telephony, it is hard to adopt it for the

home domain.

However, the taxonomy presented by Marples moves away from the concept of

users and looks at the interaction types from a different angle. Work has been

carried out to adapt this taxonomy for use with networked appliances.

3.1.4 A taxonomy for networked appliances

One taxonomy for feature interaction in networked appliances currently exists.

It was first presented by Kolberg et al. in [76]. The taxonomy was later updated

in [1] to explicitly include the working environment of devices. The environment

here refers to factors such as room temperature, lighting levels, etc.

3.1.4.1 Multiple Action Interaction (MAI)

These types of interaction occur when two services try to control the same device,

shown in Figure 3.2. It could be argued that these interactions are not necessarily

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 63

bad as two services may, simultaneously, try to turn the same device on. The

problem arises when one service requires one setting and the other service requires

another setting. Or, when one service has finished with the device and wants

to turn it off but the other service still requires it. In general, however, having

different services control the same device is not desirable as it can lead to negative

interactions and ambiguity.Multiple Action Interaction (MAI)

S1 D1
1 - action

S2

2 - action

S1D1
1- trigger

S2

1 - trigger

D3

D4

2 - action

2 - action

Shared Trigger Interaction (STI)
Figure 3.2: Multiple Action Interaction (adapted from [1])

3.1.4.2 Shared Trigger Interaction (STI)

The second type of interaction is when a device (typically a sensor) informs two

services of a change, and these services carry out conflicting actions. This is shown

in Figure 3.3. Although Kolberg et al. argue that all these types of interactions

are bad, this may not be the case. If a sensor does alert two services, the services

may not necessarily carry out conflicting actions. If they did, clearly there would

be a negative interaction.

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 64

Multiple Action Interaction (MAI)

S1 D1
1 - action

S2

2 - action

S1D1
1- trigger

S2

1 - trigger

D3

D4

2 - action

2 - action

Shared Trigger Interaction (STI)

Figure 3.3: Shared Trigger Interaction (adapted from [1])

3.1.4.3 Sequential Action Interaction (SAI)

This type of interaction occurs when a service (or indeed another device) sends

a command to a device, and the device in turn notifies another service, shown

in Figure 3.4(a). However, these types of interaction can also occur through the

environment (Figure 3.4(b)). This can happen when a service sends a command

to a device which, in turn, affects a sensor. The sensor can then notify another

service.

S1
1 - action S2

2 - trigger

S1
1 - action

S2
2 - triggerD2

(Sensor)

D1

Sequential Action Interaction (SAI)

D1

(a) Direct trigger

S1
1 - action S2

2 - trigger

S1
1 - action

S2
2 - triggerD2

(Sensor)

D1

Sequential Action Interaction (SAI)

D1

(b) Trigger via environment

Figure 3.4: Sequential Action Interaction (adapted from [1])

The work by Marples identified looping as a separate type of interaction. How-

ever, for the work in appliances, looping is considered to be a special case of

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 65

SAI.

SAIs can be either positive or negative types of interactions, except looping which

is never positive.

3.1.4.4 Missed Trigger Interaction (MTI)

S1
1 - action S2

2 - trigger

S1
1 - action

S2
2 - triggerD2

(Sensor)

D1

D1

Missed Trigger Interactions (MTI)

(a) Direct trigger

S1
1 - action S2

2 - trigger

S1
1 - action

S2
2 - triggerD2

(Sensor)

D1

D1

Missed Trigger Interactions (MTI)

(b) Trigger via environment

Figure 3.5: Missed Trigger Interaction (adapted from [1])

The last category of interaction identified was Missed Trigger Interaction (MTI).

These interactions can occur when one service prevents the other from operating,

shown in Figure 3.5(a). This occurs when a service sends an action to a device

which stops it sending triggers to another service, illustrated by the dashed line

in Figure 3.5(a). Again, like SAIs, these types of interactions can also occur via

the environment, Figure 3.5(b).

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 66

3.1.5 Discussion: taxonomy for networked appliances

This taxonomy, is valuable as it allows us to understand the feature interaction

problem in networked appliances (NA). It shows that the interactions can occur

either directly between devices and services or indirectly, through the environ-

ment. This taxonomy highlights the importance of the environment in networked

appliances. The taxonomy is also useful for measuring the effectiveness of future

approaches for feature interaction in the home.

3.2 Approaches to the problem in telephony

Three taxonomies have been presented to help understand the feature interac-

tion problem; however, none offer a solution. Over the past decade considerable

progress has been made to easing the feature interaction problem, yet an agreed

solution has still to be found.

Current approaches to the problem can fall into two categories: off-line ap-

proaches and runtime approaches (often referred to as on-line approaches). Each

type of approach will be discussed in the following subsections.

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 67

3.2.1 Off-line approaches

There are two main areas within off-line approaches: software engineering ap-

proaches and formal methods. Software engineering approaches are carried out

during the service creation process (design time). Formal methods can be used to

analyse existing features, or to analyse features at design time to detect feature

interactions.

3.2.1.1 Software engineering approaches

This approach uses general software engineering techniques to help the feature

interaction problem, normally at the requirements or specification stage of the

software process.

These techniques can aid the feature interaction problem indirectly or directly.

Indirect techniques are where good software engineering techniques are applied. It

is through the introduction of these approaches, and the rigour they bring, that

interactions are eliminated. Direct techniques are achieved through explicitly

testing and developing methods to detect and resolve feature interactions.

Finding feature interactions at design time means the problem can be fixed rel-

atively early. Generally, the feature interactions are solved by hard coding the

solution [75].

Within software engineering there are two main approaches:

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 68

Focused techniques are where a particular technique which is used in software

engineering has been introduced into the service creation process, with the

aim of eliminating feature interactions. Examples of this type of work

include Use Case Maps (or models) [79–81]. This category also includes

filtering [82], which involves removing unlikely combinations of features and

applying a more complex approach to likely feature combinations. This is

useful when there are a large number of features in a system.

Process models are where existing software engineering techniques are taken

and adapted for the service creation domain. Their aim is to eliminate

feature interactions. The emphasis with this approach is detecting feature

interactions at an early stage in the life cycle. An approach was developed,

SIHP (Service Interaction Handling Process), as part of the EURESCOM

(European Institute for Research and Strategic Studies in telecom) Project

P509, discussed by Kimbler [83]. The approach which came from this

project was to develop a phase in the software development process ex-

plicitly for feature interaction detection.

The main advantage of software engineering approaches is that they provide a

strong, industrial scale approach to the feature interaction problem. One of the

problems with process models is that they do not offer a solution to the feature

interaction problem. They only offer a framework for another feature interaction

approach to be placed in.

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 69

3.2.1.2 Formal methods

Formal methods are techniques which involve the system being modelled and

features being analysed using formal reasoning techniques. There are a number

of reasons for using formal methods for feature interaction detection. Using a

formal description (or model) forces assumptions to be made explicit. Also,

automated analysis and reasoning tools are available to detect interactions.

There are three types of formal methods approaches (defined in [13]):

Properties is where theorem proving or model checking is used to identify in-

consistencies of properties once features are combined. Property languages

include TLA (temporal logic of actions) [84] and LTL (linear temporal

logic) [85].

Behaviour is where the behavioural description of features and the basic ser-

vice is defined. These specifications can use specially developed tools, or

use standard languages such as LOTOS or CSP. In this approach, if the re-

sults of analysis show deadlock, unreachability or abnormal termination for

example, then an interaction has occurred. Examples of these approaches

include Plath and Ryan [86] who use CSP to detect deadlocks.

Properties and behaviour model is where the feature and basic service is

defined by properties and behaviour. In this approach, interactions occur

when features plus their basic service satisfy their respective properties

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 70

individually, but when they are combined, the conjoined properties are not

satisfied. Examples of this work include [87] where TLT is the property

language and Promela is the behavioural language.

Although considerable research has been carried out using formal methods in

feature interaction, they do have some problems. When creating the models, they

have to be complete. If they are under specified, the frame problem is introduced

(what is not changed by the feature) and over-implementation generates false

positives. Getting the balance correct is not straightforward.

Despite their problems, formal methods do have advantages. Using formal meth-

ods forces assumptions to be made explicit. These assumptions cause ambiguities,

which can cause interactions.

3.2.2 On-line approaches

On-line approaches are approaches which are carried out at runtime. These

approaches have many advantages over off-line approaches which include:

• They can be applied in an operational system.

• They support a quick time-to-market for new features as the feature does

not have to be tested against all other features in the network.

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 71

• On-line techniques are future proof, since they are running in a live network.

As new features are added, the techniques can deal with them. However,

the fact that they do run on a live system can be seen as a slight processing

overhead. An approach which is future proof is important in the multi-

vendor market since new features are introduced frequently, and therefore

will not know about one another.

• In larger, legacy systems, on-line approaches have the advantage that there

is no need to change the existing code.

• On-line techniques do not require a specification of the system and its fea-

tures.

Although on-line approaches can be very powerful to help avoid or detect and

resolve interactions, there are very few approaches available. The main reason for

this is that they are hard to develop. Firstly, an on-line approach may have little

or no knowledge of a service. Without the knowledge, how does the approach

know what service it is looking at, therefore how does it prioritise them?

Within on-line approaches there are two classes of approach regarding the location

of control:

Feature manager based approaches are where a manager on the network

observes the call control process (in telephony). The managers will observe

features and either avoid the interaction, or detect the interaction and apply

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 72

a resolution technique. One of the drawbacks of using managers is that

they generally have a central point of control. If managers are distributed,

they can communicate with one another, however the communication is an

unwelcome overhead.

Negotiation based approaches are where each feature has an agent which has

the ability to communicate with one another and negotiate a resolution.

Within negotiation there are three different approaches:

1. Direct negotiation where agents talk to one another.

2. Indirect negotiation where an entity carries out the negotiation be-

tween the agents and routes the messages. The negotiator will also

ensure the process is carried out correctly and that there are no dead-

locks. If the agents can not resolve their problem, the negotiator can

decide the outcome. The outcome could be based on information it

has gathered during runtime.

3. Arbitrated negotiation which takes the scripts from each agent and

finds a resolution for the interaction.

Whether the on-line approach is in the form of a manager, or a negotiation

approach, they will require some information. The information these approaches

require to run can be gathered in one of three ways.

A priori information is information which is gathered at design time. The

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 73

information can then be presented as per-service information or as a per-

service pair matrix. The disadvantage with a per-service pair matrix is that

it starts to get extremely large as the number of services grows.

Captive environment is where information for detection and resolution is gath-

ered at runtime in a closed system. The information gathered from the

closed system is then used in a live system. Using a closed system means

testing can be kept simple without the complexities of a live system with

live calls.

During runtime is where no special information is required. These approaches

gather the information they need at runtime in a live system.

Griffeth and Velthuijsen [88] developed a negotiation approach which employed

a negotiator. They did not use an arbitrator as this requires all information

from the agents, and they deemed this overhead to be too much. The issue

of privacy also becomes an issue here. However, one of the main drawbacks

of their approach, and negotiation approaches in general, is that the solution

must be known before negotiation starts. The example given by Griffeth and

Velthuijsen in [88] highlights this issue. They give the example of an interaction

where Blocking Call Number Delivery (BCND) prevents Calling Number Delivery

(CND) from working. Therefore, when a user with BCND calls a user with CND,

the user is unable to see the number, as delivery of the number has been blocked

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 74

by BCND. Using the approach presented, the result of negotiation is to allow the

person’s name to be delivered, rather than their number. Therefore, to arrive at

this solution, both the interaction and answer must be known.

An example of one on-line approach which included a feature interaction manager

using a priori information was by Cain [89]. The approach here used a matrix to

find interactions between features. Although this approach did work, when a new

feature was added, the new feature had to be checked against all other features

in the matrix off-line. Clearly, this is not scalable as testing one feature against

all others is very time consuming.

Marples and Magill [74] developed a feature interaction manager which required

no information. This approach assumes that an interaction occurs when two or

more features respond to a stimuli. The approach uses a roll-back and com-

mit algorithm to find a suitable resolution. This work was extended by Reiff-

Marganiec [78] to include a more sophisticated resolution technique.

For most on-line techniques, after the interaction has been detected, essentially

priorities are used to resolve the conflict.

On-line approaches offer the best way forward in a changing network where new

services are being added. However, both off-line and on-line approaches do have

their limitations.

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 75

3.3 General limitations of previous approaches

Although off-line approaches do have advantages, their main problem is that all

features in a system have to be known. This is not such a problem in single vendor

environments. However nowadays, telecommunications networks are large, multi-

vendor environments, which hampers the use of off-line approaches. The first time

features meet are when they are deployed onto a live network. This is the only

point where interactions between different features from vendors can be detected.

Another problem with formal methods is that all features have to be modelled

and analysed. These models are abstractions so there is a danger they are not a

true representation of the system. Further, the problem of creating accurate mod-

els means all features and their attributes are required. In legacy systems where

features have changed, and documentation is often poor, acquiring this informa-

tion is difficult. Further, since there are many vendors developing software for

telecommunication networks, vendors are unlikely to share detailed information

with their competitors. This makes formal methods more suitable for detecting

intra-portfolio interactions.

Scalability becomes an issue when there are hundreds of features. Modelling all

features, and the system, introduces state space explosion [78].

On-line approaches have their limitations too. These problems include processing

overhead, the decision must be made at runtime. Also, scalability becomes an

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 76

issue. In telephony, networks are extremely large and complex. Developing a

manager which can handle this scale is challenging. Since the processing is being

handled by a manager, this can cause a bottleneck.

Negotiation approaches have their own problems. As previously discussed, the

solution needs to be known before resolution can start. Drawbacks of using an

arbitrator include a higher communication overhead. Privacy is also an issue here

as the agents have to send their scripts to the arbitrator for it to analyse.

Manager based approaches have limitations, mainly due to the information they

require. Also the fact they are centralised becomes an issue. However, from all

the approaches, a manager which gathers its information at runtime is the most

powerful and flexible.

In the home networking and networked appliances domain, some feature interac-

tion work has been carried out. The next section discusses these approaches.

3.4 Feature interaction in home networks

Feature interaction in home networks is a relatively new area, with the first

paper being published four years ago [76]. This paper highlighted the problem

of feature interactions with networked appliances, but did not offer any solution.

Since then only two different approaches have been presented which explicitly

tackle the home: one off-line [22] and one on-line [1, 90]. An approach developed

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 77

for service creation for SIP in internet telephony has also been presented by Wu

and Schulzrinne [14], which they also use for feature interaction detection and

resolution only within multimedia systems in the home. Although their approach

is not a general solution for the feature interaction problem in the home, it is

worthwhile including.

An off-line approach which discusses feature interactions in office buildings by

Metzger [23] has been included in this section, as many of the issues for feature

interaction in the office are similar to those in the home.

These approaches will be discussed in more detail in the next section.

3.4.1 Current approaches for feature interaction in the

home

Nakamura et al. [22] present an off-line approach for the feature interaction prob-

lem in home networks. They developed a tool which was able to take the speci-

fications of the home network, including devices and services, and model them.

Each device was regarded as an object with properties and methods. The meth-

ods used in their model relate to actual methods within the device. For their

approach to work, the authors assume the APIs to devices would be published

and be the same for all device types. This assumption is valid as protocols, such

as UPnP, publish interfaces and method calls for each device type.

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 78

The authors of this paper also recognise the environment as being important to

detect interactions. Therefore, the environment is modelled as a global object

within their model.

Using their detection tool, the authors claim to detect 43 appliance interactions,

with 24 of these interactions being at the environment level.

Although the approach developed does detect interactions within the home, it

has the major drawback of being rigid. The way in which services were defined

suggests that services in the home do not change, and exhibit the same behaviour

every time they are executed. This may not be the case as home services should

be designed in such a way as to make use of service platform technologies which

allow them to find other devices if their first choice is not possible. Also, there

are likely to be many companies developing services for the home. Using the

OSGi gateway as an example, this has an open specification that allows other

companies to quickly and easily develop services for the home.

As well as services being tightly defined, the devices used are also defined. All new

home networking protocols (including the service deployment platforms) support

devices joining and leaving the network. It is possible that the home network

changes on a daily basis. Coupled with the fact that users can configure services

differently makes an off-line approach unworkable as a general solution for the

home.

Wu and Schulzrinne [14] present an approach which is specifically aimed at service

CHAPTER 3. THE FEATURE INTERACTION PROBLEM 79

creation. They developed a markup language called LESS (Language for End

System Services) [91]. Although the language was developed for call control in

SIP, its use was extended for multimedia devices in the home. Their approach

only detects interactions at the device level. It does not take into account the

environment. This is one of the main drawbacks of their approach.

Although the approach by Nakamura et al. is the only paper for feature interac-

tions in home networks, work by Metzger et al. [23] looks at the problem within

the office domain. The reason for including this paper is that these authors

discuss the importance of the environment for detecting interactions. However,

since this is another off-line approach, its general applicability is limited within

the home networking domain. Interestingly, their approach was extended in [92]

for feature interaction detection within automobiles. Since the network and ser-

vices in the car are less likely to change, using an off-line approach in this domain

is valuable; however, this is outside the scope of this work.

Chapter 4

Services Enabling Home

Automation

In Chapter 2, devices and protocols were discussed as well as a framework for

executing and managing services for the home (OSGi framework). This chapter

will discuss the kind of services (home security, entertainment or safety) which

are anticipated to be on a home gateway.

Simply connecting smart devices in a network adds little value to the home. In

fact, it does not offer much more value than the conventional stand-alone devices

of today. The real benefit of connected devices is when user services interact

with, and control, a series of devices. For example, when the burglar alarm is

triggered, rather than the home security service simply sounding an alarm bell,

if a camera and VCR were available, the service may use the VCR to record

80

CHAPTER 4. SERVICES ENABLING HOME AUTOMATION 81

video from the camera. Further, if an SMS messaging service were available, the

owner could be informed via SMS that an intruder was detected in their home.

The user may have another service which allows them to connect to the home

via their mobile telephone and remotely view the home through various cameras

placed around the it.

A middleware solution (such as that defined by the OSGi Alliance), allows ser-

vices to use a range of devices without having to worry about the underlying

protocol. This gives services the ability to dynamically select which devices they

use, depending on what is available. Therefore, a service may behave slightly

differently over time as the home network can change with devices joining and

leaving. However, the consequence of a service automatically selecting devices,

and subtle changes in the service’s configuration, can lead to incompatibilities

between services in the home.

To show these incompatibilities, examples will be used. The next section of this

chapter will describe some of the services which may be found in the networked

home. Using these services as examples, the chapter will then discuss negative

interactions which can occur under certain circumstances between these services.

CHAPTER 4. SERVICES ENABLING HOME AUTOMATION 82

4.1 User Services

As this section will illustrate, services for the home cover a wide spectrum in

terms of functionality. Here, emphasis is given to the aspects concerned with

services which control devices.

The services used in this section have been inspired from the literature [6, 22, 66,

93–95]. The examples used cover a broad range of areas – from security, through

climate control and entertainment, to energy conservation. While these services

are likely to be found in the home, more importantly for this thesis, they also have

potential to interact with one another. The interactions can be both positive and

negative. The five services clearly show the advantages and potential problems

of the networked home as described below.

4.1.1 Home Ventilation and Air Conditioning (HVAC)

HVAC is the climate control service which integrates the control of the heating

and air-conditioning. A thermometer is polled by the service for current temper-

ature or, in the case of a UPnP thermometer, listening parties are notified of a

change in temperature.

If the temperature in the house rises to a certain level, the service will start the

air-conditioning. If the temperature drops below a certain level the service starts

the heating. The service also offers the option of energy efficient climate control.

CHAPTER 4. SERVICES ENABLING HOME AUTOMATION 83

Here, the service includes the control of windows (open or close), an air fan, and

also window blinds. The service is aware of the outside temperature, therefore it

can determine how the inside temperature will be affected if a window is opened.

4.1.2 Home Security Service (HSS)

This service integrates various security and safety aspects. The service has two

features: the basic alarm feature and an away from home feature.

The alarm feature works together with movement sensors in the home. If any of

the sensors detect any movement, the service is notified and the alarm is triggered.

Upon being triggered, the service records the picture from a security camera onto

the VCR and then calls the police.

The security service also has an away from home feature. The aim of this feature

is to give the impression that the home is occupied during the absence of its

owners. The feature achieves this by turning on lights, drawing curtains, as well

as turning the television and stereo on. These actions are carried out in certain

sequences. For example, the feature can turn the living room lamps on and close

the curtains at dusk. Perhaps another sequence is room lights being turned on

and off to simulate the user passing through rooms.

CHAPTER 4. SERVICES ENABLING HOME AUTOMATION 84

4.1.3 Power Control Service (PCS)

The power control service can enable the home owner to obtain cheaper electricity

by giving up some control to the power service through using a separate on-switch.

With this separate power switch, the user specifies that the appliance is ready to

run. However, it is the power service which actually switches the appliance on.

The times for determining when appliances are to be turned on can be created

by the service. The power control service may work in conjunction with a service

provided by the energy supplier, which sends energy costs. Based on these costs

and user preferences, the service can determine when to turn devices on. This

allows the power service to determine the exact time the appliance is used, and

hence to manage power consumption during peak demand. For example, the user

may turn the washing machine on at 8am before going to work, but (after checking

with the electricity supplier) the power service knows electricity is cheaper after

2pm. Therefore, although the owner has turned on the washing machine at 8am,

it will not actually start until 2pm when electricity is cheaper. However, this

does assume the energy supplier differentiates between peak and off-peak usage.

The service also offers an option of running the house efficiently. When the home

is vacant, energy can be saved by switching off unnecessary appliances, such as

lamps and televisions.

The energy provider Electricité de France (EDF) are one company to have piloted

CHAPTER 4. SERVICES ENABLING HOME AUTOMATION 85

such a project. Since it costs energy companies substantial sums of money to put

extra power into the electricity grid during peak hours, they would like to reduce

this peak.

The scheme EDF propose involves giving users energy quotas during peak hours.

If users stay below their quota, they receive cheap electricity. If they go over their

quota they are penalised and charged more for their electricity. Although this is

a pricing mechanism by the energy supplier, the PCS can be used to control when

energy is consumed to ensure quotas are used efficiently. This could be used to

start the washing machine mid-morning, rather than peak times. Therefore, the

service is able to help reduce costs.

4.1.4 Home Entertainment Service (HES)

This service controls entertainment devices in the home, such as the television,

stereo system, and VCR/DVD players. A key feature of this service is its ability to

monitor the owner’s viewing habits. These viewing trends and patterns can then

be used to automatically record certain popular television shows. The service

can also check the owner’s diary and, if they are out, will automatically record

their programmes.

CHAPTER 4. SERVICES ENABLING HOME AUTOMATION 86

4.1.5 Communications Support Service (CSS)

This service supports the use of email and the telephone. The user can be notified

by a message displayed on the television when a phone call or email arrives. The

message will contain the caller for a phone, call and the sender and subject line

for an email. Optionally, users may subscribe to a feature which turns down the

volume of the television and the stereo when a phone call arrives.

4.2 Conflicts between services (Interactions)

The five services and their capabilities have been discussed. Each service is

able to use a number of devices to achieve its goal. However, since services are

automatically controlling several devices, each carrying out their own role, it is

inevitable some conflicts will occur. This section highlights the issue of negative

interactions.

Feature interactions can occur for a number of reasons. The most common are

conflicting goals and broken assumptions [73]. Services pursue specific goals, e.g.

to switch off unnecessary appliances to save energy. However, an extra feature

of the security service is to switch on lights to pretend the home is occupied.

Clearly, the goals of the features conflict.

Similarly, services need to make certain assumptions about their environment.

For instance, the security service assumes that when activated, nobody is at

CHAPTER 4. SERVICES ENABLING HOME AUTOMATION 87

home, therefore appliances will not be used and there should be no movement.

However, the climate control service may control the blinds to prevent the sun

from unnecessarily heating up the home. Here the assumption of the first service

(security) that no appliances will be used, is violated by the second (climate

control).

The two interactions described above are examples where the interaction occurs

between two independent services. However, interactions can occur within the

same service. Assume the home security service has two features: monitor the

home for intruders by detecting motion, and the away from home feature. The

owner is away from home and the alarm is set, but they have also set the away

from home feature to close curtains and turn lights on in the evening. When

the curtains close, the alarm is unnecessarily triggered. Thus, two types of in-

teractions have been identified: interactions between two different services, and

interactions within the one service, inter-service and intra-service interactions [1],

respectively.

4.2.1 Inter-service interaction

These are interactions between two different services. Since services are developed

in isolation by different vendors, it is impractical to test all services against each

other. Even if all services are tested against one another, it is impossible to know

the devices a user utilises and how they configure each service. Therefore (as

CHAPTER 4. SERVICES ENABLING HOME AUTOMATION 88

discussed in Chapter 3), a runtime approach is the only viable solution to detect

interactions between services in the home.

4.2.2 Intra-service interaction

In contrast, intra-service interactions are interactions which occur within a ser-

vice. These types of interactions should be discovered at design time. However,

like inter-service interactions, it is difficult to know the devices a service will

use and how the user configures the service. Therefore, finding all interactions

at design time may be difficult. As these are valid interactions, the approach

developed should be designed to handle these types of interaction.

4.3 Interaction examples

From the services described in section 4.1, a number of potential interactions

have been identified.

4.3.1 Security vs. Power Control Service

Imagine the situation where the owner of the house is absent, and the away from

home (AFH) feature of the security service is active. Also, the efficient energy

usage option of the power control service is active. The power control service

CHAPTER 4. SERVICES ENABLING HOME AUTOMATION 89

will switch off lamps and televisions. However the away from home feature will

switch lamps and the stereo on to give the impression that somebody is at home.

The problem is caused by two overlapping requests from the two services trying

to control appliances in conflicting ways (one service turns devices on, while the

other turns them off). Since the interaction is caused by two different services,

this is an inter-service interaction. The type of interaction is a Multiple Action

Interaction (MAI) (section 3.1.4.1), as two services are trying to access the same

devices.

4.3.2 Security vs. Entertainment

The security and the entertainment services both try to control the VCR. Once

triggered, the security service records the picture from a camera to the VCR.

However, the two services overlap when the entertainment service tries to record

a television show at the same time – disabling part of the security service func-

tionality. Unlike the former example where the first action (switching off lamps)

was finished before the second occurred, the problem here occurs because the first

action has not yet completed (recording the camera picture) when the second is

triggered. Again, as this interaction is caused by two independent services, this

is an inter-service interaction. The type of interaction is also an MAI, as two

services try to control a single device.

CHAPTER 4. SERVICES ENABLING HOME AUTOMATION 90

4.3.3 Security vs. Climate Control

The away from home feature of the security service turns devices on and draws

curtains (or blinds) following a pre-defined sequence to make it look as if the

owner is at home. Since the owner is away the climate control service has been

set to keep the home at a comfortable temperature, but by doing so as cheaply as

possible. The climate control makes use of blinds and opening windows as these

are cheap alternatives to heaters and air conditioners.

Suppose the away from home feature is active, and turns lights on and closes the

blinds to make it look as if the owner is at home. To heat the home, the climate

control service needs to raise the blinds to let some sunlight (heat) in. There is a

conflict here as one service wants the blinds open, whereas the other wants them

closed. This is an inter-service interaction and is of type MAI.

4.3.4 Climate control vs. Security

An interaction can occur through a number of different events between climate

control and the security service. If movement in the house is detected, the security

service is notified. It interprets movement as an intruder, triggering the alarm.

The climate control service may lower the blinds, start the ventilation fan or even

open windows. All of these actions create movement, which the motion sensor

detects and notifies to listening parties. This consequently triggers the security

CHAPTER 4. SERVICES ENABLING HOME AUTOMATION 91

alarm. This is an inter-service interaction. They are all of type Sequential Action

Interaction (SAI) (section 3.1.4.3), as the action of service one triggers another

(service) causing a negative interaction.

4.3.5 Power Control Service vs. Climate Control

During cold spells the climate control service keeps the home at a stable and

warm temperature. If the owner is not at home the power control service will

turn off all appliances to save energy. In doing this, it interacts with the climate

control service by disabling devices (including the thermometer). This means the

climate control service is not notified of the dropping temperature in the home.

As the home gets colder, the water pipes may freeze. This is an example of

a missed trigger interaction (MTI) (section 3.1.4.4), because the power control

service turns off the thermometer, which means the climate control service is not

aware of the low room temperature.

4.3.6 Within climate control

It is possible that there may be interactions within the climate control (intra-

service interactions). The following scenarios should be discovered at design

time as they are interactions within a single service. As discussed, inter-service

interactions are virtually impossible to detect until runtime as a vendor will not

CHAPTER 4. SERVICES ENABLING HOME AUTOMATION 92

know what other services a user will have in their home. Further, the problem

is worsened by how these services are configured. The examples are included in

this section for completeness and to show that any solution developed should be

able to handle both types.

4.3.6.1 Action conflicts: energy waste

An interaction may occur within the climate control service. A thermometer

notifies interested services of any change in temperature. If the temperature rises

above a certain level and if the user has activated the energy efficient climate

control option, the service may start the air conditioning (for normal cooling)

and open the windows (for energy efficiency). Clearly, these two actions are not

compatible as the open windows compromise the correct and efficient functioning

of the air conditioner. This interaction is caused by the energy efficient component

of this service, which will in fact waste energy if not correctly integrated. Clearly,

this is an intra-service interaction. This is a Shared Trigger Interaction (STI)

(section 3.1.4.2) as the change in temperature triggers the service to use two

devices which, although they both aim to cool the room, may conflict in doing

so.

CHAPTER 4. SERVICES ENABLING HOME AUTOMATION 93

4.3.6.2 Action conflicts: energy waste through looping

An infinite loop can be caused within the climate control service. Assuming the

service consists of a heating component controlling the heating and a cooling

component controlling the air-conditioning, the following interaction may occur.

Reaching a certain temperature will trigger the climate control service, resulting

in the air conditioning being activated. However, this may cause the temperature

to drop below the pre-set temperature for the heating to be activated. The

heating will increase the temperature. However, this again may result in the

temperature being too high and the air conditioning being started again! This is

an intra-service interaction, but is a special case of type SAI as the action of the

heater (to heat the room) causes the air-conditioner to come on.

4.3.7 Within Security

An interaction can occur between the away from home feature and the alarm

feature. The alarm is armed and monitoring the home for movement. At dusk,

the away from home feature will follow a sequence where it turns lights on and

closes some curtains (or blinds). If not configured properly, it is possible that

when the away from home feature tries to draw curtains (or blinds) this causes

movement, which in turn triggers the alarm. This is an intra-service interaction

and is of type SAI.

CHAPTER 4. SERVICES ENABLING HOME AUTOMATION 94

4.4 Summary of the problem

Table 4.1 shows a summary of the interactions manually identified in the previous

section. As these have been identified manually, testing may show interactions

which have been missed.

The table shows the interaction (as a ‘•’), the type of interaction and the section

where the interaction was described. The lightly shaded areas show intra-service

interactions, with the white background being inter-service interactions. The

abbreviations for services in the table are as follows:

• HSS:Alarm – Home Security Service – basic alarm feature

• HSS:AFH – Home Security Service – away from home feature

• PCS – Power Control Service

• HES – Home Entertainment Service

• HVAC – Heating, Ventilation, Air-Conditioning (Climate Control Service)

Generally, on their own these services operate in a coherent and consistent manner

however, there are occasions where services clash. The clash, or interaction, may

be caused by two different services (inter-service) or a problem within the service

CHAPTER 4. SERVICES ENABLING HOME AUTOMATION 95

HSS#Alarm HSS#AFH PCS HES HVAC

HSS#Alarm ! ! !

HSS#AFH ! !

PCS !

HES

HVAC
!"""""""""
!

MT0 (3.5.6)

MA0 (3.5.5)

SA0 (3.5.3)MA0 (3.5.2)

MA0 (3.5.9)

SA0 (3.5.:)

ST0 (3.5.:.9)

SA0 (3.5.:.2)

Table 4.1: Interactions identified from examples

(intra-service). Many intra-service interactions should be discovered at design

time. However, the harder interactions to solve are those between two different

services.

4.5 A new approach to the problem in home

networks

This chapter has discussed several scenarios where interactions can occur in the

home. Although the service interaction problem in the home is similar to the

feature interaction problem in telephony, there are some differences.

The main difference is that many more interactions happen indirectly. They

happen through an additional level – the environment. Here, the environment

CHAPTER 4. SERVICES ENABLING HOME AUTOMATION 96

can be room temperature or movement in the room, for example.

Previous approaches in telephony (such as those discussed in Chapter 3) do not

use the environment to detect interactions. A-priori and captive environment

approaches are not suitable because in the home a service can behave differently

depending on the devices available and how a service is configured. Further, the

configuration of services and devices in the home can easily change as home net-

working protocols have been designed to specifically support ad hoc networking

(UPnP for example).

Another issue in the home is that all homes are likely to be different: no two

homes is likely to have the same service and device configuration. The services

and devices a user will purchase are unlikely to be from the the same supplier.

Cost is the likely reason for this as replacing all electrical appliances at once will

be costly. Further, since the home electronics market is competitive, there will

be many manufacturers and service vendors. However, even if all homes were

to have the same service and device configuration, owners will generally want

to personalise and configure services to suit their lifestyle. This may cause the

behaviour of the service to change and, in turn, the devices it may use.

Therefore, the aims for a new approach for the home should:

• Include the environment as interactions do happen here as well as at the

device level.

CHAPTER 4. SERVICES ENABLING HOME AUTOMATION 97

• Avoid negative interactions while allowing devices and services to cooperate

to achieve a common goal.

• Accommodate devices joining and leaving the network.

• Accommodate home service change, including updates to existing services,

or services being added or removed.

• Be flexible to change, regarding new networking protocols and new types

of device.

• Be independent of service, as it is impossible to know all services a user will

have and how they are configured.

• Need little user configuration and intervention; a home owner will not be

interested in feature interactions, so the automated home will be expected

to work.

• Must make a decision quickly on whether a negative interaction will occur.

• Be scalable to handle all devices and services a person may have in their

home.

CHAPTER 4. SERVICES ENABLING HOME AUTOMATION 98

4.6 Summary

This chapter has outlined services which are expected to be in an intelligent

home. Interaction scenarios have also shown that service interaction in the home

is a real problem.

The chapter also introduced the concept of the environment and has demon-

strated why it is crucial in the home. By using the environment, it is possible to

see how services can interact with one another.

The chapter finished by describing the problem and outlining the aims for a

new approach. Using these aims, a new approach has been developed for service

interaction avoidance in home networks. This is discussed in detail in the next

chapter.

Chapter 5

An Environmental Approach

5.1 Introduction

Chapter 4 outlined several aims an approach for the home should meet. This

chapter presents a new approach, which achieves these aims, for the service in-

teraction problem in the networks.

Traditional approaches to feature interaction have been service centric, concen-

trating completely on this aspect. Further, these approaches are typically off-line.

Some work by [22, 23] does concentrate on the device and environment, rather

than just the service. However, this approach is off-line. As previously discussed,

although off-line approaches are useful for detecting some interactions, they only

work in a system where all services and devices are known. In the home this is

unlikely. A home is likely to have different services from many vendors. Even if

99

CHAPTER 5. AN ENVIRONMENTAL APPROACH 100

all services are known, the configuration of the devices in use will be unclear as

devices will join and leave the network. This is shown in the networking protocols

for the home where automatic configuration and setup is crucial – UPnP or Jini,

for example.

Also, the services which control devices may behave differently depending on the

devices available at runtime. This makes an off-line approach unworkable for

general use within the home.

Therefore, since a new approach has to be flexible to cope with change, both in

terms of devices and services, the new approach has to be an on-line approach.

There are two approaches within on-line work: negotiation and feature inter-

action managers. As discussed in Chapter 3, negotiation approaches have the

drawback that the solution to the interaction has to be known before negotiation

can begin. Although feature manager approaches have disadvantages such as

being centralised and can have scalability issues, these are not such a problem in

the home. The residential gateway is centralised where all devices and services

register on the same platform. Also, scalability is not such an issue in the home

as the number of devices and services a user can have will be relatively small (in

comparison to a telecommunications network).

Since the automated home is to make life easier for occupants, users will not be

interested in managing interactions in the home. Therefore, this approach has to

be invisible to users. By using an on-line manager, this is achievable, as it makes

CHAPTER 5. AN ENVIRONMENTAL APPROACH 101

decisions in the background whether a negative interaction will occur or not. If

a negative interaction occurs, it should be avoided. However, if the interaction is

positive, it should be allowed, as this is desirable.

These are some of the important goals which this new approach has to achieve.

The remainder of this chapter will discuss the role of the environment and how

it can be used to manage interactions. To understand how the environment is

affected, the devices which affect it are included in the model. Since services

affect devices, they are included too. These three components form the three

layered model.

The chapter then discusses how to control access to these components. It is

through controlling access that undesirable interactions can be avoided. The

technique the approach uses to control access will also be explained, as well as

how services can be ranked, so safety services can take priority over and override

less critical services.

The chapter will also present a Feature Interaction Manager (simply ‘manager’)

and explain how it builds a picture of all services and devices in the home. The

manager also keeps its view of the home consistent by listening for devices joining

and leaving the network. Further, it will keep track of the device’s current state

and which service is using the device.

Finally, the chapter will finish with a complete worked example of how the man-

ager works, controlling access to the environment layer to avoid interactions.

CHAPTER 5. AN ENVIRONMENTAL APPROACH 102

5.2 The approach

Using the examples from Chapter 4, some interactions can be detected at the

device level – two services try to use one device. However, some interactions

occur which seem unconnected. Take the example between the security service

and the climate control service (section 4.3.3). Assume the security service is

armed and monitoring the home for movement. Also, the climate control service

wants to circulate air in the home by turning on the fan. When the fan is turned

on, it creates movement which triggers the alarm. The conflict does not happen at

the device level, it happens elsewhere – in the environment. The alarm service is

monitoring room movement and the fan is switched on, which affects movement.

For this reason, the environment layer is included and is central to this approach.

Since some interactions occur in the environment layer, access to this layer must

be controlled. For this reason, the approach makes use of concepts from the

operating systems domain where controlling access to resources (e.g. files) is

achieved through locking. Drawing inspiration from this domain and adapting

the locking technique to control access to devices and the environment, an online

approach has been developed.

It is assumed that there will be a residential gateway in the home where services

are managed and executed [96] (discussed in section 2.2). The services which run

on the gateway will send commands directly to the device (Figure 5.1(a)). Since

CHAPTER 5. AN ENVIRONMENTAL APPROACH 103

D1

S1

(a) Direct to device

S1

D1

Service

Interaction

Manager

(b) Via SIM – success

S1

D1

Service

Interaction

Manager

(c) Via SIM – reject

Figure 5.1: Service issues request to device

these messages are sent at runtime, a live manager is required. This manager must

intercept messages which are sent from the service to the device and determine

whether a particular command will cause an interaction. The manager must

decide what will happen if the device executes an instruction. There are three

possible outcomes: no interaction, positive interaction or a negative interaction.

It is important for the manager to be able to distinguish between positive and

negative interactions. Positive interactions are where two or more services or

devices can work together to achieve a common goal. In contrast, a negative

interaction is where the outcome is undesirable or unexpected. The approach

presented here is able to distinguish between the two types.

CHAPTER 5. AN ENVIRONMENTAL APPROACH 104

After analysing an instruction sent to the device, if the manager decides the

action will cause either no interaction or a positive interaction, the message will

be forwarded to the device (Figure 5.1(b)). However, if the manager detects a

negative interaction, the message will not be allowed to proceed to the device

(Figure 5.1(c)). Instead, the manager adds an entry to its log and discards the

message.

As mentioned, the environment is central to this approach; however, the services

and devices must be included. The flow of information means a service will

affect a device, and through the action of the device, the device will affect the

environment. A 3-layered model shows this flow.

5.2.1 The 3-layered model

The approach developed requires three layers, as there are three main parts to

the approach: the home services, the devices and the environment (Figure 5.2).

The top layer is the service layer which contains the services that automates

the home. These will include climate control, entertainment or home security

services (as discussed in chapter 4). These services may use one or a combination

of home appliances (devices) which are located in the second layer. Devices may

include a heater, a television or perhaps a thermometer. The protocols which

these devices use will vary as no one protocol will be used for home networking.

The approach developed has been designed in such a way that the underlying

CHAPTER 5. AN ENVIRONMENTAL APPROACH 105

protocol is not relevant. This makes the approach extremely flexible as it does

not have to change as new protocols are developed.

Service Layer +,ec-rity/ c0imate contro0/ etc45

Device Layer +7eater,/ 0am8,/ etc45

Environment Layer +room tem8erat-re/ movement/ etc45

Figure 5.2: Three Layered Model

In the device layer, two types of device have been identified: input devices and

output devices. An input device will only monitor an aspect of the environment

(e.g. room temperature). An output device, on the other hand, will alter the

environment in some way. For example, a heater is an output device as it wants

to control the room temperature by increasing it. In this example, the heater is

explicitly increasing the temperature. A thermometer only reads the temperature

and as it is an input device, can only return what it reads. A device may be both

an input device and output device, for example a lamp may be a light, but also

have a light sensor attached. In this instance, it would be seen as two devices:

a lamp and a light sensor. UPnP splits devices in this way, physically they are

one, but logically seen as two.

CHAPTER 5. AN ENVIRONMENTAL APPROACH 106

Finally, the bottom layer is the environmental layer containing environmental

variables. These variables are a representation of a room’s environment. Exam-

ples of environment variables include: room movement, room temperature, room

lighting levels, humidity, smoke, carbon-monoxide levels and pollen levels. An

example could be an active air fan, which affects the room movement variable.

Similarly, a lamp would affect the room light variable. The relationship between

variables is interesting. However, for the purpose of this work, the variables are

adequate on their own 1.

As previously stated, the reason for including the environment in this model is to

show conflicts between devices which only occur through the environment. For

example, it is not obvious that blinds and a home alarm service may be linked –

but as blinds open, or close, they cause movement. The alarm service monitors

room movement. Thus, both are linked through room movement.

Similarly, a heater device would affect room temperature, so if a heater is active

room temperature would increase. An air conditioner, when active, would de-

crease room temperature, therefore it would be undesirable to have it and a heater

active at the same time as they have conflicting goals. By using the environmen-

tal variables, links between devices become clear. Moreover, by controlling access

to the variables it becomes possible to avoid negative interactions.

1This issue will be discussed further in Chapter 8.

CHAPTER 5. AN ENVIRONMENTAL APPROACH 107

5.2.2 Controlling access to components

Within the device and environment layer, controlling access to devices and envi-

ronmental variables is achieved through locking. Controlling access is central to

how this approach works. The use of locks has been inspired from the operating

systems domain. Access to environmental variables and devices can be likened to

files. When an operating system process opens a file, it can generally be opened

with one of three properties: append, read-only and write [97]. The idea of read-

ing and writing can be used when a device requires access to an environmental

variable or a service wishes to access a device.

When the issue of locking is introduced, deadlock becomes a concern. For dead-

lock to occur, there are four necessary conditions [98]:

• Mutual exclusion – one resource held locked, not shared.

• Hold and wait – where one process is holding at least one resource, while

waiting for an answer.

• No preemption – a resource can only be released, voluntarily, by the process

holding it.

• Circular wait – there must exist a set, e.g. {Process A, Process B, Process

C} where Process A waits for Process B, Process B waits for Process C,

and Process C waits for Process A.

CHAPTER 5. AN ENVIRONMENTAL APPROACH 108

The technique here violates two of these necessary conditions – point 2 and

point 4. A service cannot wait. Also the manager (SIM) can unlock a device, if

required.

Simply locking a variable is too crude for this approach. It is not adequate as it

does not allow two devices with the same goal to work together. For example,

when a heater is active the room temperature variable would be locked. Since the

variable is locked, another heater would not be able to heat the room. Although

there is an interaction here, it is a positive interaction and should be allowed.

However, it would not be correct to share the temperature variable between a

heater and an air-conditioner as the two devices have conflicting goals.

Concepts were used from the Biased Protocol [98], where locks may be either

Shared Locks or Exclusive Locks. This locking protocol is useful for this work as

it allows two devices to work together to achieve a common goal. Using these two

locking types, a refined locking technique for this approach has been developed.

Since input devices do not affect their environment in any way, they do not need

to be locked. On the other hand, because output devices do have an impact on

their environment, controlling access is necessary.

After consideration, a new locking technique was developed.

If a service wishes to lock a device, or a device wants to lock a variable, they

must be locked with one of four options:

CHAPTER 5. AN ENVIRONMENTAL APPROACH 109

• NS : Not Shared. The variable or device is locked and may not be altered

by any other device or service. This lock is similar to the exclusive locks in

the biased protocols.

• S+ : Shared, but increase only. The variable is shared on the condition

that anyone wishing to use the variable must increase it. Therefore, two

devices may lock a variable with S+ if they both increase value. This allows

two heaters to operate.

• S– : Shared, but decrease only. Like the previous setting, the variable

is shared on the condition that anyone wishing to alter the variable must

decrease it.

• S± : Shared. The variable or device is shared and it is unknown whether

the variable will be decreased or increased in value. This can also be used

for binary values, e.g. whether there is movement or not. This lock is

not compatible with S– or S+ because S± could go either way (increase or

decrease). Therefore, S+ and S± could allow one device to increase while

the other decreased. Also, S+ and S± could result in both increasing.

However, this can not be guaranteed, therefore S± is not compatible with

S+ or S–. This lock type can be likened to the shared lock type from the

biased protocol.

By using these four locks, devices are able to cooperate and work to a common

CHAPTER 5. AN ENVIRONMENTAL APPROACH 110

goal, whereas devices with conflicting goals would be avoided. Table 5.1 sum-

marises the list of locks above and shows the combination of locks which are

allowed (•).

NS S+ S– S±
NS
S+ •
S– •
S± •

Table 5.1: Locking – allowed pairs

Many services or devices may lock a device or variable with matching S+, S– or

S±. However, only one service or one device has access when a device or variable

is set with NS. Once a lock has been set, it is sometimes not clear when the task

is complete and the lock can be lifted. In other domains, telephony, for example,

this is clearer.

In telephony a session is clear, the session starts when the receiver is lifted off-

hook, and finished when the handset is placed on-hook. In the home domain, the

notion of a session is less clear [99]. This approach assumes that a session begins

when a service starts using a device, e.g. opening a window or turning a heater

on, and finishes when the service closes or switches the device off. Therefore,

when a lock is placed on a device, the lock is valid until the service turns the

device off. Although this seems a rather simplistic approach to the problem, this

CHAPTER 5. AN ENVIRONMENTAL APPROACH 111

is how operating systems lock files. When a file is in use it is locked, when it

is not, it is generally unlocked. The problem is that there is no simple way of

determining when a session starts and ends in the home.

5.2.3 Locality

As well as knowing the duration of a session, it is also important to include the

locality of the actions of a device. This is to include devices which, by operating,

may affect the whole home, or just one room. For example, a heater may only

affect the temperature in one room, whereas a security alarm may monitor one

room or the whole home. The approach must also be able to handle this, which

it successfully does by creating a hierarchy of rooms within the house. It is

important to note that each room is treated independent of others, in other

words, one room cannot affect another in this model.

When a device is active, locks are placed on the appropriate variables in whichever

room is required (Figure 5.4 later).

5.2.4 Service priorities

As an example, suppose the home is being burgled and the VCR is in use by

the entertainment service to record the owner’s favourite show. Since the VCR

is in use, the home security service is unable to access the device to record the

CHAPTER 5. AN ENVIRONMENTAL APPROACH 112

intruder. As presented so far, access to devices and variables operate on a first

come first served basis which, as will be shown, is not adequate.

The entertainment service sets the VCR device with an NS lock, which does not

allow any other service access to the device. A mechanism of overriding this is

required. A mechanism which allows important services to override convenience

services is required. Thus, service priorities have been introduced to the approach.

This allows safety services to override convenience services.

Priorities are widely used for feature interaction resolution (Chapter 3). Priorities

have been used here by giving each service in the gateway a priority number. A

priority value may change as new services are added to the home, or a user’s

preferences change.

The priorities of services will range from 1 to n, where n is the total number of

services in the gateway. Priority 1 is the lowest and n is the highest.

There are three other service priorities: -1 (meaning no priority) for services

that have not been assigned a priority, 0 which is used by the service interaction

bundles only as the highest priority. It can be used by the manager when a

device’s state changes (e.g. a lamp being switched on). Having 0 as the highest

priority means that these updates will definitely be included in the manager’s

view of the home. It is only right that these updates are made as they reflect the

actual state of a device.

CHAPTER 5. AN ENVIRONMENTAL APPROACH 113

5.2.5 The remote device database

If a heater is turned on, it will produce heat, which in turn affects its environment

and increases the room temperature. For this approach to work, the manager

needs to understand these details and know what devices do, and how the device

actions affect the surrounding environment.

Therefore some sort of database which holds device details is required. The

database of devices is likely to be constantly growing as new devices come onto

the market. Where this database is stored does pose a problem. If the database

were to be stored in the home, not only would it be very large (since it has details

of all devices), but managing it and keeping it up to date may cause problems.

In contrast, if the device were to be hosted remotely, all homes would be able to

share the same data. However, the disadvantage of this is that the home would

need a constant connection to the internet, which is a fair assumption. If newer

smart devices were able to store information about themselves on the device, this

would be the better solution. However it cannot be assumed that devices would

come with this data and, politically, adding such data to all new devices may not

be straightforward.

For the purpose of the thesis, a remote database is used. The modular way in

which the manager has been developed means that it is not important where this

data comes from. As long as the information can be made available to the service

CHAPTER 5. AN ENVIRONMENTAL APPROACH 114

interaction manager.

After receiving the device description from the remote service, a local copy could

be cached, however, this is purely a performance issue.

5.2.5.1 Describing devices

If the manager is to operate successfully, it requires some basic information about

a device and how its actions affect the environment. The approach needs this

information; using a remote database with device details is a convenient way to

achieve this. It also has potential to be used by other services, if they require

information about devices. This system could potentially help facilitate adaptive

services.

Although this may be seen as a constraint on the system, it is a reliable, and

scalable solution to the problem. A self learning system may be implemented

where the manager sends commands to devices and records how the environment

has been affected by the device’s action. However, this would require that the

manager knew all APIs for the device. Further, the manager would require a

training period where it conducts tests under strict conditions. This is to ensure

the manager understands all the variables a device affects. If the tests are not

done carefully, other factors (external to the device) may affect the environment,

which causes the manager to record incorrect data.

There is a danger that if these tests are not conducted properly that the manager

CHAPTER 5. AN ENVIRONMENTAL APPROACH 115

would hold false information about the device. Having incorrect information on

each device would have a serious impact on the effectiveness of this approach.

Therefore, since these devices will be deployed in homes, the simplest and most

reliable solution is to use a remote database. This means there is no warm-up

time for the approach and a user does not have to worry about training the

manager for new devices.

The device type is essential. This describes the type of device, such as heater,

air-fan or television. When querying the remote site, the manager should supply

a device type. The type supplied by the caller is matched with the descrip-

tion within the database. The remote device database does nothing more than

return device specifications in an XML format, given a device type. Example

XML details are shown in Figure 5.3. The example XML shows the Lamp is an

output device, also the default usage for a service is NS. The XML also shows

the environmental variables this device uses, RoomLight. The default value for

this variable is S+ as room light will be increased, and the locality is set as 0

(Figure 5.3), which means it will only affect the current room.

Various other attributes are included in the device description, such as the default

lock values for the device. This makes it possible for this approach to work

without having any input from the service – fully operational on its own.

As well as knowing what type the device is, it is important to understand the

actions of a device and how each action affects the environment. The alarm

CHAPTER 5. AN ENVIRONMENTAL APPROACH 116

1. <Device>
2. <DeviceType>Lamp</DeviceType>
3. <DeviceIO>Output</DeviceIO>
4. <DefaultDeviceUsage>NS</DefaultDeviceUsage>
5. <Action>
6. <Name arg="on">deviceOn</Name>
7. <SuggestedDeviceUsage use="NS" />
8. <EnvironmentalVariable name="RoomLight"
9. defaultValue="S+" duration="3" locality="0" />
10. </Action>
11. <Action>
12. <Name arg="off">deviceOff</Name>
13. <SuggestedDeviceUsage use="" />
14. <EnvironmentalVariable name="RoomLight"
15. defaultValue="" duration="0" locality="0" />
16. </Action>
17. </Device>

Figure 5.3: Example lamp description

control panel device is a good example as it may have different functions. An

alarm control panel device can be used with a security service running on the

gateway. The alarm control panel may have two functions. One function is fully

armed where any movement in the home is interpreted as an intruder. The second

function may be used as a notifier. When the front door is opened, a ‘beep’ is

sounded to make the owner aware the front door has been opened. These two

functions will want to control the environment in different ways. One will detect

movement, whereas the other detects but allows movement. Thus, depending on

the way which a device is used, different locks for the variables will be required.

The fully armed function would lock the movement variable with NS as it does

not want to share it. The notify function would share movement with S± as

CHAPTER 5. AN ENVIRONMENTAL APPROACH 117

it does not need to have the variable fully locked. However, it does not want

another service fully locking the variable.

A device’s environmental variables and locking information are crucial for the

manager to operate. Another important piece of information is locality.

Consider the alarm control panel device as an example. Depending on the action,

the alarm panel may be set to monitor the whole home or only one room. Again,

depending on the action, the variables a device affects (and how the variables are

affected), will be different.

5.3 The service interaction manager

The service interaction manager (SIM) is central in this approach as it implements

the issues covered in section 5.2. As discussed previously, the manager would

be a service within the service gateway within the home. This is because all

devices will be registered within the gateway, and all services will be managed

and executed from the same gateway.

If the SIM is not in use, when a service issues a command to a device, the

message is sent directly to the device (Figure 5.1(a)). When the manager is

active, messages are intercepted and authorised. There are two possible outcomes:

either forward the message to the device (Figure 5.1(b)) or reject the message

(Figure 5.1(c)).

CHAPTER 5. AN ENVIRONMENTAL APPROACH 118

As stated in earlier sections, to avoid interactions the manager restricts access to

devices and environmental variables. To make the decision the manager analyses

the state of required devices and associated environmental variables. For this

to work, the manager must keep an internal image of the state of all devices

(Figure 5.4).

The manager generates the view of the home, which is of a hierarchical form.

This view is logical rather than physical as a device may be in one room but may

control a device in another – for example a Hi-Fi with speakers in two rooms.

The manager generates the view by searching the gateway for all device objects

registered. Once it has a list of all devices, it consults the remote device database

(section 5.2.5) and obtains all associated environmental variables required for this

device (this process is explained fully in section 5.3.1.1).

If a device joins or leaves the network this change will be registered in the home

gateway, in turn notifying the manager. If a device changes room, unless this

change is captured by the gateway, the manager’s view will not change. This

is not unreasonable, as services in the framework may search the framework’s

registry for a device in a specific room.

Figure 5.4 shows the hierarchy with the home at the top. Within the home there

are rooms and within rooms there are devices and the environment (variables).

CHAPTER 5. AN ENVIRONMENTAL APPROACH 119

Room A Room B Room C Room D

Heater Room Temp

Movement

Fan

Air. Con.

Home

Devices Variables

Figure 5.4: Internal representation

5.3.1 Keeping the manager up to date and consistent

Keeping the manager’s view of the home correct is not straightforward. In a home

network, devices will join and leave the network in an ad hoc fashion. The joining

and leaving of devices from the network must be monitored, and these changes

must be reflected in the manager’s internal view (Figure 5.4). The manager also

needs to record the devices a service is using. The manager’s internal view is

kept up-to-date and consistent in three ways:

• Monitor the gateway for devices joining and leaving the network.

• Note service commands which are authorised by the manager.

• Observe direct device control by the user.

CHAPTER 5. AN ENVIRONMENTAL APPROACH 120

These three ways are discussed further in sections 5.3.1.1 to section 5.3.1.3.

5.3.1.1 Monitor the gateway for devices joining and leaving the net-

work

When a device is added to the gateway, the manager determines the type of device

which has been added. It then consults the remote database that returns, among

other properties, the variables which a device will affect (Section 5.2.5). After

obtaining these properties, the manager tries to determine which room the device

is located in. This information about the device is then added to the manager’s

internal view (Figure 5.4). If the manager can not determine the type of device

or location, the user must supply this information. Informing the system of the

location of a device is the most a user would be expected to undertake.2 However,

some protocols, such as X.10, provide room location in the address, assuming the

setup is correct.

As well as listening for new devices being added to the framework, the manager

must also remove devices which have been unregistered, or removed from the

framework. Protocols such as UPnP advertise when they leave the network,

whereas X.10 devices do not. It would be up to the user to remove the devices

from the framework. This is simply a limitation of the X.10 protocol. When

2Location Aware Computing is beyond the scope of this thesis, however it is an active area

of research and more information can be found in [100, 101]

CHAPTER 5. AN ENVIRONMENTAL APPROACH 121

devices are removed, any locks a device has on an environmental variable are

removed.

5.3.1.2 Service commands which are authorised by the manager

When the service issues a command to the device, it is intercepted by the SIM. If

authorised by the SIM, the command is forwarded on to the device (Figure 5.5).

After the command has been authorised by the SIM, the manager must record

the new device state. It does this by updating to its internal view of the home,

thus keeping itself up to date and consistent.

S1 D1

Service

Interaction

Manager

Figure 5.5: Service to device via SIM

5.3.1.3 Direct device control by the user

If a device is controlled directly by the user, perhaps the user has pressed play

or stop buttons on the VCR, for example, this new state must be recorded in the

model. Depending on the protocol, some may broadcast a change in state. UPnP,

for example, does this. If the device state is changed, a message is sent to all

subscribed parties. If a device changes to a state which causes an interaction, the

CHAPTER 5. AN ENVIRONMENTAL APPROACH 122

state still has to be recorded as this is the current state of the device, Figure 5.6.

If this change is not recorded, the manager’s view is not a true reflection of what

is happening in the home.

S1 D1SIM

Service

Interaction

Manager

Figure 5.6: Device to SIM

5.4 Operation of the approach

5.4.1 Model

A new model has been developed to show how interactions are avoided using

this approach. The model is based on the three-layered model (section 5.2.1),

which shows the home services as well as devices and their relationship with the

environmental variables. With this in mind, a model has been developed and is

shown in Figure 5.7. All services, devices and environmental variables, from all

rooms in the home, would normally be shown here. However, for clarity, only one

service, two devices (an input device and output device) and one environmental

variable has been included.

CHAPTER 5. AN ENVIRONMENTAL APPROACH 123

Environmental Variable Z

−

Service X
1

Device
Y

−

−

Se
rv

ic
e

La
ye

r
D

ev
ic

e
La

ye
r

En
v.

 L
ay

er

(c)

(e)

(h)

(a)

Sensor
T

(b)

(d)

(i)

(f)
(g)

Figure 5.7: 3-layered model populated

The first layer in the three-layered model is the service layer, and one service is

shown in Figure 5.7. The service name is shown (Figure 5.7(b)), along with the

priority of the service (Figure 5.7(a)). In this instance, the service has a priority

of ‘1’.

The middle layer of the three-layered model is the device layer. All devices

registered in the framework are represented here. Figure 5.7 shows two devices.

‘Sensor T’ is surrounded by a double rectangle whereas ‘Device Y’ has a single

rectangle. The double rectangle represents an input device. An input device does

not affect its environment, it only monitors it. In contrast, the single rectangle

represents an output device. Output devices will affect their environment. Only

CHAPTER 5. AN ENVIRONMENTAL APPROACH 124

the primary effect on the environment variable is captured here. If a device has

a side effect, this may impact other variables. To keep the model simple, side

effects have not been captured here.3

The fact this is an output device is shown by the direction of the arrows Fig-

ure 5.7(f) and (g). Figure 5.7(f) shows that it is the environment (variable)

that will have an effect on the sensor device. On the other hand, the arrow in

Figure 5.7(g) shows that the device (output device) will affect the environment

(variable).

Central to this approach is the concept of controlling access to devices and the

environment to avoid interactions. Therefore, the model has to show the access

control mechanisms – the locks.

Figure 5.7(c) shows the lock for controlling access to the device itself. This lock is

set by the service. Generally, a service will use NS, as it is unlikely to want another

service using the device while it is in use. If a service does not understand how

to set the lock for the device, a default lock from the device description database

(section 5.2.5), which is normally NS, is used.

It is only output devices which can be locked by services; input devices can not

be locked, they simply report details back to services.

Once access to the device has been gained, the manager must ensure the device

is able to gain access to all required environmental variables. It is only the

3Implications of not including side effects are discussed in depth in Chapter 8.

CHAPTER 5. AN ENVIRONMENTAL APPROACH 125

variables which the device will affect by carrying out this particular action that

are consulted. The variable a device affects when it carries out specific actions are

obtained from the remote device database. Figure 5.7(e) shows the proposed lock

for the environmental variable. The arrow, Figure 5.7(g), points to the variable

where the lock is to be set.

Figure 5.7(h) shows the current lock of the environmental variable. The reason

for showing locks on both the bottom of a device and on the environmental

variable is that the environmental variable may already be locked by another

device. Figure 5.7(i) is the name of the environmental variable.

Using this approach, the interaction discussed in section 4.3.4, is used to show

how the approach operates.

5.4.2 A worked example:

Interaction between climate control and security

Under certain circumstances a negative interaction can occur between the home

security service and the climate control service (section 4.3.3).

As previously discussed, if the alarm is armed, it would not be appropriate for

the climate control to open windows in the home. Not only would opening the

windows cause movement, triggering the alarm, but the two services have con-

flicting goals here. The goal of the security service is to keep the home secure,

CHAPTER 5. AN ENVIRONMENTAL APPROACH 126

while the goal of the climate control is to cool the home by opening the window

which makes the home insecure. These goals conflict which causes a negative

interaction.

The approach described in this chapter can be used to avoid this interaction.

5.4.2.1 Setting the scene

To model this interaction, two services are required – security service and climate

control service. For the services to operate they require a number of devices. For

the sake of clarity and simplicity, a home with only one room and minimal devices

is assumed.

The climate control service requires a temperature sensor (input device) to get

the room temperature. In this home, there is also an external thermometer, so

the outside temperature can be obtained (for clarity, the external thermometer

has not been included in any of the Figures, Figure 5.8 – Figure 5.12). To

control the temperature the service has three output devices available for use:

a heater, an air-conditioner and a window. Each of the output devices changes

its environment in some way. The heater will heat the room, and therefore

increase room temperature. The air-conditioner will cool the room, reducing

room temperature. The window, when open, will change room temperature either

up or down, depending on the outside temperature. When opening and closing,

the window will create movement within the room. Therefore, among the three

CHAPTER 5. AN ENVIRONMENTAL APPROACH 127

devices, two environmental variables are required: temperature and movement.

The security service requires an input device, a motion sensor to detect movement

within the room. The service also requires two output devices: an alarm control

panel, which is used to set or disable the alarm, and alarm bell. On the surface,

the alarm control panel may seem to be an input device as a user uses it to

arm the alarm. However, although there is no direct output to the environment,

this device does control a variable in the environment, movement. Only output

devices can lock variables; input devices cannot control the environment, they

simply monitor (read) the variable. Therefore, the alarm control panel appears

as an output device.

The alarm panel wants to control movement within the room, it does not want

any movement created when the alarm is active. When the alarm is triggered, the

bell device is used to draw attention by making a noise. These two devices each

require an environmental variable: the alarm control panel requires movement

and the bell requires the sound variable.

5.4.2.2 The static setup

The static relationships between devices and the environment are defined in the

device description database (Figure 5.3, line 8 & 9).

Assuming these were the only services and devices in the home, the manager

would generate an internal image shown in Figure 5.8. This representation is

CHAPTER 5. AN ENVIRONMENTAL APPROACH 128

stored in memory, so if the gateway is restarted, the internal image would simply

be rebuilt.

Se
rv

ic
e

La
ye

r

Motion
Sensor

Thermo-
meter

D
ev

ic
e

La
ye

r
En

vi
ro

nm
en

t L
ay

er

Air Con

−

−

Heater

−

−

Alarm
Control
Panel

−

−

Bell

−

−

Sound

−

Temperature

−

Movement

−

Window

−

−−

Climate Control
(HVAC)

1
Security

2

(a)

(b)

Figure 5.8: Static model of security and climate control service setup

In this scenario there are two services, both of which are in the service layer.

Assume the service priorities have been set by the user (or a service provider on

their behalf). The climate control has been set with the lowest priority, ‘1’, and

the security service with ‘2’, which is the highest in this scenario. Therefore, the

security has overall control, if it needs to gain access to any device which the

climate control is using.

The device layer contains the seven devices (two input and five output) and

the environment layer contains three environmental variables. The black arrows

between the devices and variables show the static links between a device and

CHAPTER 5. AN ENVIRONMENTAL APPROACH 129

its environment. The direction of the arrows also show the flow of information.

Figure 5.8(a) shows the temperature variable will affect the thermometer, and

Figure 5.8(b) shows that the heater will affect room temperature.

This static model is generated automatically by the manager at runtime. When

each of the seven devices is added to the gateway, the manager would automati-

cally register each in its own internal view. The manager would then consult the

remote device database (section 5.2.5) to obtain device details such as default

values and associated environmental variables.

5.4.2.3 Arming the security service

Assume the climate control service is active but only monitoring the room tem-

perature (not controlling any devices) and the security service is off.

If the owner leaves the home, they use their mobile phone to communicate with

the security service which turns the alarm control panel to active.

The security service first needs to get access to the alarm device. Since this

device is not in use, it is able to gain access and lock it with NS as it does

not want anyone else using the device (Figure 5.9(a)). Next, using the default

values from the device description database, the manager knows that for the

‘arm’ command, the movement variable should be locked using NS. Figure 5.9(b)

shows the lock the device wants to place on the environmental variable, NS.

CHAPTER 5. AN ENVIRONMENTAL APPROACH 130

Since the environmental variable is not locked, this value is set in the variable

(Figure 5.9(c)).

Se
rv

ic
e

La
ye

r

Motion
Sensor

Thermo-
meter

D
ev

ic
e

La
ye

r
En

vi
ro

nm
en

t L
ay

er

Air Con

−

−

Heater

−

−

Alarm
Control
Panel

NS

NS

Bell

−

−

Sound

−

Temperature

−

Movement

NS

Climate Control
(HVAC)

1
Security

2

Window

−

−−

(a)

(b)

(c)

Figure 5.9: Security service armed

The security service is now fully armed and monitoring the home. The climate

control service is also active, but it does not require any devices, other than the

thermometer notifying the service of a change in room temperature.

5.4.2.4 Avoiding the interaction

The security service in the home is armed. Assume that the temperature within

the home starts to rise and the climate control service (knowing that it is cooler

outside) needs to open a window to allow the cool air in. If the service interaction

CHAPTER 5. AN ENVIRONMENTAL APPROACH 131

manager were not in place, the climate control service would open the window

making the home insecure and also triggering the alarm.

If the manager were active and the climate control were to issue a command

to open a window, the command would have to be authorised by the manager.

Assume the climate control service issues a command to open the window. First,

the climate control service must be able to access the window. Since the window

is unused, the service is granted access and sets the device lock with NS, Fig-

ure 5.10(b). The dashed lines (Figure 5.10(a) and (e)) are to show temporary

links. Until authorisation has been granted for both device and all related vari-

ables, they remain dashed.

Se
rv

ic
e

La
ye

r

Motion
Sensor

Thermo-
meter

D
ev

ic
e

La
ye

r
En

vi
ro

nm
en

t L
ay

er

Air Con

−

−

Heater

−

−

Alarm
Control
Panel

NS

NS

Bell

−

−

Sound

−

Temperature

S−

Movement

NS

Window

NS

S±S−

Climate Control
(HVAC)

1
Security

2

(a)

(b)

(c)
(d)

(e)

(g) (f)

Figure 5.10: Avoiding Interaction between Climate and Security service

Access to the window device has been granted. The manager can now try and set

CHAPTER 5. AN ENVIRONMENTAL APPROACH 132

the device’s proposed locks for the environmental variables. Since opening the

window will impact two environmental variables, two proposed lock boxes are

shown (Figure 5.10(c) and (d)). Since it has been determined that the tempera-

ture outside is colder than inside, the device would like to lock the temperature

variable with S– (Figure 5.10(c)). Also, since opening the window will cause

movement, the device would like to set movement to S± (Figure 5.10(d)). When

the manager tries to place a lock for the device on the environmental variables,

the manager can set the temperature variable with S– (Figure 5.10(g)) as this is

free. It can not set S± to the movement variable. This is because movement is

already set with NS (Figure 5.10(f)), and NS and S± are not compatible (Ta-

ble 5.1). The lock on the movement variable can not be overwritten as it has

been set by a service with a higher priority.

Since the lock can not be placed on the movement variable, the window device is

unable to open and the interaction has been successfully avoided.

If the climate control service truly were a smart service, it would search for

an alternative way of cooling the room. It should realise an air-conditioner is

available. Since the air-conditioner is available and the temperature variable is

also available, the climate control service would be able to gain access and control

the air-conditioner device and turn the device on, Figure 5.12. Both services are

now active and work in harmony.

CHAPTER 5. AN ENVIRONMENTAL APPROACH 133

Se
rv

ic
e

La
ye

r

Motion
Sensor

Thermo-
meter

D
ev

ic
e

La
ye

r
En

vi
ro

nm
en

t L
ay

er

Air Con

−

−

Heater

−

−

Alarm
Control
Panel

−

−

Bell

−

−

Sound

−

Temperature

S−

Movement

S±

Window

NS

S±S−

Climate Control
(HVAC)

1
Security

2

Figure 5.11: Avoiding interaction when climate control is active first

5.4.2.5 Avoiding the interaction under different circumstances

The example described above assumes the home security service is set first. As-

sume the home security service is inactive and the climate control service is cur-

rently active and has the window open. Further, assume that the security service

has extra functionality that makes it check that all the windows are closed.

This is one example of an instance where priorities must be used. Before arming

itself, the security service checks that all windows within the home are closed.

Whilst checking, it notices that one window is open, and has been opened by the

climate control service (Figure 5.11).

Figure 5.11 shows the two services. Climate control is active and has opened the

CHAPTER 5. AN ENVIRONMENTAL APPROACH 134

Se
rv

ic
e

La
ye

r

Motion
Sensor

Thermo-
meter

D
ev

ic
e

La
ye

r
En

vi
ro

nm
en

t L
ay

er

Air Con

S−

NS

Heater

−

−

Alarm
Control
Panel

NS

NS

Bell

−

−

Sound

−

Temperature

S−

Movement

NS

Window

−

−−

Climate Control
(HVAC)

1
Security

2

Figure 5.12: Security service and climate control service both active

window. To make the home secure, the security service is trying to gain access

to the window device to close it. However, when the security service tries to

gain access to the window device it finds it is locked with NS. Normally access

would be denied, but the security service checks the priorities and finds that the

window has been locked by the climate control service which has a priority of 1.

The security has a priority of 2, which is higher than the climate control priority,

so the security can gain access and control the window.

Therefore, the security service is able to override the lock and gain access. The

security service can close the window. When the window is closed (or turned off),

the locks it has on the temperature and movement variables are released. When

CHAPTER 5. AN ENVIRONMENTAL APPROACH 135

the security service tries to arm the alarm it succeeds and the alarm is armed.

Thus, the internal image would look like Figure 5.9.

If the climate control service does try and open the window again, since the

environmental variables are locked, the request will be denied as security has a

higher priority, just like Figure 5.10. There is an issue that the service and device

may become out of sync. If a protocol, such as UPnP is used, once a command

is issued to a device, a service would normally expect a 200/OK message to be

returned. If it does not receive this, the message will be resent. Since the manager

is blocking the messages, the resent message will be blocked, like the first. Devices

like X.10 offer no acknowledgement of commands. Therefore there is a possibility

a service thinks it has turned a device on when it has not. An argument could

be made that the manager notifies the calling service with the reason why the

window is unable to open. Currently, the approach does not support this as it

would require services having knowledge of the service interaction manager, this

is an unwise assumption, though technically it is relatively straightforward to

add.

This is not necessarily a problem. Services where it is vital a command is carried

out by a device should expect a response from the device. In a home secu-

rity alarm, for example, an alarm will not set properly if some doors or win-

dows are left open. Services where it is important that a command is received

and processed by a device, should require an acknowledgement from the device.

CHAPTER 5. AN ENVIRONMENTAL APPROACH 136

Therefore, if the manager blocks all commands to a device, the service should

not assume it was successful, unless it receives a response. However, this is an

implementation issue for the service vendor.

5.5 Summary

This chapter has described how this technique is able to avoid interactions with

little, or no, user intervention. An online service interaction manager has been

presented. The manager runs on the services gateway where home services and

devices reside.

When messages (commands) are sent from a service to devices, the manager will

intercept the message, analyse it, and decide whether a negative interaction will

occur. The technique draws inspiration from other domains, such as Operating

Systems, for locking. By refining locking algorithms, services and devices with

a common goal can work together, whereas services and devices with conflicting

goals are not allowed.

The manager has an internal view of the home network. The internal view is

automatically generated by searching for all devices on the framework. Since the

manager consults an external database to get device descriptions, as long as the

database is kept up to date, the manager can handle new types of devices.

The internal model is then kept up to date by listening for devices, and services,

CHAPTER 5. AN ENVIRONMENTAL APPROACH 137

joining and leaving the residential gateway.

An interaction example between the security service and climate control has been

presented. The example shows how the technique is successfully able to avoid

negative interactions. Importantly, it shows how negative interactions can be

avoided using the environment.

This approach is independent of the service, as the approach described focuses on

devices and the environment. However, to avoid some interactions, it is necessary

to know the priority of a service. This priority does not come from the service

itself, but instead comes from another service which is part of the manager. The

example presented earlier shows how priorities were used to avoid the interaction.

An example of how the interaction outlined in section 4.3.4 has been successfully

avoided has been presented.

The next chapter will describe, in detail, the test-bed used to test this approach.

The subsequent chapter will discuss the experimental results.

Chapter 6

Architecture of the Test-bed

6.1 Introduction

To show service interactions do happen in the home network, and that the ap-

proach detailed in the previous chapter does work, an experimental home network

(test-bed) was created.

The test-bed has to reflect what a real home network may look like. This includes

user services and the kind of devices one would expect to find in such a home.

Following a review of the literature [9, 102], a test bed was developed.

There were two phases in the development of the test-bed. The first phase was

to develop and test a test-bed which contained devices and home services. It is

important that the test-bed is stable and working correctly before including the

138

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 139

approach, as this ensures results from the service interaction manager are reliable.

This is explained in the next section. The second phase was the design and

implementation of the approach. A discussion will follow regarding the testing

of the approach.

6.2 Design of the basic test-bed

Here, by the term ‘basic test-bed ’, we mean a test-bed which includes a selection

of devices (UPnP and X.10), the service management framework (OSGi) and

the home services (Security, Climate Control, etc.). These three parts form the

basic test-bed. Once this is stable and reliable, the approach can be added.

This section, however, concentrates on three components: devices, the service

management platform and user services.

6.2.1 Devices

As there is a plethora of protocols used in the home, and no single protocol is likely

to emerge as the de facto standard. It would be impractical and unnecessary to

include devices which use each protocol in the test-bed. Therefore, two protocols

have been selected, X.10 and UPnP.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 140

6.2.1.1 X.10 devices

X.10 was chosen as a protocol because it is currently used in homes. The pro-

tocol is popular with home automation enthusiasts because of the availability [2]

and cost of the components. Also, typical household devices (e.g. lamps, fans,

heaters) can be used. Moreover no additional wiring is involved as it uses the

power lines as the transport medium. This makes it a quick, cheap and easy way

of automating the home.

For experimentation, the following X.10 modules were used:

• CM11 X.10 gateway module.

• An X.10 lamp module.

• An X.10 appliance module.

• An X.10 motion sensor with receiver.

The X.10 gateway was connected to the computer which was to host the service

platform. This can be seen in Figure 6.1. The figure shows the complete test

bed, with the X.10 portion shown.

The following general appliances were connected to X.10 modules:

• A lamp was connected to the lamp module.

• A fan was connected to the appliance module.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 141

Since the number of X.10 modules available was limited for the project, a virtual

X.10 device was used to enhance the network. The only virtual device used was

the home window. The window device was a virtual X.10 device that would open

and close. Thus, when an on command was sent, it would open. When an off

command was sent, it would close.

*X.10 Lamp
*X.10 Fan

• UPnP
Air-conditioner

• UPnP Heater

• UPnP
Thermometer

• UPnP
T.V.

*X.10 Motion
Sensor & Receiver

Power line

IP Network

*Residential
Gateway

• UPnP
VCR

• UPnP
Heater 2*USB Webcam

Room: Living Room

X.10 Addressing
Room address: A & F

Lamp : A1
Fan : A2

Window : A3
Motion sensor : F1

Key:
* Real Device
• Virtual Device

Wireless Connection
Wired Connection

USB
Cable

* DHCP Server

* SIP Server
guilder.cs.stir.ac.uk

• X.10 Window

• UPnP
Alarm panel

* X.10
Gateway

• UPnP
Blinds

Figure 6.1: The test bed used for experimentation

The X.10 motion sensors are used to detect movement. Upon detecting move-

ment, they send an on command to a pre-set X.10 address. Since they send

commands to other addresses, it means they do not have an address themselves.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 142

This is not an issue if the home only uses X.10 as the networking protocol.

However, it is unlikely a home will only use X.10 because of the limited capabilities

of the protocol and the requirements of users. Therefore, some way of notifying

other parties that movement has been detected is required. Although crude, the

only solution was to change how addressing is interpreted; this is caused by the

limitations of the X.10 protocol.

The solution was to reorganise the addressing, in that output devices should have

one room address (A in Figure 6.1) and a second room address should be used for

input devices (sensors) (F in Figure 6.1). This means that when the motion sensor

is triggered it sends an on command to address F1 (assuming the sensor was given

the address F1 to trigger). Although this would not actually turn any device on,

any listening party who knew that room F was set for sensor information in the

living room, would know this was to be interpreted as movement in that room.

As the X.10 gateway can listen to X.10 messages on the X.10 network, an interface

between the X.10 gateway and the service management framework was created.

This allowed the framework, and services on the framework, to be notified of any

X.10 messages.

6.2.1.2 UPnP devices

UPnP is a new home networking protocol and is growing with more OEM com-

panies becoming members. The increased membership and increased attention

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 143

has meant many new UPnP standards have been defined by the UPnP Forum.

At present, only UPnP routers and internet gateways are available to buy off

the shelf. Devices required for this test-bed, such as heaters or air conditioners

are not available yet. Therefore, virtual devices were used. Using virtual devices

offers flexibility for both creating and controlling the device. To create a virtual

UPnP device, a UPnP SDK, including UPnP stack, was used.

There is a selection of UPnP SDKs available to third party developers [103].

Many of these however are commercial and the source code for the stack is not

available. For this reason, an open source stack was used – CyberLink [104].

There are two implementations of the stack available: Java and C++. As the

Java stack was more mature, it was chosen over the C++ implementation which

was an early beta version. As well as forming the base for the UPnP devices, it

was also used to create the UPnP driver for the service management framework.

Each UPnP device developed had a simple GUI for user input (e.g. set device

on or off, or set channel, etc.). These are the kind of controls one would expect

on simpler devices. The XML device description and service definitions followed

those published by the UPnP Forum. Where definitions for devices were not

available, the basic device specification was used [105].

The CyberLink SDK was used to create the following UPnP devices (each with

a different GUI, XML service and XML device description):

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 144

• Thermometer – a device which reads room temperature. When queried

it returns the room temperature. Also when the temperature changes,

subscribed parties are notified. As this is not a real device, a slider-bar is

used to manually change the temperature.

• Heater – a simple heater device with two options: on or off. Since this is a

virtual device and to mirror what would happen in reality, the heater finds

all thermometers in the room and increases their temperature. In reality

this is not required as the heater would increase room temperature which the

thermometer would detect. This addition did not change the functioning

of the device. For experimental purposes, the device service was extended

to include location. This is a text field which allows a user to enter the

location of the device. This allows other services to query the device to

determine location. Again, this extra functionality does not change the

operation of the device. This does get around the issue of automatically

detecting the location of devices, which is a separate area of research [100].

• Air-conditioner – like the heater, this is a simple device which has two

options: on or off. Similar to the heater, to simulate reality the device finds

thermometers and decreases the temperature.

• Television – a device which tunes into a channel and displays the picture

sent by a TV station. The TV has a number of functions: on and off,

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 145

change the channel, and volume up and down. For experimental purposes,

a TV station had to be created. This is a Java server which devices can

connect to. Images are then sent by the server at regular intervals (1 per

second). This was enough to simulate the role of a TV station.

• VCR – like the TV device, the VCR records to file any images it was sent.

The user can then tune the TV into the VCR and play back the recorded

images. The options available in this device are: on and off, play, record

and set channel to record. The setting of channel also allows the VCR to

record from another source, e.g. a web-camera.

• Window blinds – This device simulates a small motor which can open and

close the blinds accordingly.

Although the majority of devices in the test bed were either X.10 or UPnP, there

were some other important auxiliary devices.

6.2.1.3 Auxiliary devices

Three support devices were used in the test-bed. These were: a web camera, a

SIP Server and a DHCP server.

The DHCP server is used by most IP devices in a network for the allocation of

IP addresses. In a home, many home gateways offer a DHCP service (Linksys

WRT54G [51] is an example device). In the home, it should not make a difference

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 146

how IP addresses are allocated; this has simply been included in Figure 6.1 for

completeness. If a DHCP server was not on the network, IP based devices could

allocate their own IP address using auto-IP.

The SIP protocol is mainly used for VoIP. However, another use of the protocol

is instant messaging and presence. For this reason, a SIP server was required

for use. The server used was SER [106]. This is a stable server available for

use in the Computing Science Department within the University. The SIP server

and setup is out of the scope of this project as it is unlikely many home owners

would go to the trouble of installing and setting up their own. This is due to

the complexity and time required. A more likely situation is that a home owner

would be offered a SIP service by their service provider. For example, Microsoft

Windows Messenger is based on SIP [107]. This is an instant messaging service

that allows users to log in and send messages to buddies. The SIP server, shown

in Figure 6.1, has been included in the diagram for completeness.

The web camera device is a USB device and is connected directly to the com-

puter which runs the service platform. More sophisticated web cameras will soon

be available which are wireless and even UPnP based. This means they can be

anywhere in the home and do not have to be directly connected to the computer

which controls it. However, the web camera used here was adequate for experi-

mentation, and shows how a service management platform can support devices

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 147

of different protocols. 1

The devices form only part of the test bed. A service platform which is able

to gather devices and make them available to user services is required. The

discussion in Chapter 2 highlights the importance of this, as the full potential

of networked devices is not released until middleware, a glue, is available to join

services and devices.

6.2.2 The service management platform

A service management platform is a platform which can manage and execute

services. In the home environment, these kinds of services would include enter-

tainment, security or climate control.

When selecting a service management platform for the test bed, some require-

ments had to be met. These requirements included:

• The platform is stable and reliable – since the gateway is running in the

home, it has to run for long periods between restarts, typically months or

even years.

• Robust – if one service fails, the rest of the platform should function as

normal and not crash.

• Portable – be easy for third party developers to deploy their services.

1Provided they have drivers for the service platform.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 148

• The ability to suppose a range of networking protocols and have the ability

to accommodate new protocols.

• Give all services the opportunity to find and use devices.

• Dynamic – as services and devices change, the platform should be able to

accommodate these changes without having to redeploy a new platform.

Currently, the OSGi framework is the only suitable candidate which meets these

requirements.

At the time of development there were only three OSGi frameworks publicly

available: the Sun Java Embedded Server [108], the IBM Service Management

Framework [109] and an open source implementation, Oscar [110].

The offering from Sun, the Java Embedded Server (JES), was an implementation

of version 2 of the OSGi specification. However, the implementation was not

OSGi compliant. Further, version 2 has been superseded by version 4, therefore

it would be advantageous to use the newer specification. Version 3 of the OSGi

specifications include UPnP, which was not included in version 2 of the OSGi

specification. Since many of the devices used in the test bed were UPnP based,

the Sun implementation was unsuitable.

The open source implementation, Oscar, was an implementation of version 1 of

the OSGi specification. Further, this implementation was not reliable, or mature

for full scale use. Therefore, it was decided not to use this framework.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 149

The IBM implementation, the Service Management Framework (SMF) version

3.5 was an implementation of version 3 of the specification. It was also an OSGi

compliant platform. This platform was mature and reliable, but lacked a UPnP

driver.

Since this platform was the most reliable and mature, it was chosen as the service

platform used for experimentation. The framework was run on a desktop PC. The

specification of this computer was modest – Intel Pentium III 500MHz processor

with 128Mb of RAM and a 10Gb hard drive. The machine was running Microsoft

Windows XP SP1, with the Sun Java runtime environment, version 1.4.2. As a

UPnP driver was not distributed with the IBM OSGi framework, one had to be

created.

6.2.2.1 The UPnP OSGi driver

Although the UPnP driver had not been implemented by IBM, the specifications

were included in [63]. Following these specifications, a driver was developed.

Effectively, the behaviour of the UPnP driver was similar to that of a UPnP

control point. The role of the UPnP driver was to listen for new UPnP devices

leaving and joining the network. When a device joins the network, it had to be

registered in the framework’s service registry as a UPnP Device service. When

the device left the network, the device service entry had to be removed from the

registry.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 150

The driver itself was created by modifying the UPnP control point component of

the CyberLink SDK. This is because the OSGi UPnP driver is simply a modified

UPnP control point. As UPnP devices are self configuring, no user interface was

required for the driver itself. It simply adds devices when they are connected to

the network and removes them when they leave.

When a new device does join the network, the driver has to read the device XML

description to get the device details. These details are added to the service de-

scription in the service registry. Figure 6.2 shows the UPnP driver service along

with the service registry entry for a device it has added. In this example, the de-

vice registered was a UPnP thermometer. The properties from the thermometer

device description XML have been parsed and used for the device description.

Services can search these properties (line 5–21) in the service registry, as described

in section 2.2.2.

Registering the UPnP devices in the framework allows other bundles to use the

devices. However, the driver also has to allow other bundles to be notified of

changes to a device state. For example, it would be useful for a climate control

service to be notified of a change in temperature. To facilitate this, the OSGi

specifications stated that the UPnP base driver would subscribe to all new de-

vices. This allows other bundles within the gateway to register with the driver

to be notified of changes in the device.

Although Release 3 of the OSGi specification includes UPnP it does not include

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 151

1. file:/h:/www/bundle/upnp-basedriver.jar [28]
2. id=28, Status=ACTIVE Data Root=H:\smf\jarbundles\28\data
3. Registered services:
4. {org.osgi.service.upnp.UPnPDevice, org.osgi.service.device.Device}=
5. {service.id=27,
6. UPnP.device.UDN=uuid:mewUPnPThermometerLaptop,
7. UPnP.device.UPC=1234567890,
8. UPnP.device.modelNumber=1.0,
9. UPnP.device.parentUDN=uuid:mewUPnPThermometerLaptop,
10. UPnP.device.serialNumber=000001,
11. UPnP.device.modelName=Thermometer,
12. DEVICE_CATEGORY=UPnP,
13. UPnP.device.modelDescription=UPnP Temperature Sensor v1.0,
14. UPnP.presentationURL=http://www.cs.stir.ac.uk/,
15. UPnP.device.modelURL=http://www.cs.stir.ac.uk,
16. DEVICE_IP_ADDRESS=192.168.1.14:4004,
17. UPnP.device.manufacturerURL=,
18. UPnP.export=,
19. UPnP.device.type=urn:schemas-upnp-org:device:TemperatureSensor:1,
20. UPnP.device.friendlyName=UPnP Temperature Sensor,
21. UPnP.device.manufacturer=mew
22. }
23. No services in use.
24. Exported packages
25. org.osgi.service.upnp[exported]
26. Imported packages
27. uk.ac.stir.cs.fi.manager.service<file:/h:/www/bundle/fi/manager.jar[30]>
26. org.osgi.service.device; specification-version="1.1"<file:

bundlefiles/osgi-services.jar [1]>
27. org.osgi.service.upnp<file:/h:/www/bundle/upnp-basedriver.jar[28]>
28. org.cybergarage.xml<file:/h:/www/bundle/xmlNode.jar[29]>

Figure 6.2: Service details for UPnP bundle, including service registry entry.

specifications for X.10. Drawing inspiration from how the UPnP driver was con-

structed, and using themes from [5] to create device drivers, a similar driver was

created for X.10.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 152

6.2.2.2 The X.10 OSGi driver

The role of the X.10 driver is allow X.10 devices to be added and removed from

the service registry in the framework. Since X.10 is not self configurable, details

of new X.10 devices have to be manually entered.

The X.10 driver was developed used an existing open source Java X.10 API [40].

This code was taken and adapted for use within an OSGi environment. Commu-

nications port drivers from Sun were also required since the X.10. controller was

connected to the serial port of the gateway. The Java Communications API [111]

was used to access the communications (comm) port.

Like the UPnP driver, the X.10 driver had to support the addition and removal

of devices from the gateway. Also, it had to offer a mechanism for listening to

X.10 messages on the network. Adding devices was carried out manually via a

web page, shown in Figure 6.3(a).

Removing an X.10 device from the gateway is shown in Figure 6.3(b). The list

of X.10 devices is compiled by the servlet, searching the service registry for X.10

device services. This is then displayed on the page so the user can select the

device they wish to remove. When the remove command is executed the device

is removed from the service registry in the gateway.

In addition to adding and removing a device, the driver offers services an option

to listen to X.10 messages on the network. The X.10 gateway can listen for

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 153

(a)

(b)

Figure 6.3: X.10 setup servlet

X.10 commands on the power line. The X.10 gateway sends these messages to

the serial port of the gateway, which the X.10 driver receives and distributes to

interested parties.

The final stage of development of the test bed is the user services. These are

the services which make use of the devices. The services were made into OSGi

bundles which were deployed onto the framework.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 154

6.2.3 Services

The services implemented for use in the test bed are those discussed in Chapter 4.

To recapitulate, there were five services:

• Heating, Ventilation and Ai-conditioning (HVAC) – The climate control

service monitors the room temperature throughout the home and keeps

it at a comfortable temperature, defined by the user. The service was

developed, and a web interface was created for a user to control the service.

This allows values to be entered for testing. The main screen of the service

is shown in Figure 6.4.

• Home Security Service (HSS) – This service is used in conjunction with an

alarm device. The service can be set, and configured, through the alarm

device. The service can also be configured through a servlet, shown in

Figure 6.5. The role of this service is to monitor the home for intruders and

alert the owner of such an event. This service also has the away from home

feature which makes the home look occupied when the home is empty.

• Power Control Service (PCS) – The aim of this service is to reduce the

amount of power a home consumes. It does this by turning off devices

when no one is home. The service can be set to turn on devices which

consume a lot of energy when electricity is cheaper – a washing machine,

for example.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 155

• Home Entertainment Service (HES) – This service controls entertainment

devices in the home, such as the television, stereo, and VCR/DVD devices.

One of the main features of this service is that it can in principle monitor

viewing habits and automatically record certain television shows. The ser-

vice does allow an option to manually set the time and date to record a

television programme, shown in Figure 6.6.

• Communications Support Service (CSS) – This service supports the use of

email and telephone. The user can be notified of email arriving through

their television. Also, any incoming telephone calls can be displayed on the

screen; the user can decide whether to accept the call or not.

Each of the above services was implemented as an OSGi bundle.

Figure 6.4: HVAC setup servlet

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 156

Figure 6.5: Home alarm setup servlet

Each service had a specific goal, e.g. the HVAC service was to keep room tem-

perature at a comfortable level, the security service was to keep the home secure.

To achieve these goals, services have to use devices. All services were developed

to query the service registry for the required devices.

The HVAC service will be used as an example here. This service had to keep the

home at a comfortable temperature. The temperature levels are set manually,

but until then default values are used. For this service to function effectively,

a minimum of three devices is required: a thermometer, a heater and an air

conditioner.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 157

Figure 6.6: Television recording setup of Entertainment Service

When the HVAC service starts, it searches the service registry for a thermometer

device to ascertain the room temperature. If one is found, the service registers

with the thermometer service as the HVAC service needs to be notified of changes

in temperature. If no thermometer is found, the service would remain in an idle

state until a thermometer is introduced into the network. The service could be

designed with default times when it starts. However, this is a service design issue

and is therefore not relevant here.

When the temperature in the room drops below the minimum temperature, the

HVAC service will search the service registry on the gateway for a heater. The

registry returns an array of devices which match the search criteria. The service

will then turn all on. This means that if two heaters were returned, both would

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 158

be turned on. The advantage of searching for devices only when the service needs

them is that a newly introduced device can be used without having to restart the

service.

As the heater heats the room and the room temperature increases, the HVAC

service is notified of the increase in temperature by the thermometer. When the

temperature reaches the desired level, the service will turn the heating devices

off.

As stated previously, each of the services has been implemented as a series of

OSGi bundles. Each is designed to search the service registry in the gateway for

the type of device they require. If a service cannot find a device, it remains idle

until a suitable device is added to the network. A service which requires more

than one device, the alarm service for example, will use the devices available.

This means that if one of the devices is unavailable, perhaps the alarm bell for

example, other functions would be carried out as normal, e.g. sending a SMS.

In addition to the services detailed in Chapter 4, three other services were imple-

mented: an SMS service, a SIP Instant Messaging (IM) User Agent (UA) service,

and a web camera service.

The OSGi SMS bundle service works in conjunction with the Lycos SMS ser-

vice [112]. This service requires a Lycos username and password along with the

mobile phone number and message to be sent. A connection was then made to

the Lycos service and the SMS message sent. This is particularly useful if a home

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 159

service requires the owner to be notified urgently, e.g. a suspected burglary.

The SIP IM UA bundle was developed using the SIP stack from NIST [113]. This

is an open source Java based SIP IM stack which was adapted for use in an OSGi

gateway. The service was set to register with the SIP proxy. When registered,

the service could then be called by other services to send instant messages, given

an email address and message.

A web camera service had to be created to allow a connection from the gateway

to the USB web camera which is on a USB port. An OSGi service bundle was

developed which made a connection to the USB camera, using the Java Media

Framework API (JMF) [114]. When the connection is active between the gate-

way and the device, images are streamed from the camera to the service on the

gateway. Other services can then use this service to get images from the web

camera.

The basic test-bed was then complete. The home network has a selection of de-

vices: real X.10 devices, some virtual UPnP and X.10 devices, and a real USB

webcam. The user services automate the home in a number of ways, from auto-

matically controlling the living temperatures, to recording the owner’s favourite

show. The component which makes this connectivity possible is the service man-

agement platform, the OSGi gateway.

At this point the devices can be started and services installed. However, before

they can be used, both devices and services have to be configured.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 160

6.3 Configuration of the basic test-bed

6.3.1 Setting up the X.10 devices

Since the X.10 protocol does not support automatic configuration, the new X.10

devices have to be added to the framework manually. A servlet was created to

facilitate this (shown in Figure 6.3(a)). Adding a service is straightforward. The

type of device is selected, e.g. fan, lamp, window, then the address is entered. A

user then selects Add X10 Device. The virtual radio buttons were only used for

testing. This did not affect the way in which the gateway dealt with the device.

When devices are added, changes to the X.10 devices are saved to the file system.

This means when the gateway restarts, the X.10 configuration data is loaded and

the user does not have to re-enter the data.

When the ‘add’ button is selected, a new X.10 device service is created in the

framework. The details entered into the service registry are similar to those used

for UPnP. Figure 6.7 shows an entry for an X.10 lamp in the service registry.

This shows the basic details of the device: the type (Lamp) and address (A1).

6.3.2 Setting up the UPnP devices

UPnP devices, by their nature, require little work to set up. A room value was set

in the service description of each device. The default value used was living room.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 161

1. file:/h:/www/bundle/x10driver.jar [24]
2. id=24, Status=ACTIVE Data Root=H:\smf\jarbundles\24\data
3. Registered services:
4. {uk.ac.stir.cs.service.x10.X10LampModule, org.osgi.service.device.Device}=
5. {service.id=34,
6. DEVICE_CATEGORY=X10Module,
7. DEVICE_TYPE=Lamp,
8. DEVICE_ROOM=A,
9. DEVICE_ROOM_FRIENDLY=LivingRoom,
10. DEVICE_NUMBER=1
11. }
12. No services in use.
13. Exported packages
14. uk.ac.stir.cs.service.x10[exported]
15. Imported packages
16. uk.ac.stir.cs.fi.manager.service<file:/h:/www/bundle/fi/manager.jar[30]>
17. org.osgi.service.device; specification-version="1.1"<file:

bundlefiles/osgi-services.jar [1]>

Figure 6.7: Example service entry for an X.10 lamp

This could be changed via a control point if a device was to be put elsewhere.

However, since the majority of testing was concentrated in one room, this was

kept as the default.

When each UPnP device was started, it was automatically registered with the

OSGi gateway. When the UPnP devices were registered in the service registry,

they were ready to be used by other services.

6.3.3 Configuration of the services

The five services listed above each had to be configured for the home. Using the

servlets, the services were configured in the following way:

Heating, Ventilation and Air-conditioning (HVAC): The climate control

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 162

service was set with two types of values: those that conflicted and those

which did not. The conflicting values dealt with where the maximum heat-

ing value overlaps with the triggering value for cooling.

Home Security Service (HSS): In the event of an intruder being detected,

this service was set to send an SMS message, send an instant message using

the SIP IM client, record the intruder from the web camera to the VCR,

and then ring the alarm bell.

Power Control Service (PCS): This was set to turn all devices off once the

owner left the home. There were no exceptions in the devices that could

stay on.

Home Entertainment Service (HES): This service was set to automatically

record a television channel at a certain time and date. Monitoring an

owner’s viewing habits was not included.

Communications Support Service (CSS): This service was set to display

email only; the telephone option was not included for testing. An email

account was configured for the email aspect. Since push email is not sup-

ported with the email server used, the service has to poll at regular intervals

to check for new mail.

Now that services had been configured and devices set up, testing was required

to show that the basic test-bed worked.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 163

6.4 Testing of the basic test-bed

To ensure the test-bed was stable and did what it was meant to do, some basic

testing was carried out. This included testing the devices and also the services

which controlled the devices.

6.4.1 Testing the devices

Testing UPnP devices

As previously stated, the UPnP devices were created using CyberLink SDK (ver-

sion 1.1). Although the devices appeared to work and function correctly, they

were tested using the Intel Device Validator Tool [115] (Figure 6.8). This tool

tests the discovery of the device, control of the device and eventing (subscription).

All devices passed the tests.

The devices could also be seen in control points from Siemens [116], Intel and

CyberLink. All devices appeared in these and functioned correctly, i.e. returned

correct values and allowed users to control the device. Therefore, this confirmed

that these UPnP virtual devices were correctly implemented. If they were not,

they would not have appeared correctly in the control points, or have passed the

Intel UPnP device validator.

Testing of the X.10 devices

After the X.10 devices were connected to the network and manually entered into

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 164

Figure 6.8: Intel UPnP device validator tool

the framework, a test servlet was used to control the devices. The X.10 servlet

offered basic functions: turn a device on or off. For lamp modules, dimming was

supported. Since the X.10 devices used were real, the tests would either work

or not work. These tests were carried out successfully and devices worked as

expected.

6.4.2 Testing the services

Each of the five services had to be tested to make sure they worked in the OSGi

gateway, and that they found the correct devices.

Heating, Ventilation and Air conditioning (HVAC): When the service started

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 165

it found the thermometer and received the current room temperature. Since

the service had registered with the thermometer, when the temperature

changed, the service was notified. If the room temperature dropped below

the set minimum temperature the service found a heater and turned it on.

This meant the room temperature increased and the service kept the heater

active until the room temperature reached the set upper value. Similarly,

if the room exceeded the maximum room temperature, the service would

find an air conditioner and turn it on, thus cooling the room.

Home Security Service (HSS): When this service started, it registered with

the motion sensor in the framework. When movement was detected, the

service was notified causing the service to send an SMS, send an instant

message, start ringing the alarm bell, and use the web-camera to record

the room on the VCR. If one or more of the devices were not available, the

service would continue to the next action.

Power Control Service (PCS): This behaved as expected. When the service

reached a set time, it turned all devices off.

Home Entertainment Service (HES): This service was used to set the VCR

to record certain channels at certain times. Testing found that this service

behaved as expected – it used the VCR to record shows at specific times.

Communications Support Service (CSS): This service polled the configured

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 166

email account every five minutes for new mail. When new mail was received,

the service would find the television device and send an image to it. The

television would then display the image, along with the current picture.

Through basic tests it was found that the services, on their own, behaved as

expected. They all found the relevant devices and sent the correct commands to

them. The devices executed these commands successfully.

With a stable test-bed, the approach was implemented as a series of OSGi bun-

dles. The next section will discuss the design and testing of the approach.

6.5 Design of the approach

As stated, the approach described in Chapter 5 has been implemented as a series

of bundles which run on the gateway. The approach is able to avoid interactions

by carefully controlling access to devices and environmental variables. Control is

achieved through a locking algorithm. To turn the approach from theory into a

working prototype, five key components were developed. These were:

• The Service Interaction Manager (SIM)2 – This is the main component of

the approach. This component has to intercept commands before they leave

the framework to the device. The manager has to analyse the commands

2The words SIM and manager are used interchangeably in the text

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 167

and determine whether they would cause a negative interaction. To do this,

the manager uses a series of other services.

• Protocol converters – The approach has to handle a number of protocols,

and even be expanded to handle new, or proprietary protocols. Essentially,

these converters translate a protocol specific message to a format the man-

ager can use.

• Device information – For this approach to work, it is important that infor-

mation regarding how the device works is required. This is used to work

out whether an interaction may occur. The manager needs to know what a

device does and what variables it will affect when it carries out an action.

• View of the network – It is important that the manager has an overall rep-

resentation of the home network. This view includes devices, their location,

current state and variables they affect.

• Service priorities – As highlighted in Chapter 5, safety services need to

be given priority over less important services. This component is used for

setting priorities and for other services to get a priority of another service.

These five key points were the main development areas for the implementation

of the approach. They are shown in Figure 6.9. Since the requirements for each

component are well defined, each was implemented as a separate OSGi service

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 168

bundle. The advantage of building the approach in a modular fashion is that it

becomes flexible and can easily be upgraded as protocols and devices change.

Each of these bundles will now be discussed in more detail.

Proprietary
Protocol XYZ

Service
Interaction
Network
Protocol

Converters

UPnP

X10

Jini

Priority

Service

Service

Interaction

Manager

Device Location
Information

Device &

Environmental

Representation

Device
Information

Service
Device

Information

IBM OSGi gateway

(b) (a)

(g)

(e)

(f)

(d)(c)

Figure 6.9: Bundles for the approach

6.5.1 Service Interaction Manager (SIM)

The central bundle in this approach is the Service Interaction Manager (SIM), or

manager, shown in Figure 6.9(a).

The manager itself does little processing work. Instead, it has a list of tasks and

uses services from other bundles to get the answers.

When a new message is received by the manager, it has to work out whether

the message will cause a negative interaction if left to proceed to the device. To

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 169

decide if there will be a problem with the message, the manager has to convert

it from a protocol specific message to one it can understand.

Since the manager is independent of networking protocols, it used the Service

Interaction Network Protocol Converters (SINPC) to translate the message. The

SINPC services return the message in a format which is understood by the man-

ager. When the manager has the translated command, it sends this to the De-

vice and Environmental Representation (DER) component. It is this component

which decides whether there is a conflict. If there is a conflict, the manager uses

the priority service to get the priority of the service which sent the message. If the

calling service has a lower priority than the service currently holding the locks,

the message is rejected and the interaction is avoided. On the other hand, if the

priority is higher for the calling service, the command will be sent to the device.

If the priority is the same, the manager works on a first come, first served basis.

It must be noted that a user can change priorities at any time, if their preferences

change.

Services are not notified if they lose control of a device to a service with a higher

priority. This approach presented here has no direct communication with the

services. This is because when the manager starts communicating with services,

for the manager to avoid interactions properly, all services must be aware of the

manager. This should be avoided as it cannot be guaranteed that service vendors

will develop their services to work with the manager.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 170

As well as intercepting messages being sent from service to device, the manager

also has to handle notification messages being sent from the devices. These

notification messages do not get sent directly to the manager; instead, they are

processed by the SINPC. The SINPC translates the messages into a format the

manager understands. These messages are then sent directly to the DER to

ensure the internal model of the network is maintained.

The manager provides a log which can be used to show whether interaction has

been detected as shown in Figure 6.10. In the figure, it can be seen that no

interaction was detected in Figure 6.10(a) and (b). However, in Figure 6.10(c)

an interaction was successfully avoided.

(a)

($)

(%)

Figure 6.10: Service interaction manager log

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 171

6.5.2 Service Interaction Network Protocol Converters

(SINPC)

The manager relies on the SINPC (Figure 6.9(b)) to carry out message transla-

tion. The SINPC are a series of individual bundles which are different implemen-

tations of the uk.ac.stir.cs.fi.protocol.parser.FIProtocolParser service.

This service was created as part of the project for parsing different protocols.

By implementing the protocol parser service as a series of bundles which imple-

ment the service, it means that a wide selection of protocols can be translated.

Figure 6.9(b) indicates two protocol converters were implemented (UPnP and

X.10) by surrounding them in dark lines. The dashed lines shown in the Figure

give an example of other protocols which could be implemented.

The manager makes use of these services by searching the framework service reg-

istry for services of type uk.ac.stir.cs.fi.protocol.parser.FIProtocolParser.

From the search, the manager will get an array of all services found. Figure 6.11

is an extract from the framework service registry for the UPnP protocol parser

service. Since the manager does not know what protocol the message uses, it

sends the message to each protocol parser service individually. The manager

could be enhanced to improve efficiency so it learns to recognise messages. The

manager would then know what the message means so as to avoid sending it to

each of the converters.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 172

If the protocol parser does not understand the message (e.g. an X.10 message is

sent to the UPnP component) a value of null is returned, otherwise a String is

returned which contains the message in a format the manager can understand.

1. Registered services:
2. {uk.ac.stir.cs.fi.protocol.parser.FIProtocolParser,
3. uk.ac.stir.cs.fi.upnp.service.FIUPNPService} =
4. { Description=Feature Interaction UPnP Component,
5. service.id=18 }
6. }

Figure 6.11: Extract from OSGi service registry for UPnP protocol converter

The format of the returned message is in the following format:

Calling-service-id; device-type; device-id; command; parameters

Therefore, an example returned value is:

47;AirConditioner;23;SetDeviceState;off

Where the calling service was 47 (the climate control service), and the device type

was the air conditioner. The unique identification number of the air conditioner

device in the framework was 23. The service wanted to turn the air conditioner

off, by setting the device state to off. The numeric values of devices and services

are only used by the system, therefore they do not need to be human readable.

A secondary role of the SINPC is to inform the manager of any change in their

devices. Each protocol parser should register to be notified of updates for their

device type. For example, the X.10 protocol parser should subscribe to all X.10

devices.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 173

Therefore, when a new state message is received, the message is parsed into the

same format and sent to the manager. New states can be triggered when a

person in the home manually turns on or off a heater, for example. Since these

new states are not instigated by a service, the first parameter in the manager’s

message, calling-service-id, has to be set to ‘1’, which means manual change.

The advantage of translating protocol messages this way is that as new protocols

are developed and introduced, the approach can accommodate them with little

hassle. An implementation of the uk.ac.stir.cs.fi.protocol.parser.FIProt-

ocolParser service is all that is required. New protocol parser bundles can then

be installed onto the gateway. The manager will then find them the next time it

searches for the protocol parser services to process a message.

The other advantage of implementing this in a modular fashion is that since there

are so many home networking protocols, the home owner only needs protocol

converter bundles for the protocols they have in their home.

6.5.3 Device Information

The Device Information Service (DIS) is shown in Figure 6.9(c). Given a device

type and command, this service will return the environmental variables the device

with this command will affect, and how. There are two parts to this service. The

first part is the OSGi service which runs on the gateway (Figure 6.9(c)). The

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 174

second part is the remote database which contains the information about the

device (Figure 6.9(d))

6.5.3.1 Device information database

The device information database is a database which holds all device details

including their commands and the environment variables these commands affect.

To implement this, a database server was required. The database used was

MySQL Server version 4.0.18-nt [117]. MySQL is a popular database which

is freely available. It is reliable, fast and scalable (with the largest table it can

support being 64TB [117]).

For the purpose of experimentation, the database server was installed onto the

same computer as the gateway. In reality, this database would be hosted with a

service provider. Having a database with all possible devices in a person’s home

would be impractical. Not only would this database be extremely large, but

keeping it up to date with new devices would be difficult. For these experiments

it did not make a difference where the SQL database resided.

The database designed consists of four tables. Figure 6.12 shows the relationship

between the four tables. The ‘Devices’ table holds details such as the device

name, whether it is an input or output device and what the default lock for the

device is. The ‘Actions’ table holds the names of the actions, including the name

of the action argument. The ‘DeviceAction’ contains only the suggested device

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 175

usage. This value will override the device default value as the default device

usage is dependent on the action. The ‘EnvironmentalVariable’ table has details

of each environmental variable; this depends on the device and what the action

is. Details for the variable, such as the name of the environment variable, default

usage, duration and locality are all held here.

Figure 6.12: Relationship diagram of device information database

Once the database was set up, records were manually entered. The devices used

for experimentation were all included and all details were filled in accordingly.

Keeping the database up to date is outside the scope of this project, however

getting data into databases through clients and web interfaces is well understood.

6.5.3.2 The Device Information Service (DIS)

The DIS (Figure 6.9(c)) works closely with the database (described above) to

get information about devices. A service on the gateway will call the DIS with

certain parameters, and will receive an XML result.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 176

The DIS has one method which takes three parameters: the device type, the

command and the argument. This is converted into an SQL query and sent to

the database. If the database is unable to find any matches, the DIS will return

a null value to the calling service.

1. <Device>
2. <DeviceType>Window</DeviceType>
3. <DeviceIO>Output</DeviceIO>
4. <DefaultDeviceUsage>NS</DefaultDeviceUsage>
5. <Action>
6. <Name arg="on">deviceOn</Name>
7. <SuggestedDeviceUsage use="NS" />
8. <EnvironmentalVariable name="RoomTemperature" defaultValue="S"
9. duration="3" locality="0" />
10. <EnvironmentalVariable name="RoomMovement" defaultValue="S"
11. duration="1" locality="0" />
12. </Action>
13. </Device>

Figure 6.13: Example return value from the device information service (output)

However, if the device is found in the database, the DIS processes the results

from the database and puts them into an XML format, which is returned to the

calling service. The XML schema used depends on the type of the device: input

device or output device.

Figure 6.13 shows sample XML data for the heater device, which is an output

device. This XML data shows all the variables this device can potentially affect.

Figure 6.14 shows sample XML data returned from the device information service

for an input device. This XML data only shows the data that this device can

monitor.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 177

1. <Device>
2. <DeviceType>MotionSensor</DeviceType>
3. <DeviceIO>Input</DeviceIO>
4. <DefaultDeviceUsage>S</DefaultDeviceUsage>
5. <SensorEnvironment variable="RoomMovement" />
6. </Device>

Figure 6.14: Example return value from the device information service (input)

This service is only an interface between the gateway and the device database.

The DIS only searches the database based on a device type with command.

Processing and interpretation of the XML data is handled by the device and

environment bundle.

6.5.4 Device Location Information and the Device &

Environment Representation component

Figure 6.9(e) and (f) show the Device Location Information (DLI) and Device and

Environmental Representation (DER), respectively. Essentially, it is the DER

component which authorises a message and works out whether an interaction

will occur. The feature interaction manager bases its decision on the result from

the DER component.

The component has two important roles. Firstly, the DER component must

handle the addition and removal of locks depending on the translated message

sent by the manager. Secondly, the DER component listens for new devices

registering in the gateway’s service registry. When this occurs, the component

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 178

will try and discover which room the device is in. This is achieved by interrogating

the device. To do this, the DER must have some knowledge of the device protocol.

For example, with X.10 the DER can work out the room from the address of the

device. In the experimental UPnP devices, an extra field was included for this

purpose. However, the DER must understand the protocol for this. If the DER

cannot determine the location of the device, this can be input via a web page,

shown in Figure 6.15.

Figure 6.15: Set location of device

To determine the type of device, the DER will search the properties in the service

registry. If the device finds the device type, it will consult the DIS (Figure 6.9(c)).

The device information service will then return device details and all variables

the device could affect. If the device information service is unable to return a

value for the device, or the DER was unable to determine the type of the device,

the DER offers a service to allow a user to input the details, device type, variables

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 179

it affects, commands, etc. This form can be obtained by selecting any devices in

part Figure 6.16(a). In the Figure, there are no unknown items – all are known

Figure 6.16(b).

As this is a detailed form, which must be entered correctly, a user would not be

expected to complete it. It is envisioned that having the user enter details of

device and environmental variables would be a rare event as the remote device

database will be comprehensive and contain most household devices.

At this stage, room, device type and variables are known and this information is

placed in the internal representation, shown in Figure. 5.4. Figure 6.16(c) shows

the DER internal view with some devices added: two heaters, an air conditioner

and a thermometer. All devices are in the living room, and the only environmental

variable is room temperature. Although there are potentially many variables in a

room, to keep the table clear, only the variables used by devices are shown here.

Therefore, although room light is a valid variable, it would not be included until

a device was registered which affected this variable.

The DER representation adds devices to its internal view. Similarly, when a

device is removed from the gateway, the device is removed from the internal

representation and any locks the device may hold on environmental variables are

released.

The internal representation held by the DER component is of a hierarchical struc-

ture (see Figure 5.4). At the top level is the home. Within a home there are

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 180

(a)

(b)

(c)

Figure 6.16: DER servlet to show internal view

Rooms, and within rooms there are Devices and Environmental Variables.

Part of the DER component is the Device Location Information (DLI). This in-

formation can potentially play an important role for other services. For example,

if an entertainment service required a television in the kitchen, it could consult

the DLI and a device object would be returned which may be used. The DLI

and the DER work closely, and most of the work for determining location is done

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 181

through the DER. This is why the DLI and the DER are included in the same

service.

When the devices, real and virtual, were added to the framework, they were

found by the DER. The location of UPnP devices which did not implement the

location field did have to be entered manually. However, the remaining UPnP

devices and all X.10 devices were added successfully. Adding and removing of

devices is one task of the DER. The other role is to help avoid interactions.

6.5.4.1 Managing devices and locks

Along with the location of devices, the DER maintains a list of locks on devices

and variables. A user can check the lock of a device or variable by selecting the

item from the lists in Figure 6.16(c) (selecting a link in (a) or (b) will allow the

user to enter room or device details, if the DER has incorrectly identified the

device).

To set a lock, the DER uses the rules and locks detailed in section 5.2.2. There-

fore, when it receives the message from the manager to try and set the lock, it

tries. If it fails, it will return false to the manager. The manager will then try

using priorities. The message is resent to the DER and the DER will try applying

the locks with the new priority. If it succeeds, a value of true will be returned,

otherwise it will be false.

The same technique is applied when device state updates come through. However,

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 182

when the manager sends them, they are automatically sent with a priority high

enough to ensure the placing of locks is successful. As this is the state of the

device, the manager has no choice. These updates from devices generally happen

because of users interacting directly with the device. These commands must be

accepted, even if it will cause an interaction.

6.5.5 Priority service

This bundle is shown in Figure 6.9(g). The task for this service is to maintain a

list of priorities for all services in the gateway. The priority service can be called

by other services with a service ID as a parameter. The priority service will then

return the priority of the desired service.

When the service starts, all services in the gateway are gathered and assigned a

priority of ‘-1’. This means that no priority has been set; all are treated equally.

However, the exception to this is the FIM suite of bundles. They are all set to

‘0’ which is the highest, meaning they have the ability to override any decision.

A web page is provided to allow a user to set priorities, shown in Figure 6.17.

The servlet shows the current priority in Figure 6.17(a) and a selection of possible

priorities in Figure 6.17(b). The dropdown list is created at runtime. The list

runs from two to the total number of services plus two.

All five components were implemented as a series of OSGi bundles and installed

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 183

(a)

(b)

Figure 6.17: Service priority configuration servlet

onto the gateway. The manager could be turned on and off during testing. The

results from testing are included later in this chapter. To summarise, the flow of

information between the five bundles is displayed below.

6.5.6 Summary of the flow data

There are two scenarios when the FIM suite of modules is used: when a service

sends a command to a device, and when a device sends an update on its state.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 184

6.5.6.1 Flow of data when service sends to device

Figure 6.18 shows the order in which the components are called after a service

(S1) tries to send a command to a device (D2). The numbers in brackets in the

figure is the order of the flow of data.

First, the message is sent into the manager. The manager then routes the message

to the protocol parser. In this example, the message was of type UPnP, so the

manager does not have to try other parsers. The message is then sent to the

DER where the DER tries to set the locks. Before the DER can set the locks, it

must get the variables from the DIS. In turn, the device information service has

to query the device database.

S1

D1 D2

Proprietary
Protocol XYZ

Service
Interaction
Network
Protocol

Converters

UPnP

X10

Jini

Priority

Service

Service

Interaction

Manager

Device Location
Information

Device &

Environmental

Representation

Device
Information

Service
Device

Information

(1)
(2)

(3)

(4)

(5)

(6)

(7)

(8)

(10)

(11)

(9)

(12)

(13)

(14)

IBM OSGi gateway

Figure 6.18: Flow of information sent from service to device

The results are then sent back, in XML form, from the DIS to the DER. The DER

can then try to set the locks. In this instance, the setting of the locks fails. The

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 185

manager then gets the priority from the priority service. Obtaining the priority,

the message is then sent back into the DER. In this example, the priority was

able to get the lock set and a value of true is returned to the manager. The

manager then allows the message to be sent to the device, D2.

Although there seems a lot of work here to send one instruction, no optimisa-

tion techniques have been employed in this implementation. To determine the

performance of the manager, a test was carried out to turn on an X.10 lamp

with, and without the manager running. Without the manager, the lamp took

1.5 seconds. If the manager was used, this figure increased to 2.7 seconds. This

is the figure for the manager to determine the message, call the SQL database

(over the network) and process the results to authorise the instruction.

Optimisation can be applied to the manager. Messages results from previous calls

to the SQL database could be cached. Calls to the various protocol converters

could be avoided if the manager learns to recognise messages. These are simple

steps which could be applied to the manager. These will be discussed further in

Chapter 8.

As well as commands being sent from the service to the device, there may be

times where the device’s state has changed. If a device is able to notify listening

parties of its change in state, the manager should take advantage of this to keep

its internal model up to date.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 186

6.5.6.2 Flow of data when device sends update

Figure 6.19 shows the flow of data when a device sends a message for its change

in state. Like the previous figure, the numbers by the arrows represent the order

in which the data flows. Instead of the manager registering with the devices, it is

the protocol converter that registers to receive updates from its type of devices.

For example, the UPnP protocol converter would receive event notifications from

all UPnP devices. Implementing it in this way is more efficient. If the manager

did receive updates, it would have to send them to the SINPC anyway. This

is simply more efficient and further avoids the manager being aware of specific

protocols.

Proprietary
Protocol XYZ

Service
Interaction
Network
Protocol

Converters

UPnP

X10

Jini

Priority

Service

Device Location
Information

Device &

Environmental

Representation

Device
Information

Service
Device

Information

IBM OSGi gateway

OSGi

Service Registry D2

S1

Service

Interaction

Manager

(1) (4)

(5)

(6)

(7)

(2)

(3)

Figure 6.19: Flow of information sent by device update

On receiving a message, the SINPC translates the message into the appropriate

format for the manager. After the SINPC sends the message to the manager, the

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 187

manager simply forwards the message to the DER.

Before the DER can update the internal model, it must call the DIS to deter-

mine the variables this device and action will affect and how. The DIS returns

the appropriate values, and the DER is then able to update the internal model

accordingly.

At this stage the test-bed is complete. All devices are set up and running and all

services have been deployed. The FIM suite of bundles have been installed. Also,

the SQL database is running and has been populated with test data. However,

it is important to show that this has been implemented correctly and does work

as expected. Some testing is required to show this works.

6.6 Testing of the approach

Rather than testing to demonstrate that the approach avoids interactions, the

testing here is to show that the locks are placed and released correctly.

To show this, the HVAC service with a heater and thermometer was used. When

the manager was started, the DER searched for all devices. It found both the

thermometer and the heater. The DIS service was used to obtain information

about both devices. The information was successfully retrieved from the database

and the XML was returned to the DER.

The devices were now registered in the DER and both were unlocked. When the

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 188

HVAC service was triggered to start the heater, it sent an on command to the

heater device. This message was intercepted by the manager and processed. The

message was parsed by the SINPC UPnP module and was passed to the DER.

The DER then checked which variables this action would affect – in this instance

room temperature.

Both the device and room temperature variable were unlocked, therefore no in-

teraction would occur and the message was allowed to be forwarded to the device.

The DER placed the locks on the device and variables. The locked variable is

shown in Figure 6.20.

Figure 6.20: Locked room temperature variable

When the HVAC reaches the desired temperature, it turns off the device. The off

command follows the same path through the manager, this message is approved

and the lock on the device and the variable are released.

This test showed that the approach does work as expected.

CHAPTER 6. ARCHITECTURE OF THE TEST-BED 189

6.7 Summary

This chapter has discussed the implementation of the approach detailed in Chap-

ter 5. To implement the approach, a test-bed was required. The test-bed included

services, devices and an OSGi framework.

For the services to be usable, devices were made available. The array of devices

included real X.10 devices, as well as virtual UPnP and X.10 devices.

Both services and devices were brought together using the IBM OSGi implemen-

tation. After the basic test-bed had been tested, the suite of Service Interaction

Manager bundles was installed.

The test-bed with the feature interaction manager was tested and was found to

be reliable and stable. Testing found that the manager behaved as expected.

The next chapter shows how effective the manager is in avoiding interactions.

Chapter 7

Experimentation and Results

To show the effectiveness of the approach, experimentation using the test-bed

(described in Chapter 6) was carried out. A total of eleven scenarios was tested in

the test environment. Most of the scenarios are taken from Chapter 4; however,

these are only negative interactions. It is important to show that while the

approach avoids negative interactions, it does allow services and devices to work

together. The next section will list the eleven scenarios along with the results of

testing. The results are summarised at the end of this chapter.

7.1 The test cases

For testing, all the devices and services were used. The devices used were: four

input devices (thermometer, motion sensor, humidistat and carbon monoxide

190

CHAPTER 7. EXPERIMENTATION AND RESULTS 191

detector) and thirteen input devices (two heaters, an air conditioner, window,

blinds, fan, TV, VCR, camera, lamp, an alarm control panel, dehumidifier and

humidifier). For simplicity, all devices were placed in the same room, the living

room.

The services used were as follows:

• HSS:Alarm – Home Security Service – basic alarm feature

• HSS:AFH – Home Security Service – away from home feature

• PCS – Power Control Service

• HES – Home Entertainment Service

• HVAC – Heating, Ventilation, Air-Conditioning (Climate Control Service)

• HCS – Humidity Control Service

• CMSS – Carbon Monoxide Safety Service

These services and devices, along with their environmental variables, were reg-

istered on the gateway. The static model, similar to that used in Chapter 5,

is shown in Figure 7.1. Essentially, this is the internal representation the DER

builds, however the DER does not include the services in its view.

The representation includes all the devices and all the services. It can be seen

that the security service and carbon monoxide safety service have priorities set.

CHAPTER 7. EXPERIMENTATION AND RESULTS 192

S
er

$
i&

e
 (

a
y

er

!otion

Sen(or

*+ermo-

meter

.omm/nication(

2.SS3

-,

D
e$

i&
e

(
a

y
er

.
n

$
ir

o
n

m
en

t
(

a
y

er

4ir

.on5it6

!

!

7eater

!

!

48arm

.ontro8

9ane8

!

!

.amera

!

!

:.;

!

!

<in5o=

!

!!

Lam?

!

!

*:

!

!

!ovement

!

LiA+t

!

So/n5

!

B8in5

!

 *em?erat/re

!

7eater 2

!

!

Ean

!

!

!!

Entertainment

27ES3

-,
9o=er .ontro8

29.S3

-,
Sec/rity

27SS3

3
.8imate .ontro8

27:4.3

-,

!

7/mi5ity .ontro8

27.S3

-,

7/mi5i-

(tat
7/mi5i-

Hier

!

!

De+/mi

5iHier

!

!

 7/mi5ity

!

 .arJon monoKi5e

!

.arJon

mono-

Ki5e

(en(or

.arJon !onoKi5e SaHety

2.!SS3

4

Figure 7.1: The representation created by the DER at runtime

Through experimentation, it was found that a ‘first come, first served’ approach

was adequate for all but safety services. However, it must be noted that this does

depend on user preferences. Therefore, a user may wish to set all services to have

a priority.

For clarity, the diagrams used to explain each interaction will only include devices

being used for the particular scenario.

7.1.1 Scenario 1: HSS:AFH vs PCS

The negative interaction discussed in section 4.3.1 is between the security service

and the power control service.

The security service’s away from home feature turns appliances on to give the

impression that someone is at home. However, the power control service turns

CHAPTER 7. EXPERIMENTATION AND RESULTS 193

Se
rv

ic
e

La
ye

r
D

ev
ic

e
La

ye
r

En
vi

ro
nm

en
t L

ay
er

TV

S+

NS

S+

Lamp

S+

NS

Light

S+

Sound

S+

Scenario 1, from section 4.3.1

Security
(HSS:AFH feature)

2
Power Control

(PCS)

-1

Figure 7.2: Interaction avoided between HSS:AFH and PCS

appliances off to save energy.

Assuming the security service is running first, it has locked the TV and lamp with

NS, therefore no other service can access them. Consequently, when the power

control service tries to gain access to turn the devices off, its request is denied

(shown by the dashed lines in Figure 7.2). If, however, the power control service

accesses and locks the devices first, since the security service has a higher priority,

the power control service will be overridden by the security service. Therefore

the security service will be allowed access to both the lamp and the TV.

Without using the manager, the interaction did occur – the devices were turned

on by the away from home feature, and the power control service then turned

them off. However, by using the service interaction manager, the interaction was

CHAPTER 7. EXPERIMENTATION AND RESULTS 194

successfully avoided.

7.1.2 Scenario 2: HSS:Alarm vs HES

The second negative interaction is taken from section 4.3.2. The interaction

occurs between the security service alarm feature (HSS:Alarm) and the home

entertainment services (HES).

Scenario 2: from section 4.3.2

Se
rv

ic
e

La
ye

r

Motion
Sensor

D
ev

ic
e

La
ye

r
En

vi
ro

nm
en

t L
ay

er

Camera VCRAlarm
Control
Panel

NS

NS

NS

−

NS

Security
(HSS: Alarm feature)

2
Entertainment

(HES)

-1

−

Se
rv

ic
e

La
ye

r

Motion
Sensor

D
ev

ic
e

La
ye

r

Camera VCR

Movement

NS

−

NS

2
Entertainment

(HES)

-1

−

Movement
En

vi
ro

nm
en

t L
ay

er
Movement

NS NS

Alarm
Control
Panel

NS

NS

2Security
(HSS: Alarm feature)

(a) HES using VCR firstScenario 2: from section 4.3.2

Se
rv

ic
e

La
ye

r

Motion
Sensor

D
ev

ic
e

La
ye

r
En

vi
ro

nm
en

t L
ay

er

Camera VCRAlarm
Control
Panel

NS

NS

NS

−

NS

Security
(HSS: Alarm feature)

2
Entertainment

(HES)

-1

−

Se
rv

ic
e

La
ye

r

Motion
Sensor

D
ev

ic
e

La
ye

r

Camera VCR

Movement

NS

−

NS

2
Entertainment

(HES)

-1

−

Movement
En

vi
ro

nm
en

t L
ay

er
Movement

NS NS

Alarm
Control
Panel

NS

NS

2Security
(HSS: Alarm feature)

(b) HSS:Alarm using VCR first

Figure 7.3: Interaction between HSS:Alarm and HES

The home entertainment service is recording a TV program on the VCR. However,

the security service is triggered and wants to record pictures from the security

camera on the VCR. Although the VCR device has already been locked (NS) by

the home entertainment service (Figure 7.3(a)), due to the higher priority of the

CHAPTER 7. EXPERIMENTATION AND RESULTS 195

security alarm service, the home entertainment service has to give up control of

the VCR. The VCR can then be reassigned to the security service. Thus, the

picture of the burglar can be recorded on tape.

Suppose the HSS:Alarm is active first and the HES tries to record a programme.

Here, the HSS:Alarm feature has acquired the VCR and locked it with NS. The

home entertainment service tries to gain access, but it is refused as it has a

lower priority than the security service, this is shown in Figure 7.3(b). Thus this

scenario is successfully avoided.

Without using this approach, if the entertainment service was recording first,

the security alarm feature would be able to access the VCR device. However, if

the security service was recording first and the entertainment service then tried

to record a show, it would be able to gain access to the device and record its

programme. Clearly, it would be advantageous to record the intruder rather

than a television programme.

The results from experimentation for this scenario were as expected. The ap-

proach was successfully able to avoid this interaction.

7.1.3 Scenario 3: HSS:AFH vs HVAC

This negative interaction is from section 4.3.3. In this scenario, the away from

home feature of the security service has to follow a pattern to make it look as if

CHAPTER 7. EXPERIMENTATION AND RESULTS 196

the owners are home. This includes turning on lights and closing the blinds. The

away from home feature of the security service has turned a lamp on and closed

the blinds. However, the climate control service notes that the temperature is

dropping in the home and wants to increase the room temperature in the cheapest

way possible. This can be achieved by opening the blinds.

Scenario 3: from section 4.3.3

Se
rv

ic
e

La
ye

r
D

ev
ic

e
La

ye
r

En
vi

ro
nm

en
t L

ay
er

Movement

S+

Temperature

S-

Climate control
(HVAC)

-1

Therm-
ometer

Light

S+

Lamp

S+

NS

Blind

S-

NS

S+

Security
(HSS:AFH feature)

2

Figure 7.4: Interaction avoided between AFH and HVAC

If the blinds are opened, this violates the goal of the away from home feature.

However, the climate control tries to open the blinds. But since they are locked

(NS), it cannot get access. As the climate control has a priority lower than the

security service, it is unable to gain access. The blinds remain closed.

Testing found that this interaction was successfully avoided. If the away from

home service was not active, the climate control service could gain access and

CHAPTER 7. EXPERIMENTATION AND RESULTS 197

open the blinds. If this was the case and the away from home feature wanted

to close the blinds, it was able to as it had a higher priority. Again, through

priorities the negative interaction was avoided.

7.1.4 Scenario 4: HVAC vs HSS:Alarm

This negative interaction is from section 4.3.4, and is between the climate control

service and the security service alarm feature. The issue here is that when active,

the alarm feature interprets all movement as a potential intruder. The climate

control is set to cool the home. Realising it is cooler outside, the climate control

wants to open the window to allow cool air in. Clearly, this violates the alarm

feature by making the home insecure, further, the movement triggers the alarm.

This interaction was discussed in detail in section 5.4.2.

During testing, it was found that if the service interaction manager was not

active, this did cause an interaction. If the manager was active, the interaction

was successfully avoided.

7.1.5 Scenario 5: Within HVAC – Issue 1

This negative interaction is from section 4.3.6.1. The problem here is that the

climate control service has been configured incorrectly and can potentially allow

both the air conditioner and heater on in the same room simultaneously. Clearly,

CHAPTER 7. EXPERIMENTATION AND RESULTS 198

this is not efficient as while one device heats, the other cools.

Se
rv

ic
e

La
ye

r

Thermo-
meter

D
ev

ic
e

La
ye

r
En

vi
ro

nm
en

t L
ay

er

Air-ConHeater

NS

S+

NS

Temperature

S−

S+

Climate control
(HVAC)

-1

Figure 7.5: Interaction within HVAC

Figure 7.5 shows that the climate control service has activated the heater first.

Since the heater increases room temperature, the variable is locked with S+.

The climate control then tries to turn on the air conditioner. Since the air

conditioner device is not in use it gains access. However, before it can be turned

on, it must access the environmental variable. For the air conditioner this is room

temperature. Since this device wants to lower room temperature, it needs to lock

temperature with S–. The room temperature variable is already locked by the

heater with S+. As S– and S+ are not compatible, the air conditioner is unable

to gain access and the interaction is avoided.

During testing it was found that this interaction was an issue. If both the heater

CHAPTER 7. EXPERIMENTATION AND RESULTS 199

and air conditioner were active, the room temperature remained constant, be-

cause as one heated, the other cooled. This meant both devices would be active

indefinitely. When the service interaction manager was active, the interaction

was successfully detected and avoided.

7.1.6 Scenario 6: Within HVAC – Issue 2

This is a negative interaction from section 4.3.6.2. This interaction is similar to

the interaction above, where the air conditioner tries to turn on but cannot be-

cause the heater is in use. However, depending on the settings, it is possible that

when the heater stops, the variables are released. This allows the air conditioner

to start and lower the room temperature.

If the maximum and minimum temperature settings have been entered incor-

rectly, then it is possible that the air conditioner lowers the room temperature to

one below the minimum heating temperature. When the air conditioner stops,

the heater starts, and the loop starts again.

Unfortunately, this is one type of interaction which this approach cannot detect.

This is because after the heater, or air conditioner, has completed its task, it

releases locks on all its variables. These variables are then free to be locked by

any other device. This is one limitation of the approach which will be discussed

further in Chapter 8.

CHAPTER 7. EXPERIMENTATION AND RESULTS 200

7.1.7 Scenario 7: within HSS

This negative interaction is from section 4.3.7, and is an interaction within the

home security service. This occurs when the alarm feature is monitoring the

home for intruders and the away from home feature wants to lower the blinds.

When the blinds are lowered this creates movement triggering the alarm.

Se
rv

ic
e

La
ye

r

Temperature

D
ev

ic
e

La
ye

r
En

vi
ro

nm
en

t L
ay

er

Motion
Sensor

Movement

Alarm
Control
Panel

NS

NS

NSS-

Blinds

NS

S+S-

Security
(HSS)

2

Figure 7.6: Interaction within HSS

However, this interaction can be avoided using the approach. In this example,

the alarm is armed and the movement variable is locked with NS, which means

it cannot be changed. When the away from home feature tries to lower the

blinds, it is able to get access to the blind device. However, this device requires

two environmental variables: room temperature (as lowered blinds can cool the

home) and the movement (as the blinds lower this causes movement).

CHAPTER 7. EXPERIMENTATION AND RESULTS 201

Figure 7.6 shows the device is able to get access to the room temperature variable

and sets it with S–. However, when the device tries to set the movement variable

with S+, it is rejected as S+ and NS are not compatible. Therefore, the blinds

cannot be lowered and the interaction is avoided. Although the security service

has a high priority, it cannot override itself. If it had to lower the blinds, it would

have had to explicitly remove the lock from the movement variable (by turning

the alarm off). The blinds would then be free to be lowered.

During testing, the results were consistent with the theory. If the service in-

teraction manager was disabled, when the blinds were lowered this caused the

alarm to be triggered. However, if the service interaction manager was active,

the interaction was avoided.

7.1.8 Scenario 8: within HVAC

The first seven scenarios have shown how the approach is able to avoid negative

interactions. Just as important, the approach must allow devices to cooperate

and work together to achieve a common goal.

This example shows how two heaters can operate together to heat the room

quickly. Assume the HVAC service has to heat the home as quickly as possible.

When the service starts it finds all heating devices. The service finds two heaters.

If the service wants to control them, access must be granted. Since no other

CHAPTER 7. EXPERIMENTATION AND RESULTS 202

Se
rv

ic
e

La
ye

r

Thermo-
meter

D
ev

ic
e

La
ye

r
En

vi
ro

nm
en

t L
ay

er

Heater

S+

NS

Temperature

S+

Heater 2

S+

NS

Climate Control
(HVAC)

-1

Figure 7.7: Interaction within HVAC

service is using the devices, access is granted. As the heater heats a room, the

heater has to lock the environment variable, temperature, with S+. The first

heater is able to lock with this value successfully. When the second heater tries

to lock with S+, the variable is already in use. However, this is allowed because

its value of S+ is compatible with the locked value of S+. As no interactions

were detected both devices are able to operate, shown in Figure 7.7.

This was tried within the test-bed and worked successfully. The result was the

same when the feature interaction manager was enabled and when it was disabled.

This is one, simple example which shows that devices can work together.

CHAPTER 7. EXPERIMENTATION AND RESULTS 203

7.1.9 Scenario 9: HES and HVAC

A second interaction which shows the positive interworking of devices is between

the home entertainment service and the climate control service.

Assume the owner is at home watching a movie through the entertainment service.

As it is a hot day, the climate control is using the air conditioner to keep the

home cool.

As the owner is watching the television, the glare on the screen is irritating, so

the entertainment service tries to close the blinds.

Se
rv

ic
e

La
ye

r
D

ev
ic

e
La

ye
r

En
vi

ro
nm

en
t L

ay
er

Therm-
ometerBlind

S-

NS

S+

Air cond-
itoner

S-

NS

TV

S+

NS

S±

Temperature

S-

Movement

S+

Sound

S+

Light

S±

Climate control
(HVAC)

-1Entertainment
(HES)

-1

Figure 7.8: Interaction between HES and HVAC

As Figure 7.8 shows, the climate control service is using the air conditioner. Since

the air conditioner is active, it is cooling the room and has locked the temperature

variable with S–.

CHAPTER 7. EXPERIMENTATION AND RESULTS 204

The entertainment service is using the television which affects light and sound.

The entertainment service wants to close the blind. Access is granted to the

device as it is not in use. When the blind closes, it causes movement, further it

will help cool the room. As the movement variable is not in use, it is able to lock

it with S+. The temperature variable is in use. However, as the blinds cool, the

S– should be used. Since the temperature variable is already locked S–, this lock

is allowed as S– and S– are compatible.

Therefore, the blind is allowed to close. This means that the air conditioner

is cooling the room, and the blinds are helping keep the room cool as well as

stopping the sunlight glare on the television screen.

This scenario was tested in the test-bed with the feature interaction manager,

where it succeeded. However, it is worth noting that it worked in the same way

when the manager was disabled.

Although this scenario worked with and without the manager, it shows that the

manager is able to avoid negative interactions while allowing positive interactions

to happen unhindered.

7.1.10 Scenario 10: CMSS vs HSS

The Carbon Monoxide Safety Service (CMSS) monitors carbon monoxide levels

in the home. If these reach a dangerous level, the service will open windows to

CHAPTER 7. EXPERIMENTATION AND RESULTS 205

let fresh air in and alert the owner (perhaps by sending a message or ringing a

bell). An interaction could occur between this service and the security service.

If the CMSS tries to open a window while the security service is armed, the

security service may try to close the window, since the aim of the security service

is to keep the home secure. Carbon monoxide fumes should not be kept in the

home and the window should be allowed to stay open.

The approach presented here does avoid this interaction. The security service has

been set with a priority of 2 and the CMSS has been set with priority 3. Assume

the security service is armed and the CMSS is monitoring the home. Suppose

levels of carbon monoxide exceed a safe limit, the CMSS must alert the ower and

open a window.

S
er

$
i&

e
(

a
y

er

!otion

Sen(or

*ar,on

!ono-

.i/e

(en(or

+
e$

i&
e

(
a

y
er

E
n

$
ir

o
n

m
en

t
(

a
y

er

01arm

*ontro1

3ane1

4S

4S

 *ar,on !ono.i/e

!

!ovement

S7

*ar,on !ono.i/e Sa8ety

:*!SS;

1
Sec=rity

:>SS;

2

?em@erat=re

S7

Ain/oB

4S

S7S!

Figure 7.9: Interaction between CMSS and HSS

Since there are no services using the window, the CMSS is able to get access to

CHAPTER 7. EXPERIMENTATION AND RESULTS 206

it. However, to open the window the CMSS has to get access to the movement

variable, which has been locked by the security service. However, since the CMSS

has a higher priority than security service, CMSS is able to get access to the

variable, shown Figure 7.9.

The window can be opened, and will stay open until the CMSS closes it. The

security service may try to close the window, but since it has a lower priority,

access will be denied.

An argument can be made that the window should stay closed if the alarm is

armed. This is because there may be no one in the home and the home should

remain secure. However, what if the owner has pets inside? If the owner did want

the home to remain secure, they could adjust the priorities and ensure security

has a higher priority than CMSS. If this were the case the window would not be

opened (keeping the home secure), however other functions of the service would

still work, like alerting the owner to the problem.

A similar interaction may occur between the climate control service and CMSS.

The climate control service may be trying to heat the home (using heaters). By

opening a window this would let cold air in. The climate control service may

then try to close the window, which would be undesirable. Whereas the security

service is likely to be active when the owners are away, there is a more likely

chance that the climate control service would be active when the owners are in

the home.

CHAPTER 7. EXPERIMENTATION AND RESULTS 207

The conflict is the same – the CMSS wants to open the window, whereas the

other services (climate control or security) want to close it.

7.1.11 Scenario 11: HCS and HVAC

The Humidity Control Service (HCS) aims to keep the humidity levels of a room

(or indeed a home) at a comfortable level. The service uses three devices: a

humidistat to ascertain humidity in the room, a dehumidifier and a humidifier.

In previous examples the heater device has only affected room temperature, how-

ever it could be argued that the heater affects humidity too. In this particular

scenario, let us assume that the heater’s side effect on humidity should be cap-

tured in the model. Therefore, as well as affecting the room temperature variable,

the heater should be shown to affect the humidity variable.

In this case, an interaction would occur between the climate control service and

the humidity control service. If the climate control service is using a heater, it will

heat a room as well as cause humidity to decrease. If the humidity control service

is also active it may be wanting to increase humidity. Clearly there is potentially

an issue between the heater and humidifier through the humidity variable.

Technically there is an interaction through the humidity variable. However, it

is likely that a home owner may want both the heater and humidifier on at the

same time, in the middle of winter for example.

CHAPTER 7. EXPERIMENTATION AND RESULTS 208

S
er

v
ic

e
L

a
y

er

 "umidity

D
ev

ic
e

L
a

y
er

E
n

v
ir

o
n

m
en

t
L

a
y

er

"umidi)ier

S-

Temperature

"umidity

Sensor

4e-

6umidi)ier

-

S7

"eater

S-

S-

NS - NS

S-

Climate Control

;"<AC>

-1
"umidity Control

;"CS>

-1

Figure 7.10: Interaction between HCS and HVAC

Figure 7.10 shows what would happen if the climate control service was active

first and heating the room. The climate control service would have access to the

heater which would cause room temperature to increase and the humidity in the

room to decrease.

If the humidity in the room drops below a certain level, the HCS will try to in-

crease it by turning the humidifier on. The HCS will gain access to the humidifier

device, but when it tries to get access to the humidity variable and lock it with

S+, access will be denied as the variable is already locked with S-.

In this instance the humidifier would not be able to turn on. This would not

be the expected outcome for the user as they want both devices on at the same

time. This example opens the discussion on how side effects should be treated.

If the heater’s side effect on humidity was ignored (as it currently is in this

CHAPTER 7. EXPERIMENTATION AND RESULTS 209

approach), the interaction would not be detected. However, although this is the

correct result, we are getting it because the model is incomplete. However if it is

included we get a false positive. Therefore, side effects can not be treated in the

same way as primary effects. This issue will be discussed further in Chapter 8.

7.2 Summary of results

The results from section 7.1 have been summarised in Table 7.1. As the table

shows, the approach was successful. However, the approach was not able to avoid

the looping interaction.

Scenario -/+ Interaction Interaction description Avoided by

approach

Scenario 1 –ve Security (Away from home feature) with Power control service
√

Scenario 2 –ve Security (Alarm feature) with Entertainment service
√

Scenario 3 –ve Security (Away from home feature) with Climate control service
√

Scenario 4 –ve Climate control service with Security (Alarm feature)
√

Scenario 5 –ve Within HVAC (issue 1): wasting energy
√

Scenario 6 –ve Within HVAC (issue 2): Looping ×

Scenario 7 –ve Within Security (between away from home and alarm features)
√

Scenario 8 +ve Within HVAC
√

Scenario 9 +ve Entertainment service and Climate control
√

Scenario 10 –ve Carbon monoxide safety service and security
√

Scenario 11 –ve Humidity control and Climate control ×

Table 7.1: Summary of results

Table 7.2 shows the types of interactions which the approach avoids. Kolberg

et al. identified four types of interaction, so looping has been included here

for completeness. The approach is not able to handle the looping interaction

CHAPTER 7. EXPERIMENTATION AND RESULTS 210

type because the locked variables are released, and are then free to be locked by

another device. The approach does not check the new lock with the previous

lock. Indeed, it may be valid for a device which previously held the lock to hold

the lock again.

Interaction type Handled by approach

Multiple action interaction (MAI)
√

Sequential action interaction (SAI)
√

Looping (Special case of SAI) ×

Shared trigger interaction (STI)
√

Missed trigger interaction (MTI)
√

Table 7.2: Interaction types handled by the approach

7.3 Support for multiple rooms

Although all testing was carried out in one room in the home, some testing was

done by placing different devices throughout the home.

For these tests, it was assumed that rooms would not affect one another. It

is difficult to ascertain how rooms would affect one another because this will

depend on the type of doors, window types and the type of walls. This issue will

be discussed further in the next chapter.

However, to show that the approach did work for different rooms, a heater and an

CHAPTER 7. EXPERIMENTATION AND RESULTS 211

air conditioner were placed in separate rooms. When the command was issued,

they both started. The heater was able to lock the room temperature variable

in its room, and similarly the air conditioner was able to lock the temperature

variable in its room. Since rooms do not have an impact on one another, there

was no problem in setting the locks.

Additional tests were carried out using the alarm service and setting it to protect

all rooms in the home. When the alarm was armed, no device which created

movement could be turned on as the movement variables in each room was locked.

These tests were extended to alarm certain rooms. In a room which was not

alarmed, devices which created movement were allowed to operate.

7.4 Summary

This chapter has shown how the approach was used to avoid negative interactions

as depicted in Chapter 4. Experimentation also showed how positive interactions

were allowed by the approach.

If the service interaction manager were not activated, negative interactions could

happen. However, when the manager was active, all but two of the interactions

was detected successfully and avoided. Scenario 11 was the only false positive to

be generated by the manager. It suggests that we need to differentiate between

a primary effect and side (secondary) effect.

CHAPTER 7. EXPERIMENTATION AND RESULTS 212

Overall, the implementation and testing of this approach was a success, the results

in Table 7.1 show this. Furthermore, the four types of interaction defined by

Kolberg et al. are avoided by the approach. However, the approach was not able

to detect looping interactions.

There are some limitations of the approach and some further work which could

be carried out. These issues will be discussed in the next chapter.

Chapter 8

Conclusions and Further Work

This thesis has presented a novel approach to the service interaction problem

in home networks. In this chapter the achievements of the presented approach

will be discussed, followed by how well it met the aims stated in Chapter 1.

Afterwards, limitations of the approach will be discussed and how they can be

resolved by further work.

8.1 Achievements of the approach

This thesis presented a novel approach to the service interaction problem in the

home. There are a small number of approaches available for service interaction

problem in the home domain. However all of these are off-line. This means that

they are unable to accommodate the rapid change in the home with devices and

213

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 214

services leaving and joining the network. They are also unable to cope with a

multi-vendor environment. Off-line approaches are not suitable for this kind of

environment. Therefore, an on-line approach is the only viable approach for the

home domain.

In the telephony domain, where most feature interaction work has been carried

out, on-line approaches are relatively rare. This thesis has presented a new on-line

approach for the home network.

The approach is device centric as it focuses on the device and its surrounding

environment. This differs from all previous feature interaction approaches which

focus on the service.

The environment is a factor which has not been taken into consideration in feature

interaction work before. The main reason for this is that there is no obvious

environment (like there is in a home) in the telephony domain. However looking

at the environment in a different way may prove useful in telephony.

The use of the environment is crucial in the home domain for detecting interac-

tions as some occur through it. Furthermore, interactions also occur at the device

level too. This justified including both device and environment in this approach.

By combining the flexibility of on-line approaches and the extra information

which is obtained by including the environment, a successful solution to the

service interaction problem in home networks was developed. The approach has

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 215

been shown to avoid negative interactions while allowing positive interactions at

runtime.

The approach achieves this by using a service interaction manager. The man-

ager keeps an internal representation of the home with all devices and services.

The internal representation is automatically created at runtime by the manager

making use of a remote device database. This means there is very little user

intervention is required.

One of the main problems with using an on-line approach is scalability. This

may be an issue in telephony where systems are extremely large, complex and

distributed; in the home it is not such a problem. In the home all devices and

services are centralised by using the residential gateway. Also, the number of

services and devices in a home is limited.

8.2 Strengths of the approach

The key strength of this approach is that it is online and uses a manager which

requires no warm-up period. This means it is ready to be deployed directly into

the home. The manager does not need to know of the services in the home.

Further, the manager is able to determine the location of many of the devices in

the home. For unrecognised devices, an straightforward web interface is available

to input details.

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 216

Other strengths of the approach are covered by the requirements (which were

met) listed in section 1.2. These are:

1. Avoid negative interactions in a home network.

The approach successfully avoided negative interactions in the home. This

is achieved by controlling access to devices and the environment. Through

preliminary experimentation it was found that a way of prioritising services

was required. Therefore, priorities were introduced. This allowed safety

services to override less important services.

2. Consider the environment

The environment was successfully used to avoid interactions, by character-

ising it through variables. These variables included temperature, lighting

and movement. Access to the variables was controlled by using locks. It

was found that using either locked or unlocked was not adequate as this did

not allow devices or services to work together. Therefore, a refined locking

technique was developed which allowed devices with the same goal to lock

with the same lock.

3. Manage new devices and services joining the home network as

well as existing devices and services leaving

The approach presented is able to listen for devices joining and leaving. If

a device joins the network the approach is able to automatically determine

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 217

the device type and then the variables it affects using the remote device

database. This worked as expected. However, there is the issue of who

hosts the device and keeps it up to date; this is discussed below.

4. Handle services from multiple service providers

Since the approach concentrates on the device, rather than the service, this

aim has been achieved. By using the device and its surrounding environ-

ment, this has meant there has been no need to analyse services.

5. Limited user intervention

Since the approach presented operates automatically, then there is very

little user intervention required. If the manager cannot determine the type

of device, a user may have to tell the manager the type. However, if a device

is added to the framework, it will need to give enough of a description of

itself so other services can search and find it.

As well as satisfying the aims set out in Chapter 1, the approach also avoids

almost all the types of interactions identified by Kolberg et al.

After experimentation, a second use was found for the manager. The manager

can be used by services to find a device to achieve a particular aim. For example,

if a service has to cool a room, then the service can query the manager to find

devices which affect room temperature. This can also be used if a service requires

a device in a particular room. Although these possibilities were not explored fully

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 218

in this work, the worked detailed in [118] does use the manager to find the required

devices.

8.3 Limitations of the approach

Although the approach presented here has many advantages and does go some

way to solving the service interaction in the home, it does have some limitations.

Device database

One of the main limitations of this approach is the device database. There is

an issue of who keeps this database up to date and who populates it. If this

approach is to work it is vital that this database is kept consistent. If devices are

entered incorrectly into the database then the manager will not operate correctly.

Devices must be in the framework

The approach assumes that all devices and services are registered within the

residential gateway. Although this will be the case for most devices, there is a

possibility of device-to-device control and control which bypasses the gateway.

Although there are techniques available to solve this issue in IP based networks

(discussed in the further work section), there is no known workaround for X.10.

This means interactions can occur if devices (or services on devices) start directly

controlling other devices.

Issue of looping interactions

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 219

Table 7.2 shows that the approach is able to avoid most types of interactions,

except looping. Due to the way in which this approach works, looping is one type

which can not be detected. This is because the locks are released on a device

(or the environment). When these locks are released, the device is free to be

used by another service. For example, where there is a loop with climate control

service: when the heater turns off, then the air conditioner comes on, then when

the air conditioner is turned off the heater comes back on. This is an endless

loop. However, since the room temperature variable is released when either the

heater or air conditioner is turned off, there is no restriction on who can lock it

next. In this case, since the interaction is within the climate control service, this

interaction should be detected when the service is designed.

8.4 Further work

The approach presented does help ease the service interaction problem in the

home. However, there is further work that could be carried out.

Side effects of devices

In the context of this work, a side effect from a device can be defined as any

effect other than an intended primary effect. Scenario 11 in section section 7.1.11

highlights the shortcomings of not including side effects in this approach.

If side effects are to be included, it is not enough simply treating them in the

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 220

same way as primary effects. This can result in the approach producing false

negatives. Therefore, further work is required to investigate how to best capture

side effects. Preliminary work has been carried out to determine how they can

be handled. One approach is to include a flag called SE (side effect) which is

only used for side effects. This flag is placed on an environment variable by a

device and can have the value: SE+ (when the side effect increases), SE– (when

the side effect decreases or SE± (when there is change, but it is unknown). Like

the locks, SE must be placed on a variable before the device is allowed to run.

The SE flag would not lock an environment variable, rather it would be used

for information. A device can place the SE flag on any environment variable,

provided the variable is not already locked with NS. If a variable is locked with

S+, S– or S±, SE can be added to the variable.

S
er

v
ic

e
L

a
y

er

 Humidity

D
ev

ic
e

L
a

y
er

E
n

v
ir

o
n

m
en

t
L

a
y

er

Temperature

Humidity

Sensor

 SE3 4 --

Heater

S6

S6

SE1

7S

SE-

Figure 8.1: Heater’s relationship with the environment when active

Using a heater as an example, when it is heating a room it will be increasing

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 221

room temperature (primary effect), however will also be reducing humidity (side

effect). Therefore, when the heater is switched on, it will lock room temperature

with S+ (as it wants to increase temperature) and will place SE– on the humidity

variable, as a side effect of the heater running is reduction in humidity. This is

shown in Figure 8.1.

This is a more accurate and complete view of the device and how it affects its

environment. In the previous chapter, scenario 11 (section 7.1.11) resulted in a

false positive. Using the SE flag, the approach produces the desired outcome.

Figure 8.2 shows the updated view.

S
er

v
ic

e
L

a
y

er

 Humidity

D
ev

ic
e

L
a

y
er

E
n

v
ir

o
n

m
en

t
L

a
y

er

Humidifier

S+

Temperature

Humidity

Sensor

De-

humidifier

-

 SE– / S+

Heater

S+

S+

SE–

NS - NS

SE-

Climate Control Service

-1
Humidity Control

-1

Figure 8.2: Interaction between climate control service and humidity service

In scenario 11, when the heater was active it locked both the temperature and

humidity variables (Figure 7.10). Therefore, the humidifier was unable to turn

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 222

on because it could not get access to the humidity environment variable. Now,

with the introduction of SE, the heater locks the temperature variable, but sets

the SE flag on the humidity variable to show that the heater is affecting it. When

the humidifier is turned on, it is able to get access to the variable and lock it with

S+.

Using the SE flag, if a previous scenario is taken, the approach still works. Con-

sider the interaction between climate control and the security service, where the

climate control wants to open a window while the alarm is armed.

This interaction is described in scenario 4 (section 7.1.4). Rather than having

movement as a primary effect of window, it could be considered to be a side

effect. Figure 8.3 show the updated view – the window having a primary effect of

changing room temperature and a side effect which affects movement. Since the

movement variable is locked with NS, the window device is unable to get access

to it and place the SE flag on it, thus avoiding the interaction.

Initial investigations into using the SE flag look promising, however further work

and implementation would have to be carried out before its value can be properly

seen. Also, deciding what the primary effect of a device is and what the side effect

is. Depending on the circumstance, a side effect of a device may be considered

by some users to be primary effect. This issue requires further work.

Advanced relationships

Another issue to be investigated is to determine whether there are relations be-

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 223

S
er

v
ic

e
L

a
y

er

 Movement

D
ev

ic
e

L
a

y
er

E
n

v
ir

o
n

m
en

t
L

a
y

er

Alarm

Control

Panel

NS

Temperature

Motion

Sensor

 NS

Window

S-

SE±

NS NS

SE±

Climate Control Service

-1
Security

2

S-

Figure 8.3: Interaction between climate control and security using SE

tween environment variables. Currently, this is not considered in this approach.

However, rather than looking at the relationship between variables, a more com-

prehensive study of how devices affect their environment and the inclusion of side

effects may be of more use.

Consider the humidity variable: when room temperature increases humidity may

change. The change in humidity will depend on how the room temperature is

being increased. If room temperature is being increased by a heater, humidity

will decrease. If room temperature is being increased by the outside air, humidity

may increase. Therefore, it is not the temperature variable which is causing the

change in humidity, it is the device which is causing both room temperature and

humidity to change.

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 224

Further work to investigate whether this is the case for all variables, or whether

indeed there are some relationships between variables would be valuable.

As well as investigating a further relationship between environmental variables, it

may also be worth investigating the relationship between rooms. This approach

assumes there is no relationship between rooms and each room is a separate

entity. If a relationship was created between rooms it could potentially be hard

to define. Factors such as thickness of walls or whether the door was open or

closed would have to be included. Whether including this to build a complete

relationship between rooms would add extra value to the approach is unknown.

This is also an issue which is worthy of further research.

Device database

Currently there is no formal documentation detailing how a device should appear

in the device database. A formal specification should be created to define a device

and state how one decides how a device affects the environment. For this work

we have not found it necessary. However, if this approach were to be deployed in

reality then this would need to be carried out.

There is also the issue of who maintains the device database. It is not practical

for all homes to have their own database with all devices, as this would be too

large. Therefore, a service provider may consider hosting the database.

The database would also need to be kept up to date, so when a new device is

released onto the market then the new details are entered into the database. It

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 225

could be the manufacturer of the device who does this or another organisation

could take responsibility. Keeping the device database is similar to web services

which provide users with music CD track listings.

Granularity of device

Another area in which this approach may benefit from extra research is granu-

larity of device control. The approach detailed here focuses on the action of the

device, whether it is on or off. Nakamura et al. argue that this is insufficient and

more detail should be included. Therefore, rather than simply on or off, it should

be passed a parameter value. For example, a heater may be turned on, but tem-

perature set to twenty five degrees celsius. Through experimentation carried out

in this project, it was found that this level of detail was not important. However,

it is worth further attention. If the approach was to be improved it should be

included as part of the locking. Rather than simply lock with S+, perhaps lock

with Shared and a value. More work would need to be carried out to determine

whether this would be useful. However, this may affect the adaptability of the

approach as it becomes specific to one environmental variable. For example, tem-

perature, sound, etc., would each require their specialised unit (degrees celsius,

decibels, etc.). This makes it quite specific, rather than having a generic variable

object.

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 226

8.5 How this approach compares to others for

the home domain

Although the approach presented in this thesis does have some limitations and

weaknesses, in comparison to other approaches for service interaction in home

networks, it does help to provide a good and flexible solution to the problem.

Wu and Schulzrinne [14] present a language called LESS which can be used to

avoid interactions at the service creation stage. Their studies only included mul-

timedia services, not the general home services. While this is useful for avoiding

intra-service interactions, it can not be used to detect interactions between inde-

pendent services.

An approach presented by Metzger [23] is an off-line approach which can be used

to detect interactions in building control. This approach uses the environment to

detect interactions, however it is an off-line approach, so it does not lend itself to

an environment which changes (like the home, for example). The approach was

later used for feature interaction detection in [92], an environment which may

not change once deployed.

Other than the approach presented in this thesis, the only other approach to be

specifically aimed at the service interaction problem in the home was by Naka-

mura [22]. Both the approach here and Nakamura’s approach detect interactions

at the service level and environment level. The approach in this thesis focuses on

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 227

the interactions at the device and environment level.

Although Nakamura’s approach can be used to detect interactions between dif-

ferent vendors, the services have to be known beforehand. Further, detailed

information about the service composition must be known. The approach pre-

sented in this thesis does not require any special knowledge of services to detect

interactions. For Nakamura’s approach to work, not only do the services have to

be known, but also their configuration as this may affect the devices they use.

Different homes will have different devices, services and configurations. Testing

all possible permutations on a home by home basis would not be practical. Fur-

ther, when any services change, or a new device is introduced, testing would have

to be carried out again.

In contrast, the approach presented in this thesis is able to gather the relevant

information at runtime about devices and services. A user does have to provide

some input to begin with, however this is minimal. With device information, the

manager can automatically detect and avoid negative interactions. If a service or

device does change, the manager automatically handles the approach and is ready

to avoid interactions with these changes. Off-line approaches can not support this

functionality.

Nakamura briefly discusses the possibility of converting their approach into an

online approach. However, their approach is service centric and requires detailed

information of all services. If this information is made available, it is possible

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 228

their approach may work. However, it is unlikely service vendors will disclose

detailed descriptions of their services and methods within the services. However,

it is not enough detecting interactions, the interaction must be handled. This is

not discussed in their work.

The issue of looping interactions is not discussed by Nakarmura. Like the ap-

proach presented here, Nakamura looks at messages from devices to services inde-

pendently of one another. Since Nakamura’s approach does not look at previous

instructions from services to devices, they will not be able to detect looping

interactions.

Although Nakamura’s approach is able to detect interactions, the detection is

carried out off-line. This has the major drawback that testing needs to be carried

out everytime a new service, or even device is added to the network. Although

homes may have similar devices and services, the configurations may vary con-

siderably. The approach presented in this thesis is an online manager. It used at

runtime and is independent of services meaning it will work with different service

vendors. Services require no knowledge of the manager for this approach to work.

Also, the fact that the manager can change (by having new protocol converters

added) does mean it can extended as time progresses and protocols change.

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 229

8.6 Summary

This thesis has presented a new approach to the service interaction problem in

home networking. The approach is novel in that it uses the environment to avoid

negative interactions. Inspiration has been drawn from the operating systems

domain to develop a locking technique. With the adapted locking technique, ac-

cess to devices and environmental variables is controlled. By carefully controlling

access to devices and the environment, negative interactions are avoided while

positive interactions are allowed.

Using a testbed, the approach has been shown to work. The approach has success-

fully fulfilled the aims laid out at the start of the thesis. Although the approach

has worked well, there are some improvements which could be made to make this

new approach even stronger.

References

[1] M. Kolberg, E. Magill, and M. Wilson. Compatibility issues between ser-

vices supporting networked appliances. IEEE Communications Magazine,

41(11), 2003.

[2] LetsAutomate.co.uk. http://www.letsautomate.co.uk/, viewed:

18/05/2004.

[3] OSGi: The Open Services Gateway Initiative. http://www.osgi.org.

[4] Th. Zahariadis and K. Pramataris. Multimedia home networks: standards

and interfaces. Computer Standards & Interfaces, 24(5):425, 2002.

[5] K. Chen and L. Gong. Programming Open Service Gateways with Java

Embedded Server(TM) Technology. Aiddison-Wesley, 2002.

[6] D. Marples and P. Kriens. The open services gateway initiative: An in-

troductory overview. IEEE Communications Magazine, 39(12), December

2001.

230

REFERENCES 231

[7] e2 Home. http://www.e2-home.com, viewed: 12/08/2004.

[8] OnStar at Home Pilot. http://www.internethomealliance.com-

/pilots projects/family/onstar at home/, viewed: 05/07/2004.

[9] TAHI Connected Home. http://www.theapplicationhome.com,

viewed: 09/08/2004.

[10] X10 Technology and Resource Forum. http://www.x10.org.

[11] IBM Home Director. http://www.homedirector.com/,

viewed: 12/08/2004.

[12] E. J. Cameron, N. Griffeth, Y.-J. Lin, M. E. Nilson, W. Shnure, and

H. Velthuijsen. Towards a Feature Interaction Benchmark for IN and Be-

yond. IEEE Communications Magazine, 31(3):64–69, March 1993.

[13] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Feature in-

teraction: A critical review and considered forecast. Computer Networks:

The International Journal of Computer and Telecommunications Network-

ing, 41(1):115–141, 2003.

[14] X. Wu and H. Schulzrinne. Feature interactions in internet telephony end

systems. Department of Computer Science, University of Columbia Tech-

nical Report, January 2004.

REFERENCES 232

[15] H. Velthuijsen, N. Griffeth, and Y.-J. Lin, editors. International Workshop

on Feature Interactions in Telecommunications Software Systems, Decem-

ber 1992.

[16] L. G. Bouma and H. Velthuijsen, editors. Feature Interactions in Telecom-

munications Systems. IOS Press (Amsterdam), May 1994.

[17] K. E. Cheng and T. Ohta, editors. Feature Interactions in Telecommuni-

cations Systems III. IOS Press (Amsterdam), October 1995.

[18] P. Dini, R. Boutaba, and L. Logrippo, editors. Feature Interactions in

Telecommunication Networks IV. IOS Press (Amsterdam), June 1997.

[19] K. Kimbler and L. G. Bouma, editors. Feature Interactions in Telecom-

munications and Software Systems V. IOS Press (Amsterdam), September

1998.

[20] M. Calder and E. Magill, editors. Feature Interactions in Telecommunica-

tions and Software Systems VI. IOS Press (Amsterdam), May 2000.

[21] D. Amyot and L. Logrippo, editors. Feature Interactions in Telecommuni-

cations and Software Systems VII. IOS Press (Amsterdam), June 2003.

[22] M. Nakamura, H. Igaki, and K. Matsumoto. Feature interactions in inte-

grated services of networked home appliances. In [68], pages 236–251, June

2005.

REFERENCES 233

[23] A. Metzger and C. Webel. Feature interaction detection in building control

systems by means of a formal product model. In [21], pages 105–122, June

2003.

[24] K. Wacks. Home systems standards: Achievements and challenges. IEEE

Communications Magazine, 40(4), 2002.

[25] P.E. Ross. Managing care through the air. IEEE Spectrum Magazine (INT),

page 14, 2004.

[26] T. Tamura, T. Togawa, M. Ogawa, and M. Yoda. Fully automated health

monitoring system in the home. Medical Engineering and Physics, page

573, 1998.

[27] P. Dinsdale. Broad band. The Guardian, 7th, May 2003.

[28] Ark Housing. http://www.arkhousing.co.uk viewed: 04/01/05.

[29] Tunstall. http://www.tunstall.co.uk viewed: 04/01/05.

[30] Rehab Tool. http://www.rehabtool.com viewed: 04/01/05.

[31] Hogar.es. http://www.hogardigital.net.

[32] B. Sridharan, A.P. Mathur, and S.G. Ungar. Digital device manuals for the

management of connectedspaces. IEEE Communications Magazine, 40(8),

2002.

REFERENCES 234

[33] S. Moyer, D. Marples, and S. Tsang. A protocol for wide area, secure

networked appliances communication. IEEE Communications Magazine,

38(10), October 2001.

[34] S. Moyer, D. Marples, S. Tsang, J. Katz, P. Gurung, T. Cheng, A. Dutta,

H. Schulzrinne, and A. Roychowdhury. Framework Draft for Networked

Appliances using the Session Initiation Protocol. IETF Internet Draft draft-

moyer-sip-appliances-framework-02.txt, June 2001. work in progress.

[35] B. Rose. Home networks: A standards perspective. IEEE Communications

Magazine, 39(12), 2001.

[36] T. B. Zahariadis. Home Networking Technologies and Standards. Artech

House, 2003.

[37] UPnP: Universal Plug and Play Forum. http://www.upnp.org.

[38] HAVi: Home Audio Video Interoperability. http://www.havi.org.

[39] PowerHome Home Automation Software for X.10.

http://www.myx10.com/, viewed: 31/08/2004.

[40] Jesse Peterson X.10 API. http://www.jpeterson.com/rnd/x10, viewed:

10/01/2002.

[41] W3C recommendation Extensible Markup Language.

http://www.w3c.org/XML viewed: 10/9/04.

REFERENCES 235

[42] SSDP: Simple Service Discovery Protocol.

http://www.upnp.org/download/draft cai ssdp v1 03.txt.

[43] SOAP: Simple Object Access Protocol SOAP.

http://www.w3.org/TR/soap.

[44] B.A. Miller, T. Nixon, C. Tai, and M.D. Wood. Home networking with

universal plug and play. IEEE Communications Magazine, 39(12), 2001.

[45] Microsoft Corporation. Universal plug and play device architecture. 2000.

[46] B. Manning. Documenting Special Use IPv4 Address Blocks that have been

registered with IANA. IETF Internet Draft draft-manning-dsua-06.txt,

February 2001. work in progress.

[47] D.C. Plummer. An Ethernet Address Resolution Protocol, RFC 826. Inter-

net Engineering Task Force, 1982.

[48] E.A. Hall. Internet Core Protocols: The Definitive Guide. O’Reilly, 1st

edition, 2000.

[49] D. Meyer. Administratively Scoped IP Multicast, RFC 2365. Internet En-

gineering Task Force, 1998.

[50] UPnP Imaging Working Committee Chair S. Albright.

Imaging working committee, http://www.upnp.org-

/newsletters/newsletter 09 2001/committee.asp viewed: 15/9/04.

REFERENCES 236

[51] Linksys WRT54G. http://www.linksys.com/products-

/product.asp?prid=508&scid=35 viewed: 04/01/05.

[52] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,

R. Sparks, M. Handley, and E. Schooler. SIP: Session initiation protocol.

Request for Comments (Standards Track) 3261, 2002. Internet Engineering

Task Force.

[53] JINI Network Technology. http://www.jini.org.

[54] Echelon Corporation LonWorks. http://www.echelon.com/products-

/lonworks/default.htm viewed: 15/9/04.

[55] Home plug Powerline Alliance. http://homeplug.org viewed: 04/02/05.

[56] Home PNA Network Technology. http://www.homepna.org.

[57] IEEE 802.3 Wikipedia. http://en.wikipedia.org/wiki/IEEE 802.3

viewed: 04/02/05.

[58] IEEE 802.11 Wikipedia. http://en.wikipedia.org/wiki/IEEE 802.11a

viewed: 04/02/05.

[59] Zigbee Wikipedia. http://en.wikipedia.org/wiki/IEEE 802.15.4

viewed: 04/02/05.

[60] FireWire Wikipedia. http://en.wikipedia.org/wiki/IEEE 1394 viewed:

04/02/05.

REFERENCES 237

[61] M. Nakagawa, H. Zhang, and H. Sato. Ubiquitous homelinks based on

ieee 1394 and ultra wideband solutions. IEEE Communications Magazine,

page 74, 2003.

[62] Bluetooth. http://www.bluetooth.com viewed: 16/9/04.

[63] The Open Services Gateway Initiative. OSGi Service Platform, Release 3.

IOS Press, 2003.

[64] The Open Services Gateway Initiative. About the OSGi Service Platform:

Technical Whitepaper. OSGi Alliance, 2003.

[65] R.S. Hall and H. Cervantes. Challenges in building service-oriented appli-

cations for osgi. IEEE Communications Magazine, 5(42):144 – 149, 2004.

[66] P. Dobrev, D. Famolari, C. Kurzke, and B.A. Miller. Device and service

discovery in home networks with OSGi. IEEE Communications Magazine,

40(8), 2002.

[67] T.F. Bowen, F.S. Dworack, C.H. Chow, N.Griffeth, G.E. Herman, and Y.-J

Lin. The feature interaction problem in telecommunications systems. In

Seventh International Conference on Software Engineering for Telecommu-

nication Switching Systems, page 59, 1989.

REFERENCES 238

[68] S. Reiff-Marganiec and M. Ryan, editors. Eigth International Conference

on Feature Interactions in Telecommunications and Software Systems. IOS

Press, 2005.

[69] P. Zave. An experiment in feature engineering. pages 353–377, 2003.

[70] M. Plath and M. Ryan. Plug-and-play features. In [19], pages 150–164,

September 1998.

[71] R. Hall. Feature interactions in electronic mail. In [20], pages 67–82, May

2000.

[72] M. Weiss. Feature interactions in web services. In [21], pages 149–156,

June 2003.

[73] E. J. Cameron, N. Griffeth, Y.-J. Lin, M. E. Nilson, and W. K. Schnure.

A feature interaction benchmark for IN and beyond. In [16], pages 1–23,

May 1994.

[74] D. Marples and E. H. Magill. The use of rollback to prevent incorrect

operation of features in intelligent network based systems. In [19], pages

115–134, September 1998.

[75] D. Marples. Detection and Resolution in of Feature Interactions in Telecom-

munications Systems at Runtime. PhD Thesis, Communications Division,

REFERENCES 239

Department of Electrical and Electronic Engineering, University of Strath-

clyde, 2000.

[76] M. Kolberg, E. Magill, D. Marples, and S. Tsang. Feature interactions in

services for networked appliances. In IEEE International Conference on

Communications (ICC-2002), New York, USA., April 2002.

[77] E. H. Magill, K. J. Turner, and D. J. Marples, editors. Service Provision:

Technologies for Next Generation Communications. John Wiley and Sons,

2004.

[78] S. Reiff-Marganiec. Runtime Resolution of Feature Interactions in Evolving

Telecommunications Systems. PhD Thesis, University of Glasgow, Glasgow

(UK), 2002.

[79] D. Amyot, L. Charfi, N. Corse, T. Gray, L. Logrippo, J. Sincennes,

B. Stepien, and T. Ware. Feature description and feature interaction anal-

ysis with use case maps and lotos. In [20], pages 274–289, May 2000.

[80] M. Nakamura, T. Kikuno, J. Hassine, and L. Logrippo. Feature interaction

filtering with use case maps at requirements stage. In [20], pages 163–178,

May 2000.

[81] K. Kimbler and D. Sobirk. Use case driven analysis of feature interactions.

In [16], pages 167–177, May 1994.

REFERENCES 240

[82] K. Kimbler, E. Kuisch, and J. Muller. Feature interactions among pan-

european services. In [16], pages 73–85, May 1994.

[83] K. Kimbler. Addressing the interaction problem at the enterprise level. In

[18], pages 13–22, June 1997.

[84] J. Blom, B. Jonsson, and L. Kempe. Using temporal logic for modular

specification of telephone services. In L. G. Bouma and H. Velthuijsen,

editors, [16], pages 197–216, May 1994.

[85] A. Felty and K. Namjoshi. Feature specification and automatic conflict

detection. In [20], pages 179–192, May 2000.

[86] M. Plath and M. Ryan. The feature construct for SMV: Semantics. In [20],

pages 129–144, May 2000.

[87] M. Calder and A. Miller. Using SPIN for feature interaction analysis - a

case study. Proceedings Spin 2001. Lecture Notes in Computer Science,

2057:143–162, 2001.

[88] N. D. Griffeth and H. Velthuijsen. The negotiating agents approach to

runtime feature interaction resolution. In [16], pages 217–236, May 1994.

[89] M. Cain. Managing run-time interactions between call processing features.

In IEEE Communications Magazine, pages 44–50, February 1992.

REFERENCES 241

[90] M. Wilson and E.H. Magill. An environmental model for service interaction

in home networks. In Proceedings of Prep 2004, 2002.

[91] X. Wu and H. Schulzrinne. Programmable end system services using sip. In

ICC 2003 - IEEE International Conference on Communications, number 1,

pages 789–793, December 1992.

[92] T. Metzger. Feature interactions in embedded control systems. Computer

Networks, 45:625, 2004.

[93] W.K. Edwards and R.E. Grinter. At home with ubiquitous computing:

Seven challenges. In Proceedings of the 3rd international conference on

Ubiquitous Computing, pages 256–272. Springer, 2001.

[94] P. Durman. Future isn’t all bright for orange’s high-tech home.

[95] D. Valtchev and I. Frankov. Service gateway architecture for a smart home.

IEEE Communications Magazine, page 126, 2002.

[96] F. T. H. den Hartog, M. Balm, C. M. de Jong, and J. J. B. Kwaaitaal. Con-

vergence of residential gateway technology. IEEE Communications Maga-

zine, page 138, May 2004.

[97] P.D. Smith and G.M. Barnes. Files & Databases: an introduction. Addison

Wesley, 1987.

REFERENCES 242

[98] A. Silberschatz and P.B. Galvin. Operating System Concepts. 5th edition,

1998.

[99] M. Wilson, E.H. Magill, and M. Kolberg. An online approach for the service

interaction problem in home networks. In IEEE Consumer Communica-

tions and Networking Conference (CCNC-2005), Las Vegas, USA., January

2005.

[100] Intel: Location Aware Computing website.

http://www.intel.com/labs/wireless/lac/.

[101] I.A. Essa. Ubiquitous sensing for smart and aware environmentss. IEEE

Personal Communications, 7(5):47, 2000.

[102] B. Horowitz, N. Magnusson, and N. Klack. Telia’s service delivery solution

for the home. IEEE Communications Magazine, 40(4), 2002.

[103] UPnP Software Developer Kits. http://www.upnp.org/resources/sdks.asp

viewed: 22/06/05.

[104] CyberLink development package for UPnP devices.

http://www.cybergarage.org/net/upnp/java/index.html viewed:

22/06/05.

[105] UPnP Basic Device Specification. http://www.upnp.org-

/standardizeddcps/basic.asp viewed: 14/08/05.

REFERENCES 243

[106] SIP Express Router (SER). http://www.iptel.org/ser/ viewed:

22/06/05.

[107] Microsoft Windows Messenger. http://www.microsoft.com/windowsxp/using-

/windowsmessenger/default.mspx viewed: 09/08/05.

[108] Sun Microsystems Java Embedded Server.

http://java.sun.com/products/consumer-embedded/ viewed:

22/06/05.

[109] IBM Service Management Framework (SMF) 3.5.1.

http://www-306.ibm.com/software/wireless/smf.

[110] Open Service Container Architecture (OSCAR).

http://oscar.objectweb.org viewed: 24/06/05.

[111] Java Communications API. http://java.sun.com/products-

/javacomm/index.jsp viewed: 09/08/05.

[112] Lycos SMS service. http://mobile.lycos.co.uk/ viewed: 10/08/05.

[113] National Institute of Standards and Technology (NIST): SIP Stack.

http://dns.antd.nist.gov/proj/iptel/ viewed: 10/08/05.

[114] Java Media Framework (JMF) API. http://java.sun.com/products/java-media-

/jmf/index.jsp viewed: 10/08/05.

REFERENCES 244

[115] Intel UPnP Stack and Tools. http://intel.com/cd/ids/developer/asmo-na-

/eng/downloads/upnp/index.htm viewed: 22/06/05.

[116] Siemens UPnP Stack. http://www.plug-n-play-technologies.com/

viewed: 22/06/05.

[117] mySQL Database. http://www.mysql.org.

[118] M. Wilson, E.H. Magill, M. Kolberg, P. Burtwistle, and O. Ohlstenius.

Conrolling appliances using pen and paper. In IEEE Consumer Communi-

cations and Networking Conference (CCNC-2005), Las Vegas, USA., Jan-

uary 2005.

[119] UPnP Forum: XML Files for Test-

ing. http://www.upnp.org/standardizeddcps-

/documents/XMLFilesforTesting.zip viewed: 10/9/04.

