34 research outputs found

    Control Plane Hardware Design for Optical Packet Switched Data Centre Networks

    Get PDF
    Optical packet switching for intra-data centre networks is key to addressing traffic requirements. Photonic integration and wavelength division multiplexing (WDM) can overcome bandwidth limits in switching systems. A promising technology to build a nanosecond-reconfigurable photonic-integrated switch, compatible with WDM, is the semiconductor optical amplifier (SOA). SOAs are typically used as gating elements in a broadcast-and-select (B\&S) configuration, to build an optical crossbar switch. For larger-size switching, a three-stage Clos network, based on crossbar nodes, is a viable architecture. However, the design of the switch control plane, is one of the barriers to packet switching; it should run on packet timescales, which becomes increasingly challenging as line rates get higher. The scheduler, used for the allocation of switch paths, limits control clock speed. To this end, the research contribution was the design of highly parallel hardware schedulers for crossbar and Clos network switches. On a field-programmable gate array (FPGA), the minimum scheduler clock period achieved was 5.0~ns and 5.4~ns, for a 32-port crossbar and Clos switch, respectively. By using parallel path allocation modules, one per Clos node, a minimum clock period of 7.0~ns was achieved, for a 256-port switch. For scheduler application-specific integrated circuit (ASIC) synthesis, this reduces to 2.0~ns; a record result enabling scalable packet switching. Furthermore, the control plane was demonstrated experimentally. Moreover, a cycle-accurate network emulator was developed to evaluate switch performance. Results showed a switch saturation throughput at a traffic load 60\% of capacity, with sub-microsecond packet latency, for a 256-port Clos switch, outperforming state-of-the-art optical packet switches

    Microring resonator-based optical router for photonic networks-on-chip

    Get PDF
    We report the design and analysis of a non-blocking microring resonator-based optical switched router, which can be used as a switch node to construct a large photonic routing network on chips. The proposed optical router has sixteen microrings, fourteen crossings and four 90° waveguide bends, which could be tuned through the thermo-optic (TO) or electro-optic (EO) effect. Compared with a previously described 5 × 5 optical switching router, our router comprises fewer microring resonators (MRRs), crossings and bends, which results in a more compact design, a higher switching speed, a lower loss and a lower optical power consumption. In addition, all the rings operate at the same wavelength making it scalable to a network of any size

    Architecture, design, and modeling of the OPSnet asynchronous optical packet switching node

    Get PDF
    An all-optical packet-switched network supporting multiple services represents a long-term goal for network operators and service providers alike. The EPSRC-funded OPSnet project partnership addresses this issue from device through to network architecture perspectives with the key objective of the design, development, and demonstration of a fully operational asynchronous optical packet switch (OPS) suitable for 100 Gb/s dense-wavelength-division multiplexing (DWDM) operation. The OPS is built around a novel buffer and control architecture that has been shown to be highly flexible and to offer the promise of fair and consistent packet delivery at high load conditions with full support for quality of service (QoS) based on differentiated services over generalized multiprotocol label switching

    Handshake and Circulation Flow Control in Nanaphotonic Interconnects

    Get PDF
    Nanophotonics has been proposed to design low latency and high bandwidth Network-On-Chip (NOC) for future Chip Multi-Processors (CMPs). Recent nanophotonic NOC designs adopt the token-based arbitration coupled with credit-based flow control, which leads to low bandwidth utilization. This thesis proposes two handshake schemes for nanophotonic interconnects in CMPs, Global Handshake (GHS) and Distributed Handshake (DHS), which get rid of the traditional credit-based flow control, reduce the average token waiting time, and finally improve the network throughput. Furthermore, we enhance the basic handshake schemes with setaside buffer and circulation techniques to overcome the Head-Of-Line (HOL) blocking. The evaluations show that the proposed handshake schemes improve network throughput by up to 11x under synthetic workloads. With the extracted trace traffic from real applications, the handshake schemes can reduce the communication delay by up to 55%. The basic handshake schemes add only 0.4% hardware overhead for optical components and negligible power consumption. In addition, the performance of the handshake schemes is independent of on-chip buffer space, which makes them feasible in a large scale nanophotonic interconnect design

    Subchannel Scheduling for Shared Optical On-chip Buses

    Get PDF
    Maximizing bandwidth utilization of optical on-chip interconnects in essential to compensate for static power overheads in optical networks-on-chip. Shared optical buses were shown to be a power-efficient, modular design solution with tremendous power saving potential by allowing optical bandwidth to be shared by all connected nodes. Previous proposals resolve bus contention by scheduling senders sequentially on the entire optical bandwidth; however, logically splitting a bus into sub-channels to allow both sequential and parallel data transmission has been shown to be highly efficient in electrical interconnects and could also be applied to shared optical buses. In this paper, we propose an efficient subchannel scheduling algorithm that aims to minimize the number of bus utilization cycles by assigning sender-receiver pairs both to subchannels and time slots. We present both a distributed and a centralized bus arbitration scheme and show that both can be implemented with low overheads. Our results show that subchannel scheduling can more than double throughput on shared optical buses compared to sequential scheduling without any power overheads in most cases. Arbitration latency overheads compared to state-of-the-art sequential schemes are moderate-to-low for significant bus bandwidths and only noticeable for low injection rates

    Efficient Sharing of Optical Resources in Low-Power Optical Networks-on-Chip

    Get PDF
    With the ever-growing core counts in modern computing systems, NoCs consume an increasing part of the power budget due to bandwidth and power density limitations of electrical interconnects. To maintain performance and power scaling, alternative technologies are required, with silicon photonics, sophisticated network designs are required to minimize static power overheads. In this paper, we propose Amon, a low-power ONoC that decreases number of μRings, wavelengths and path losses to reduce power consumption. Amom performs destination checking prior to data transmission on an underlying control network, allowing the sharing per-Watt by at least 23% (up to 70%), while reducing power without latency overheads on both synthetic and realistic applications. For aggressive optical technology parameters, Amom considerably outperforms all alternative NoCs in terms of power, outlining its increasing superiority as technology matures
    corecore