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Abstract

Optical packet switching for intra-data centre networks is key to addressing traffic

requirements. Photonic integration and wavelength division multiplexing (WDM)

can overcome bandwidth limits in switching systems. A promising technology

to build a nanosecond-reconfigurable photonic-integrated switch, compatible with

WDM, is the semiconductor optical amplifier (SOA). SOAs are typically used as

gating elements in a broadcast-and-select (B&S) configuration, to build an optical

crossbar switch. For larger-size switching, a three-stage Clos network, based on

crossbar nodes, is a viable architecture. However, the design of the switch control

plane, is one of the barriers to packet switching; it should run on packet timescales,

which becomes increasingly challenging as line rates get higher. The scheduler,

used for the allocation of switch paths, limits control clock speed. To this end,

the research contribution was the design of highly parallel hardware schedulers for

crossbar and Clos network switches. On a field-programmable gate array (FPGA),

the minimum scheduler clock period achieved was 5.0 ns and 5.4 ns, for a 32-port

crossbar and Clos switch, respectively. By using parallel path allocation modules,

one per Clos node, a minimum clock period of 7.0 ns was achieved, for a 256-port

switch. For scheduler application-specific integrated circuit (ASIC) synthesis, this

reduces to 2.0 ns; a record result enabling scalable packet switching. Furthermore,

the control plane was demonstrated experimentally. Moreover, a cycle-accurate

network emulator was developed to evaluate switch performance. Results showed a

switch saturation throughput at a traffic load 60% of capacity, with sub-microsecond

packet latency, for a 256-port Clos switch, outperforming state-of-the-art optical

packet switches.



Impact Statement

Optical packet switching is a viable solution to continue increasing the network

performance, in response to the traffic requirements inside a data centre. A major

challenge is the clock speed of the switch control plane. This has to be on packet

timescales, which keep decreasing as line rates keep increasing. The clock speed is

typically limited by the scheduler, responsible for the fair allocation of switch paths

and resolving any contention.

The impact of the research conducted is the contribution of a collection of

scheduler designs, for crossbar and Clos-network switches, optimised for ultra-low

clock period, to enable large-size packet switching. The critical path in the designs

is identified. The digital design techniques and Clos routing algorithms applied, for

highly parallel scheduling and reducing the critical path, were discussed in detail.

A record minimum clock period was reported, for a 256-port Clos scheduler.

Although focus is on optical packet switch scheduling, all scheduler designs

presented are applicable to electronic crossbar and Clos-network packet switches.

From a resource point of view, there is no difference in allocating and activating,

for example, an SOA gate in an optical crossbar or a multiplexer in an electronic

crossbar. The same scheduler digital design principles and techniques are applicable

to both switch types.

The control plane was verified experimentally and it was used to demonstrate

optical packet switching with ultra-low end-to-end packet latency. The experiment

quantified the control plane delay contributions and identified the critical path. It

also revealed the implications of asynchronous operation on the performance of the

switch. The significance of the scheduler clock period was highlighted.
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A cycle-accurate network emulator, with packet-level detail, was developed.

This enables researchers to accurately assess the flow control and routing algorithm

of a network of any architecture, under different traffic patterns, as a function of

traffic load and network size. Packet latency and network throughput, which are key

performance metrics, can be measured with this tool. Also, because the emulator is

developed in a hardware description language, key circuits such as network control

modules can be directly implemented on a hardware platform, after verification.
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Chapter 1

Introduction

The ever increasing Internet traffic is dominated by data centre traffic, which is

projected to reach 20.6 zettabytes per year by 2021 [1]. Data centre traffic can be

divided into three main types: (a) traffic between data centres and users, (b) traffic

between data centres and (c) traffic within data centres. The latter accounts for more

than 70% of the data centre traffic and it is exchanged between network servers.

It is commonly known as East-West traffic, as opposed to the North-South traffic

which enters and exits the network, in traditional data centres. The East-West traffic

is driven by a number of technological trends. The growth of cloud computing

and virtualisation has led to servers running multiple virtual workloads, which are

commonly migrated from one server to another. Storage replication is also used to

a great extend, to ensure business continuity, having a significant contribution to

the inter-server traffic. Furthermore, new data centre applications rely on multiple

workloads distributed to different servers to run in parallel, thus generating traffic

between servers [1, 2].

The increasing East-West traffic has caused a shift in the data centre network

topology, due to stringent bandwidth and latency requirements. In the traditional

data centre, network switches were arranged in a tree topology with a three-layer

hierarchy, as illustrated in Fig. 1.1. A rack of servers at the network edge connected

to a top-of-rack (ToR) switch in the access layer. Switches in the aggregation layer

would then interconnect the racks. Finally, switches in the core layer were used

to interconnect aggregation switches, in order to increase the network size and the
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Figure 1.1: A hierarchical tree network in traditional data centres.

performance. The switch port count and bit rate would be higher moving from the

access to the core layer, to support the higher volume of traffic in the upper layers.

To reduce network cost, over-subscription was often used at the network layers.

This refers to reducing the total uplink bandwidth with respect to the total downlink

bandwidth. This architectural model, although it catered to North-South traffic, is

not well suited for the East-West traffic exhibited in today’s data centres. Traffic

routed over different paths may traverse a different number of switches, leading to

unpredictable latency. Moreover, the high over-subscription ratios that are typically

used, would limit server throughput.

Small-scale data centre networks are now built in the leaf-spine topology [1, 3],

illustrated in Fig. 1.2. Compared to the traditional hierarchical tree, this topology is

flatter as it consists of only two layers; the leaf layer, in which the ToR switches lie,

and the spine, which interconnects the ToR switches [4]. Also, paths are equidistant,

in terms of number of hops, with servers in different racks experiencing only a three-

hop latency. Therefore, the minimum inter-server latency is low and predictable,
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Figure 1.2: A leaf-spine network in current data centres.

which favours East-West traffic [5]. Furthermore, every leaf (or ToR) switch is

connected to a spine switch and vice versa. Hence, in theory, no over-subscription

is applied, delivering full bisection bandwidth for the server communication. Also,

commodity switches can be deployed across the entire architecture, giving a more

cost-effective solution than the hierarchical tree model [6].

The electrical data centre interconnect, however, runs into physical limitations,

as the requirements on network size and bandwidth continue to increase. Due to

frequency-dependent losses, the length of an electrical link is limited as the bit rate

increases [7]. At 10 Gb/s, the transmission distance of copper transmission lines

is typically no longer than 10 m, to avoid signal distortion [8]. The bandwidth

of an electronic switch is also limited. The number of high-speed pins, available

on the switch chip, or the number of connectors fitting on a rack unit front panel,

limit the switched bandwidth [9]. The electronic switch design, as well as its power

consumption, are bit rate-dependent. An electronic switch dissipates energy with

every bit transition, thus consumes power proportional to the bit rate [10, 11, 12].

Optical interconnects, for intra-data centre networking, is an inevitable next

step for sustainable performance increase. A key optical technology, to significantly

increase bit rate, is wavelength-division multiplexing (WDM) [13]. It exploits the
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very high bandwidth of an optical waveguide, such as fibre, to multiplex together k

independent data streams, modulated on dedicated wavelengths, that can propagate

simultaneously. The low loss and high bandwidth (through WDM) of an optical

fibre, overcomes the bit rate-distance limitation of electrical transmission lines and

allows for a low energy per bit to be achieved. In fact, optical fibre is already in

use in data centres, for point-to-point connectivity between switches [3, 14]. The

switches, however, are still electronic, which creates a bandwidth bottleneck and

limits energy efficiency. Optical switching is the sensible way forward. Integrated

photonics that use WDM, is a viable solution to overcome the pin and front panel

connector count limitations, and continue increasing the switched bandwidth. The

building blocks of an optical switch are transparent to the data bit rate. Thus, (a)

the switch design does not have to change, as bit rates continue to increase and (b)

the power consumed is independent of the switched bandwidth. Optical switching

is therefore a key enabler for network scalability.

Depending on the building block technology, the reconfiguration time of an

optical switch, varies from milliseconds to nanoseconds. Switches built as micro-

electro-mechanical systems or based on piezoelectric beam steering technology, are

already commercially available [15, 16]. Their high port count (100s of ports) and

low loss allow building a large data centre network, without any signal degradation

issues. However, these technologies limit the switch reconfiguration time to 10s of

milliseconds, suitable only for circuit switching. Several optical circuit-switched

network architectures have been proposed, based on such switches applied at the

network core, to handle high-volume traffic. Notable examples are the RotorNet

[17], Helios [8] and c-Through [18] architectures. Nevertheless, electronic packet

switching is still needed to handle small-size traffic or traffic that is bursty and

rapidly changing [19].

1.1 Research Problem

Optical packet switching is an attractive alternative. The capability of switching on

a per packet basis means that this solution can be widely deployed in the network,
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in any hierarchy layer, without any limitations on the traffic stability or volume.

To support packet switching, the switch needs to be reconfigurable in nanoseconds.

A suitable technology is the semiconductor optical amplifier (SOA), used as an

optical gate, with switching transients of the order of 100 ps [20]. SOA-based

optical switch prototypes, such as the OPSquare [21], SPINet [11], OSMOSIS [12]

and Data Vortex [22], have been demonstrated experimentally. They all use SOA

gates in a broadcast-and-select configuration to build crossbar switching modules.

The modules are then used in a multi-stage architecture to scale the switch size.

A switch built entirely as a photonic-integrated circuit (PIC), is a practical

approach to cost- and energy-effective switching [9, 11]. Photonic-integrated packet

switches have been demonstrated based on SOA [23], Mach-Zehnder interferometer

(MZI) [24] and micro-ring resonator (MRR) [25] technologies. Network scalability

is limited by optical loss, crosstalk and noise accumulated per optical switch. The

inherent amplification of an SOA compensates for loss and, when deactivated, it

strongly suppresses crosstalk, making it an attractive technology. A switch built by

arranging SOA-based crossbar modules in a three-stage Clos network [26] topology,

has been shown viable at least up to a 64× 64 size, with a low level of noise [23].

An optical switch of this size can replace the currently electronic ToR switch in

the leaf layer (Fig. 1.2), accommodating sufficient optical links to interconnect a

rack of servers to the electronic switches in the core layer. In the resulting data

centre network, the most distant servers communicate with a minimum latency of

two hops; one hop from the source server to a core switch and another hop to the

destination server.

Despite the demonstration of nanosecond-reconfigurable photonic-integrated

switch architectures, optical packet switching is not yet employed in data centres.

The main impediments are the lack of practical random-access memory and limited

optical signal processing capabilities. A more pressing challenge, in optical packet

switch design, is the speed of the accompanying control plane. The control plane

implements the switch’s flow control; the allocation of switch resources, such as

output ports, also referred to as switch scheduling. Scheduling needs to be executed
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on packet timescales. However, as the line rate keeps increasing, the packet duration

gets smaller which places stringent requirements on scheduling delay. To maintain

a low scheduling delay, as the switch size increases, is another challenge.

To this end, the research conducted and described in the thesis addresses the

scheduling problem; the design of parallel hardware schedulers for nanosecond

crossbar and Clos switch scheduling. The focus is to achieve ultra-low minimum

packet latency, which is particularly important for small-size packets, but also to

achieve a high switch throughput as the input traffic load is increased. The aim is

to deliver scalable optical packet switching to replace electronic switches, at least

at the leaf network layer, for future data centres. The scheduler is part of a novel

switch system concept that is proposed, which uses electronics for buffering and

processing and optics for low latency and high bandwidth packet switching.

1.2 Thesis Structure
The remainder of the thesis is structured as follows:

Chapter 2 reviews the literature to set the foundation on the thesis topic. The

target data centre architecture is presented and its performance limitations

due to the currently electrical interconnect, are discussed. Optical networking

for sustainable performance increase is argued. The significance and design

of resource allocation circuits, for packet switch scheduling, is discussed.

Optical switch technologies and demonstrated prototypes are compared.

Chapter 3 introduces the proposed system concept, covering the design of the

network interface, at every node, and the switch design, which addresses the

internal architecture, routing method and flow control. The proposed system

is compared to the other switch designs reviewed in Chapter 2. The tools

and methodology to implement the switch control plane and assess switch

performance, are described. This includes the development details of a cycle-

accurate network emulator with packet-level accuracy.

Chapter 4 presents the register-transfer level (RTL) design of a nanosecond

scheduler, for crossbar switches. The design has been optimised for clock
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speed using digital design techniques for parallelism. The crossbar scheduler

is implemented on hardware to measure the minimum clock period and assess

control plane scaling. Switch average throughput and packet latency, under

scheduler control, are measured in the network emulator.

Chapter 5 focuses on the size scalability of the proposed switching system.

The RTL designs of two highly-parallel schedulers, for switches built in a

Clos network topology, are presented. Routing algorithms, executable in a

single scheduler clock period, are applied. Clock period results for scheduler

synthesis as an application-specific integrated circuit (ASIC) are presented,

to verify scalability. The Clos switch, under control of either scheduler, is

compared to the reviewed designs in Chapter 2, in terms of scheduling delay,

average packet latency and throughput. The Clos scheduler designs have been

published in [27, 28].

Chapter 6 verifies experimentally the proposed system concept. A proof-

of-concept control plane demonstrator is built and used to showcase optical

packet switching. The improvement in switch performance, under control

of the optimised crossbar scheduler, presented in Chapter 4, is quantified.

The performance implications of using an asynchronous control plane are

discussed. The experimental demonstration has been published in [29, 30].

Chapter 7 draws conclusions based on conducted research and the results

obtained. Potential research directions, as part of future work, are suggested.

1.3 Key Contributions
As a result of the work conducted, specialised tooling has been developed and a

number of contributions to the research field have been made. The key contributions

are listed below:

• An entire network emulator has been developed for control plane verification

and performance evaluation of the network under test, with a packet level of

detail. This includes traffic sources, network interfaces, a switch time model
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and the switch scheduler. All these network components are implemented as

hardware modules, developed in SystemVerilog; a hardware description and

verification language. This allows (a) for cycle-accurate measurements and

(b) directly implementing the emulator modules on a hardware platform, such

as a field-programmable gate array (FPGA). The emulator adds delays for

packet and control propagation and for packet (de)serialisation. A traffic sink

collects all packets in the emulation for packet latency and switch throughput

measurements. The emulator is fully parameterised, to evaluate performance

at different network sizes, and it is transparent to the network topology.

• A highly parallel and scalable scheduler has been designed for crossbar

switches. The scheduler allocates switch paths and reconfigures the switch

in two clock cycles. Implementation on a commercial FPGA board showed

a minimum clock period of 5.0 ns for a 32× 32 crossbar. That is a total

scheduling delay of 10 ns, which enables switching on a per packet basis.

• A routing algorithm for Clos networks has been developed. A Clos network,

in certain topological configurations, has been shown to be a viable switch

architecture for scalable photonic-integrated switching. Route calculation for

a non-blocking Clos network, using the traditional algorithm, is unsuitable for

packet switching due to its long delay. A novel routing algorithm is proposed

to assign paths in a single hardware clock cycle and also eliminate contention

at the central switching nodes in the Clos network. The trade-off is reduced

throughput as it makes the Clos network blocking.

• A highly parallel and scalable scheduler has been designed for Clos-network

switches. The scheduler is divided into arbitration and switch reconfiguration

hardware modules. Each arbitration module corresponds to a switching node

in the Clos architecture. This allows for distributed scheduling, to achieve

a shorter minimum clock period for a larger switch size. Every hardware

module is synthesised as an application-specific integrated circuit (ASIC), in

a 45 nm CMOS process, and optimised for clock speed. For a 256×256 Clos
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switch, a minimum clock period of 2.0 ns is achieved, or 7.0 ns for FPGA

implementation. The scheduler allocates switch paths and reconfigures the

switch in three clock cycles, one of which is for assigning paths using the

routing algorithm discussed above. Therefore, the total scheduling delay is

6.0 ns, for a 256-port Clos switch and an ASIC scheduler, suitable for large-

scale packet switching. This is currently the lowest scheduling delay, for a

Clos switch of this size, reported in the research field.

• A control plane experimental demonstrator is built to verify the proposed

system concept. The control plane, including server network interfaces and

switch scheduler, is implemented on FPGAs in an experimental setup, for a

32× 32 crossbar. As is the case in a real network, the demonstrated control

plane is asynchronous; server network interfaces and switch/scheduler are

ran from independent crystal oscillators. The clock constraints and scheduler

critical path are discussed in detail. The control plane delay components are

identified and measured. The implications of asynchronous operation on the

switch performance and the significance of the scheduler clock period, are

discussed. Using the FPGA-based control plane, switching packets with a

minimum end-to-end packet latency of 71.0 ns is demonstrated, for a rack-

scale network and 64-byte packets serialised at 8×10 Gb/s.

1.4 List of Publications
The research work described in the thesis, has led to a number of publications in

journals and conferences, as listed below:

Journal Publications:

1. P. Andreades and G. Zervas, “Parallel modular scheduler design for Clos

switches in optical data centre networks,” to appear in IEEE/OSA Journal of

Lightwave Technology, April 2020.

2. P. Andreades, K. Clark, P. M. Watts, and G. Zervas, “Experimental demon-

stration of an ultra-low latency control plane for optical packet switching in
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data center networks,” Optical Switching and Networking, vol.32, pp. 51-60,

November 2019.

Conference Publications:

1. P. Andreades and G. Zervas, “Parallel distributed schedulers for scalable

photonic integrated packet switching,” in Proceedings of the IEEE Confer-

ence on Photonics in Switching and Computing, September 2018.

2. P. Andreades and P. M. Watts, “Low latency parallel schedulers for photonic

integrated optical switch architectures in data centre networks,” in Proceed-

ings of the IEEE European Conference on Optical Communication, Septem-

ber 2017.

3. P. Andreades, Y. Wang, J. Shen, S. Liu, and P. M. Watts, “Experimental

demonstration of 75 ns end-to-end latency in an optical top-of-rack switch,”

in Proceedings of the IEEE/OSA Optical Fiber Communications Conference

and Exhibition, March 2015.



Chapter 2

Literature Review

This chapter introduces the evolution of the data centre architecture and its current

limitations, imposed by the electrical interconnect, which motivated the application

of optical networking. The main benefits of optical interconnects, in switching in

particular, are discussed. Key technologies, upon which an optical switch is built,

are reviewed in detail. Renowned optically-switched architectures in the field and

their approach to optical packet switch challenges, including scheduling, are also

critically reviewed. The fundamentals of resource allocation design, critical for

switch scheduling implemented in hardware, are presented.

2.1 Non-blocking Architectures
A network is strictly non-blocking if a dedicated path can be allocated without any

conflicts for any permutation of unused sources (inputs) and destinations (outputs)

[31]. If any new permutation is possible, but rearranging existing connections is

required, then that network is rearrangeably non-blocking. Otherwise, the network

is simply blocking. These definitions apply to unicast traffic where an input can be

connected to at most one output at a time.

2.1.1 Crossbar

A crossbar architecture implements an array of crosspoints where each crosspoint

enables a direct connection between an input port and an output port, when the

crosspoint is set. Figure 2.1 illustrates a conceptual model of an N×N crossbar.

The array consists of N2 crosspoints which enable switching traffic from an input
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Figure 2.1: An N x N crossbar conceptual model.

port to an output port. In practice, an electronic crossbar is implemented using N

N:1 multiplexers, one for each output. The multiplexer select signal chooses at most

one out of N inputs to connect to the output. Optical implementations of a crossbar

switch are discussed in section 2.4.

In a crossbar switch every input is directly connected to an output, through

a dedicated path, thus the architecture is strictly non-blocking. Connectivity is as

simple to establish as setting the appropriate crosspoint. Also, no routing is required

which simplifies switch control. At medium sizes, crossbars are commonly used as

electronic switches. However, the quadratic growth of crosspoints with the switch

size, N, limits the switch scalability, because the implementation complexity and

cost increase rapidly. Furthermore, the delay to schedule a crossbar may become

prohibitively long, for switching on a per packet basis, as the switch size grows.

This topic is extensively covered in section 2.5.

2.1.2 Clos Network

A Clos network is built by arranging switch modules into a 3-stage architecture in

which every central module (CM) has one input link from each input module (IM)

and one output link to each output module (OM) [26, 31], as illustrated in Fig. 2.2.
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Figure 2.2: A three-stage (m,n,r) Clos network.

The modules are also non-blocking and can be implemented as crossbar switches.

The entire network can be described by the triple (m,n,r) where m is the number of

CMs, n is the number of input/output ports on each IM/OM and r is the number of

IMs and OMs. Hence, the network has N = nr input and output ports in total. For

referencing the input and output ports, we denote input port a on IM x as IM(x,a)

and output port b on OM y as OM(y,b), where 0≤ x,y≤ r−1 and 0≤ a,b≤ n−1.

Unlike in a crossbar, where there is a single path from an input to an output

port, in a Clos network there are m possible paths; one through each of the CMs.

It is due to this path diversity that the network is non-blocking. For unicast traffic,

depending on the number of CMs (m), the Clos network can be either:

1. Strictly non-blocking, when m≥ 2n−1

2. Rearrangeably non-blocking, when m≥ n

The ratio m/n is known as the expansion ratio, referring to the expansion in the

input stage. An expansion ratio of 2n−1/n is the minimum requirement for strictly

non-blocking connectivity.

Routing unicast traffic from IM(x,a) to OM(y,b), in a strictly non-blocking

Clos network, is simple; a CM is selected whose input and output ports are free
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for both IM x and OM y. In a rearrangeable Clos network, however, less paths are

available making routing more complex; the path from IM(x,a) to OM(y,b) may

have to be changed so that another input-output pair uses that CM. Nevertheless,

the rearrangeable Clos network is simpler to implement as it requires (2n− 1)/n

less CMs. For unicast traffic, the looping algorithm loops the current routing matrix

re-arranging existing connections to add new ones, resolving any arising conflicts.

It is often desired that the network is constructed using same-size modules. In

that case, a Clos network can be scaled up using larger modules or scaled out using

more network stages or using both techniques. A rearrangeable Clos network with

m = n = r =
√

N has n2 ports using n×n modules. If this n2×n2 network is now

used as a single central module, and n× n modules are still used at the input and

output stages, the resulting 5-stage network will have n3 ports. Figure 2.3 shows

a 5-stage (2,2,4) Clos network built entirely out 2× 2 modules where each 4× 4

central module is itself a (2,2,2) Clos network. In general, a Clos network with

n× n modules in 2x+ 1 stages provides nx+1 ports. Nevertheless, as the number

of stages increases, routing becomes more complex; the looping algorithm needs

to be applied multiple times working from outside to inside. Also, for strictly non-

blocking connectivity, expansion is required at the input stage of each Clos network.

In order to reduce wiring complexity, the symmetry of a multi-stage Clos network

can be exploited, by folding it along the middle. In this way, co-located network

stages share common packaging.

2.1.2.1 Beneš Network

A Clos network built entirely using only 2×2 modules is called a Beneš network.

This is illustrated in Fig. 2.3. Such networks are particularly interesting as they

require the minimum number of crosspoints to provide rearrangeable non-blocking

connectivity between N = 2x ports. However, 2x−1 stages of 2x−1 switch modules

are required. Assuming 4 crosspoints per module, the total number of crosspoints

required in an N×N Beneš network is (2x−1)2x+1.
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(2,2,2) Clos

Figure 2.3: A (2,2,4) Clos network with two (2,2,2) Clos networks used as 4x4 central
modules. This is also referred to as an 8x8 Beneš network due to composition
using only 2x2 switch modules.

2.2 Data Centre Network Architectures
The traffic exchanged between data centre servers, places stringent requirements on

the network bandwidth and latency [2]. This section first discusses the conventional

topology deployed in data centre networks and its limitations, before presenting the

topology currently used to address inter-server traffic requirements.

2.2.1 Hierarchical Tree

The traditional data centre network was built in a tree topology with either two or

three hierarchy tiers, depending on the required size [6, 32]. Connecting more than

25 thousand servers would require a three-tier tree with the core tier at the root of the

tree, the aggregation tier in the middle and the access tier at the leaves of the tree,

as illustrated in Fig. 2.4. In a two-tiered tree the core and aggregation layers were

combined into one core tier, accommodating 5 to 8 thousand servers [6]. In general,

the tree topology was suitable for traffic entering and exiting the data centre, also

known as “North-South” traffic, between external clients and data centre servers.

In order to support the injected bandwidth at the edge of the network, more

than one core switches were used at the root of a large data centre, resulting in a

multi-rooted design [6], such as the one shown in Fig. 2.4. Moreover, the switch port
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Figure 2.4: A traditional multi-rooted three-tier data centre network topology. Switch size
and port capacity increase from access to core tiers.

count and bit rate were increased, moving upwards towards the tree root, to provide

more bandwidth for the aggregation and core layers [2, 6] where the traffic volume

is higher. The top-of-rack (ToR) switches in the access tier would typically have 48

ports running at 10 Gb/s for connections to servers plus 4 more ports running at 40

Gb/s for connections to aggregation switches, while the switches in the aggregation

and core tiers would have a size up to 128 ports with speeds ranging from 40 Gb/s

to 100 Gb/s. Hence, more expensive switching equipment was used at the higher

layers.

Since it is unlikely that links are ran at their full speed, over-subscription was

typically applied in the network [2]. At a network layer the uplink capacity, Cuplink,

is lower than the downlink capacity, Cdownlink. This reduces the topology cost by

using less switching equipment and fewer high-speed links. In the access layer, for

example, assuming 48 x 10 Gb/s downlinks and 4 x 40 Gb/s uplinks at a ToR switch,

the over-subscription ratio is R =Cdownlink : Cuplink = 3 : 1.

In addition to the limited network capacity, the packet end-to-end latency in the
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traditional three-tier architecture could be long and variable, depending on the path

taken [32]. A packet could traverse a core switch before reaching its destination,

performing multiple hops along the way, while another packet could be switched to

its destination through an aggregation switch in fewer hops. The limited bandwidth

and unpredictable network latency is not favourable for inter-server traffic currently

exchanged in the data centre [2, 32]. The network topology has now shifted to the

leaf-spine model, as discussed in the next section.

2.2.2 Leaf-Spine

The leaf-spine architecture is a three-stage Clos network folded along the middle

and rotated anti-clockwise by 90 degrees, as illustrated in Fig. 2.5. The resulting

multi-rooted architecture is flat with only two tiers; the leaf which is composed

of the ToR switches and the spine which interconnects the ToR switches. Every

leaf switch connects to every spine switch and vice versa. The network can be

constructed entirely out of identical commodity switches, reducing the architecture

cost compared to traditional hierarchical trees.

The path-diversity in Clos networks, from which their non-blocking property

stems, enables full bisection bandwidth connectivity between the two layers. This

means that there is no over-subscription at the leaf layer, i.e. R = 1 : 1, and hence

servers can transmit at full capacity. More importantly, in this flat architecture all
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δ 

Figure 2.6: Electrical link cross-section showing alternating current density distribution at
high data rates. Current flows mainly within a depth δ from the link’s outer
edge or “skin”. This phenomenon is known as the skin effect.

paths are equidistant; every source and destination server are three hops apart. As a

result, the latency is lower and less variable compared to the traditional hierarchical

architecture. The aforementioned advantages made the leaf-spine architecture the

de facto standard for data centre networks, to efficiently handle the so called “East-

West” traffic patterns between servers.

Full bisection bandwidth connectivity may not be practical as the data centre

size grows, due to the increasing wiring complexity between the two layers and the

implementation cost [8]. In practice over-subscription may be applied to mitigate

complexity and cost by trading off bandwidth [4]. It should be noted however that

since the architecture becomes blocking, in theory it is no longer a Clos network

but rather a partial mesh network interconnecting switches in two layers.

2.3 Electrical Network Scaling Limitations

2.3.1 Transmission Distance and Bandwidth

Electrical links face length limitations due to data rate dependent losses [7]. Due

to the skin effect in alternating current transmission lines, the current density is

higher near a conductor’s outer edge or “skin” and decreases towards the centre, as

depicted in Fig. 2.6. The current flow mainly occurs within a skin depth, δ , from

the outer edge and the depth decreases as the current frequency increases. Hence,

the effective resistance of a conductor increases with signal frequency resulting in
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a higher loss, which in turn limits the propagation distance due to signal distortion.

At a 10 Gb/s data rate, the length for copper-based point-to-point links is limited

to 10 meters [8]. Pre-emphasis and equalisation are signal processing techniques to

mitigate the skin effect at the cost of increased latency, power and chip area [12, 11].

2.3.2 Bandwidth Density

Digital integrated circuits, such as those on server and switch chips, need to handle

a significantly high bandwidth density. However, the interconnect medium becomes

the bottleneck as the clock frequency of electronics continues to increase [7].

The resistance of the conventional electrical interconnect wires on integrated

circuits is too high for them to behave as transmission lines. Instead, they act as

resistive-capacitive (RC) lines. As a result, the line capacitance is charged and

discharged through the line’s bulk resistance and hence there is a rise time and fall

time with every bit transition between a logic 1 and a logic 0. This ultimately limits

how close together consecutive bits of information can be and therefore the bit rate.

The capacitance per unit length, Cl , depends on the wire’s geometry rather than

its dimensions. For well designed wires, this is approximately 2×10−10 F/m. The

resistance per unit length, Rl , is given by the following equation:

Rl =
ρ

t×w
=

ρ

A
(2.1)

where ρ is the resistivity, t the thickness and w the width of the wire, as shown in

Fig. 2.7.

The π model can be used to estimate the signal delay along a wire of length L.

As shown in Fig. 2.7, the wire is divided into multiple π sections of unit length each

having a resistance equal to Rl and a capacitance equal to Cl . The capacitance in a π

section is distributed equally to both ends of the wire. The RC time constant in each

section is given by the product of the resistance and the downstream capacitance,

i.e. Rl×Cl/2. Therefore, the RC time constant for the entire wire, τ , is given by:

τ =
∞

∑
n=1

RlCl

2
=

RlClL2

2
(2.2)
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Figure 2.7: On-chip wire model: (a) Wire cross-section and (b) The π model for wire delay
estimation.

Substituting equation 2.1, the wire delay can be expressed as:

τ =
1
2

ρCl
L2

A
(2.3)

Finally, the limit on the wire bit rate Rb is calculated as:

Rb ≤ 1/τ =
2

ρCl

A
L2 ≈ (5×1017)

A
L2 (2.4)

This assumes a well designed copper wire with ρ = 1.68× 10−8 Ωm at 20 ◦C. In

practice, the wire would be ran well below this limit, for reasonably spaced bits.

Therefore, the maximum bit-rate of an on-chip wire is strongly dependent on

its length, i.e. it is inversely proportional to L2 and it is also proportional to its

cross-sectional area, A. As transistor sizes are reduced according to Moore’s law

and the clock frequency of electronics increases, the aspect ratio of the electrical

interconnect medium limits the bandwidth density on a chip.

2.3.3 Switch Capacity and Power Consumption

The switch capacity is given by the product of the number of input/output ports and

the data rate of each port. Although data can be serialised onto a channel at 25 Gb/s
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or higher, commercial short-reach small form factor (SFP) copper transceivers can

deliver only 10 Gb/s Ethernet connections up to 10 meters due to signal integrity and

power constraints, as discussed above. The number of ports is determined by either

the number of high-speed pins on the switch application-specific integrated circuit

(ASIC) chip or the number of connectors fitting on the front panel rack unit. For

example, a typical top-of-rack (ToR) switch would have up to 96 ports fitting within

the 19-inch wide standard rack [9]. Therefore, a commercial electronic switch has

a capacity of the order of 1 Tb/s, for top-of-rack application.

The power consumption of an electronic switch is another limiting factor in

data centre scaling. The principle of operation in an electronic switch is such that

they store and forward every data bit, effectively dissipating energy with every bit

transition [10]. Consequently, the power consumption is proportional to the data

rate per switch port and therefore increases with the switch capacity.

2.4 Optical Networks for Future Data Centres
Optical interconnects, at the scale of a data centre or even down to the size of an

integrated chip, can be leveraged to overcome the limitations of electrical networks.

This section gives an overview on optical networks and how those can be used to

continue scaling the data centre performance, in response to the emerging services

and applications and their traffic requirements.

2.4.1 Transmission Distance and Bandwidth

In an optical network at the scale of a data centre, optical fibre is the transmission

medium between nodes in a given topology. The optical power launched into the

fibre is attenuated as the fibre length is increased due to losses [13]. The main loss

mechanisms include material absorption and Rayleigh scattering, which depend on

the transmission wavelength (λ ), and also waveguide imperfections such as fibre

core radius variation and fibre bending which cause extra scattering independent

of wavelength. Figure 2.8 shows the optical power loss in silica single-mode fibre

as a function of the optical carrier wavelength. Experimental results show that at

λ = 1.55 µm the fibre loss is approximately 0.2 dB/km, dominated by Rayleigh
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Figure 2.8: Optical power loss in silica single-mode fibre for different wavelengths.

scattering [13]. Another minimum is found in the region around λ = 1.3 µm where

loss is less than 0.5 dB/Km. Therefore, for the distances in a data centre network,

the optical fibre loss is nearly zero effectively removing the distance limitation of

high bit rate signals faced by electrical lines [10]. For comparison, a commercial

enhanced small form-factor pluggable (SFP+) 10 Gb/s electrical transceiver can

transmit with acceptable signal integrity up to 7 m [33] whereas its optical counter-

part near λ = 1.3 µm has a reach up to 10 Km [34] and near λ = 1.55 µm a reach

up to 80 Km [35].

Wavelength-division multiplexing (WDM) is a technology that is widely used

in optical communication systems to increase the transmission bit rate. It exploits

the large bandwidth of an optical waveguide such as fibre [13]. As shown in Fig. 2.9,

data streams originating from k independent sources are modulated separately and

each transmitted onto an optical carrier of a specific wavelength. Every transmitter

(TX) output is multiplexed onto the same optical link and the wavelengths propagate

simultaneously. On the receiver side, the WDM signal is demultiplexed into its k

constituent carrier wavelengths and each is forwarded to a dedicated receiver (RX).

If we let Rbc denote the bit rate of carrier c, where 1 ≤ c ≤ k, then the maximum
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Figure 2.9: Wavelength-division multiplexing (WDM).

total optical link bit rate, Rb, is:

Rb =
k

∑
c=1

Rbc (2.5)

The bit rate of each carrier is limited by the transmitter electronics [13]. For equal

carrier bit rates, Rb is improved by a factor of k compared to an electrical link. More

importantly, unlike electrical links, the total bit rate and loss are independent.

In long-haul transmission, for interoperability of devices, the International

Telecommunication Union (ITU) has standardised the WDM channel frequencies

(or wavelengths) in the range 184 THz - 196 THz with a minimum spacing of

12.5 GHz with respect to 193.1 THz [36]. This covers the C and L wavelength

bands spanning hundreds of wavelengths. Such technology could be leveraged in

data centre networks to dramatically increase the transmission bit rate compared to

electrical transmission.

Therefore, combined with the low loss of optical fibre, a WDM transmission

link can offer orders of magnitude higher bit rate-distance product, compared to

the skin-effect limited electrical transmission lines. In data centre networks optical

fibre is already in use to establish high bandwidth, low loss connections between

electronic switches, in the leaf-spine architecture. This is currently enabled by using

optical transceivers at the switch input/output ports for electrical to optical (EO) and

optical to electrical (OE) conversion. However, optical transceivers are costly and
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power hungry. In order to continue increasing the network bandwidth in a cost

effective manner, photonic integration is an inevitable next step [9]. Advances in

photonic integration are discussed below.

2.4.2 Bandwidth Density

The signal bit-rate (Rb) on an optical waveguide is independent of the waveguide’s

aspect ratio. Hence, compared to electrical on-chip wires, optical interconnects can

offer much higher bandwidth density, assuming a high level of photonic integration

and exploiting wavelength-division multiplexing, to reduce cost [9]. WDM allows

increasing bandwidth density for the same number of waveguides, compared to

electrical on-chip interconnects.

Advances in photonic integration allow having many photonic functions such

as lasing, modulation, wave guiding, multiplexing (MUX), demultiplexing (De-

MUX), switching and photodetection, on a single photonic-integrated chip (PIC)

[11, 9]. This can reduce the cost, energy requirement and footprint associated with

packaging coupled discrete optical components. Integration on silicon is also quite

interesting, as it can benefit from using standard CMOS fabrication processes and

can share packaging with electronics. A silicon PIC can have smaller dimensions

than integration on other materials, because the refractive index contrast, between

the waveguide core and cladding, is high. This allows to engineer waveguides with

micrometer bend radii.

Silicon photonics demonstrations include lasers [37], waveguides with loss

less than 2 dB/cm and micrometer-sized bend radius [38], micro-ring resonator

(circular waveguide) 10 Gb/s modulator consuming only 50 fj/bit [39], WDM

MUX/DeMUX with low insertion loss [40]. A compact, 0.8×15 µm2 germanium

photodetector with 30 Ghz modulation speed, has been integrated with a WDM de-

MUX for compatibility with multi-wavelength transmission [41]. A WDM silicon

photonic 8×8 switch, based on arrayed waveguide grating (AWG) technology, has

been fabricated and can perform passive wavelength-based routing [42].
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2.4.3 Switch Capacity and Power Consumption

Optical switches using beam steering based on free-space optics, with hundreds

of input/output ports and less than 3 db insertion loss, are already commercially

available [15, 16]. Capitalising on the WDM technology, such switches can offer

capacities of the order of petabits per second, significantly outperforming state-of-

the-art electronic switches.

Photonic integrated WDM switches overcome the capacity limits in electronic

switches, imposed by the number of connectors fitting on the front-panel of a rack

unit or the number of high-speed pins on the switch chip [9]. Optical switches, built

using a combination of technologies, can offer lossless operation with low crosstalk

and they have been shown to scale up to a 128×128 size.

Optical switches are bit-rate transparent; the power consumed by an optical

switch, is independent of the port bit-rate. Hence, unlike electronic switches, which

consume energy for every routed bit, the power consumption in an optical switch

does not increase linearly with the switch capacity. It is, however, proportional to

the switch reconfiguration rate. For example, an optical packet switch consumes

power proportional to the packet rate [12].

2.5 Scheduling
In networks, whether optical or electrical, resources such as a network path are

shared between the network hosts. Flow control is responsible for the efficient

allocation of resources to the incoming traffic such that the network or the switch

under control can, ideally, achieve a high throughput and deliver traffic with a low

latency.

Scheduling, among other functions, implements the flow control method in a

network or switch. That is, (a) it determines how resources, such as a switch output

port or a network path, are allocated and (b) it resolves contention when at least two

traffic sources request the same resource.

A scheduler digital circuit lies in the control path of a network or switch and it

makes decisions based on a resource allocation logic, or simply an allocator. The
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section starts with a discussion on arbitration logic, also referred to as an arbiter,

which is the fundamental building block of an allocator.

2.5.1 Arbitration

An arbiter, as the name implies, arbitrates the use of a resource that is shared among

a number of agents [43]. An agent could be a switch input port requesting access to a

switch output port, where the latter represents the resource. An arbiter is responsible

for allocating the resource or, when multiple agents are requesting the resource at

the same time, for selecting only one to resolve contention. Fairness is an important

property of an arbiter. A fair arbiter is one that serves all agents equally often.

2.5.1.1 Variable Priority Arbiter

An arbiter is constructed as a group of bit cells, one for every agent [43, 44]. As

shown in Fig. 2.10, every bit cell i has three inputs, the carry bit (ci), the priority bit

(pi) and the request bit (ri). Based on those, it generates two outputs, the grant bit

(gi) and a second carry bit (ci+1). The carry input, ci, indicates that the resource has

been granted to a higher-priority agent and therefore it is not available for this cell.

The carry output, ci+1, connects a cell to the next one, updating it on the resource

availability . For every agent requesting the resource, ri is asserted. The resource is

granted (gi is true), if it is available (ci is false) or if this agent is top-priority (pi is
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true). In that case, the carry output, ci+1, is asserted to notify the next bit cell in line

that the resource has been granted and is no longer available. The Boolean logic

equations that describe the cell are as follows:

gi = ri ∧ (¬ci ∨ pi) (2.6)

ci+1 = ri ∨ (ci ∧ ¬pi) (2.7)

The carry outputs “chain” together the arbiter cells to build the arbiter circuit,

as shown in Fig. 2.11. The circuit takes as inputs an n-bit request vector r, one bit i

for each cell i, and similarly an n-bit priority vector p. The p vector is one-hot;

in any given clock cycle, unlike r, it can have at most one bit set to indicate the

corresponding bit of r as top-priority. Priority decreases from that cell cyclically

around the carry chain. A fair arbiter is built by changing the top-priority cell from

clock cycle to clock cycle and it is known as a variable priority arbiter (VPA). The

priority input to the VPA can be generated using different schemes, among which

is the round-robin. The circuit generates an n-bit one-hot grant vector g, indicating

the winning request. The carry output bit of the last cell, cn, is used as the circuit’s

any g output, which indicates whether any grant has been given at all. The cn bit is

also fed back to c0, which could cause hardware implementation issues. A modified

VPA design, optimised for fast hardware implementation, is presented next.
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2.5.1.2 Hardware-Optimised Variable Priority Arbiter

The VPA circuit in Fig. 2.11, due to the cyclic carry chain, forms a combinational

feedback loop from the last cell back to the first. Generally, logic synthesis tools are

not capable of synthesising logic loops and therefore the entire design is difficult

to optimise. Also, most timing analysis and verification tools cannot work with

combinational feedback loops, which could lead to inaccurate results depending on

how the timing tool breaks the loop.

The feedback loop can be eliminated by using two complementary non-cyclic

arbiters that operate in parallel and then multiplexing their grant vectors [44]. This

is illustrated in Fig. 2.12. The first arbiter is a non-cyclic VPA (VPA NC), with c0

set high. In this way, VPA NC grants the first non-zero request, starting from the

top priority one until the highest-numbered request, rn−1. Unlike a conventional

VPA, it does not consider the requests from r0 through to the request before the top

priority one. Those requests are covered by the second arbiter, which is a fixed-

priority arbiter (FPA). An FPA assigns the resource to the first non-zero request

starting from r0. In general, in an FPA there is no combinational feedback; c0 is

always set low. One way to implement an FPA is to use a VPA NC with c0 and all g

bits set low. The two arbiters complement each other; if the VPA NC any g is true,

the circuit outputs the VPA NC g vector. Otherwise, it outputs the FPA g vector.
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This implies a 2:1 multiplexer operation, as shown in Fig. 2.12.

The delay in a conventional VPA, implemented as shown in Fig. 2.11, increases

linearly with the number of request inputs. The worst-case delay is incurred when

the carry bit propagates from the first arbiter cell to the last. In the optimised VPA,

there is an additional delay due to the multiplexer logic in the critical path. In [44],

a reduced multiplexer logic is presented with only an AND gate and an OR gate, to

keep delay small.

A faster VPA, optimised or not, can be constructed using carry look-ahead

techniques, such as those used in digital adders. In this way, the arbitration delay

exhibits a logarithmic grow with the number of request inputs. The implementation

results reported in [44] show that applying carry look-ahead enables the optimised

VPA to scale in size with a small increase in delay, with timing results being more

reliable and predictable compared to the conventional VPA.

2.5.1.3 Round-Robin Arbiter

As mentioned before, different schemes can be used to generate the p input to a

VPA. It could be a rotating priority, based on a shift register, or a priority generated

based on a random number generator. Such VPAs are called oblivious since p is

generated without any knowledge of r or g [43]. Both the rotating and random

VPAs have weak fairness as every agent will at some point in time be served. For

example, in a random-priority VPA, given only inputs ri and ri+1 are asserted in

every clock cycle, ri+1 only wins when pi+1 is true. For all other n− 1 possible

priorities, ri gets granted the resource. As a result, over time, ri will be serviced

n−1 times more frequently, in comparison to ri+1.

In a round-robin VPA, a request ri that is currently granted the resource, gets

the lowest priority in the next arbitration round [43]. Consequently, all other non-

zero requests will be serviced before ri gets access to the resource again. This is

implemented by generating the priority vector p based on the current grant vector g.

If the any g bit is set high, the next p is generated by performing a cyclic shift to the

left on the current g bits. Otherwise, if the any g bit is set low, the next p remains

the same as its current value. The pseudo-code is as follows:
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Algorithm 1: Round-robin priority generator
if any g is TRUE then

next p = circular shift(g);
else

next p = p;
end
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Figure 2.13: Round-robin priority generator. (a) A one-bit slice and (b) An n-bit priority
generator.

Figure 2.13 shows the circuit design for the round-robin priority generator. The

Boolean logic equation describing a slice of the priority generator is shown below:

next pi = g(i−1) mod n ∨ (¬any g ∧ pi) (2.8)

A round-robin arbiter is strongly fair, as the resource is allocated to the request
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sources equally often [43]. For example, in the case of scheduling a crossbar, the

number of times a switch input port is allocated an output port will be approximately

equal to the number of times any other input port is served, when averaged over a

sufficiently large number of arbitration rounds.

2.5.2 Allocation

While an arbiter deals with allocation and contention resolution of a single resource

to at most one agent, an allocator matches multiple resources to multiple agents

[45]. In switch design, an agent represents a switch input port or simply an input.

Similarly, a resource represents a switch output port or simply an output. An n×m

allocator accepts n m-bit request vectors and generates n m-bit grant vectors. An

m-bit request vector need not be one-hot, i.e. an input may request at most m output

ports at the same time. The entire request set can be represented by a binary request

matrix R, where a matrix element ri j is a request from input i for access to output

port j. Given a request matrix R, an allocator generates a binary grant matrix G,

subject to the following three rules:

1. An output port may only be granted to a requesting input port.

2. At most one output port may be granted to an input port.

3. At most one input port may be granted to an output port.

According to these rules, a grant gi j in matrix G can be asserted only if ri j is asserted

and there can be at most one gi j per matrix row and column. A grant matrix in

which all resources have been allocated, or equally all matrix columns have one bit

asserted, represents a maximum matching. If existing grants need to removed so that

more requests can be serviced, then the matching is maximal. Generating maximum

matches requires re-arranging G to add new grants, which can be complex and

difficult to optimise for low latency. Allocators producing maximal matches are

more suitable for low-latency implementation. In practice, however, heuristic-based

allocators are often employed for latency sensitive applications giving fast but only

approximate solutions, instead of maximal matches.
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Figure 2.14: A 2×4 input-first separable allocator.

2.5.2.1 Separable Allocation

The majority of heuristic allocators are based on separable allocation [45]. It means

allocation is performed separately as two sets of arbitration, one for the inputs and

one for the outputs, which could be in either order. An n×m input-first separable

allocator operates first across the rows of R using n input arbiters, one for each

row of R, to select at most one request per switch input port. Next, the outputs of

these arbiters are input to m output arbiters, which operate across the columns of R,

to select at most one input port per output port. The input and output arbiters are

separated into two ranks. Figure 2.14 shows a 2×4 input-first separable allocator.

The arbiters can operate on either fixed or variable priority, such as round-robin, the

implementation of which was discussed above.

An n×m output-first separable allocator operates first across the columns and

then across the rows of the request matrix R. To do so, it has a rank of m output

arbiters, selecting at most one request for each output port, and a second rank of n

input arbiters, selecting at most one output port per input port. Figure 2.15 shows

how a 2×4 output-first separable allocator is implemented.
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Figure 2.15: A 2×4 output-first separable allocator.

It is more effective to execute separable allocation across the shorter dimension

first, as more winning requests can propagate to the second-rank arbiters [45]. For

example, a 2×4 switch would benefit from an output-first separable allocator. For

square request matrices (n=m), separable allocation performs equally well in either

order.

The matching quality of a separable allocator, in terms of the number of grants

issued, can be improved by (a) staggering the top-priority request between first-rank

arbiters and (b) performing multiple iterations of separable allocation [45]. The first

technique makes it less likely for a subset of first-rank arbiters to select a request

destined to the same second-rank arbiter, where only one of them will be selected.

The second technique aims to add new grants to G. In each iteration, the allocator

ignores any ri j that falls in a corresponding row or column of G where a grant was

given. The number of iterations is limited by the time specification for performing

allocation. Latency-sensitive applications can afford a small number of iterations.

iSLIP [46] is a separable allocator based on round-robin VPAs. It staggers

the first-rank arbiter priorities by controlling when they should be rotated. More
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specifically, The priority of a first-rank round-robin arbiter is updated only if the

grant given also wins arbitration at the corresponding second-rank arbiter. Hence, G

has more non-zero gi j entries, as there are less conflicts at the second-rank arbiters.

Scheduling is a critical aspect in the design of an interconnection network, as

it determines its performance. In terms of implementation approach, it could be a

centralised unit for the entire network or a dedicated unit per switch or it can even be

distributed to the constituent switching modules within a switch. The next section

presents different prototypes of optical switching architectures and discusses their

scheduling implementation. Discussion starts by describing how optical switches

function and the technologies upon which they are built. The control plane design

and scheduling in particular is reviewed and compared in the form of tables, used

not only in the next section but also at the end of each scheduler design contribution

chapter in the thesis (Chapters 4 and 5).

2.6 Optical Switching
Optical switches are classified into space switches and wavelength-routed switches,

depending on how they use wavelength-division multiplexing. The difference is

illustrated in Fig. 2.16. In a space switch, a number of wavelengths are switched

simultaneously to an output port, in a single operation. This results in a high input

port bandwidth and low packet serialisation delay. In a wavelength-routed switch, a

single wavelength is used per switch input port and it defines the route through the

switch architecture to the output port. The two modes of operation are enabled by

the underlying technology used to build the switch architecture.

2.6.1 Technologies

Optical switch architectures are built based on one or more technologies, which

define the switch operation as space or wavelength-routed. Reconfiguration time

is also dependent on technology and can vary over approximately six orders of

magnitude, limiting the granularity of a switch and therefore its application. For

instance, a switch that is reconfigurable in tens of milliseconds is not suitable for

packet switching.
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Figure 2.16: Optical switch operation: (a) space switching and (b) wavelength routing.

The scale of an optical switch is limited by signal integrity [9], which varies

depending on technology used. As the switch port-count is increased, an optical

signal is degraded due to power loss, crosstalk and noise. These accumulate, as

more optical switches are cascaded, ultimately limiting the size of the network.

This is in contrast to electronic switches, in which signals are regenerated at every

memory element, such as a digital flip-flop.

Technologies are classified here according to their reconfiguration time. For

each technology, the largest switch implementation and resulting insertion loss and

crosstalk, are reported. Although photonic integration methods and processes are

outside the research scope, switch technologies that can be integrated can improve

the cost and energy efficiency while reducing the footprint of the switch, compared

to a discrete-component implementation [9, 11]. Silicon-integrated technologies

are of particular interest, for building switches using standard CMOS fabrication

processes and also with smaller physical dimensions compared to switches built on

other optical materials. This is due to the high refractive index contrast between
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the waveguide core and cladding. Silicon technologies would also allow switch

integration together with the control electronics.

2.6.1.1 Millisecond to Microsecond Reconfiguration

An N×N non-blocking optical switch, built as a micro-electro-mechanical system

(MEMS), can support a high port-count with low insertion loss. MEMS switches,

as the name implies, are micrometer-scale devices that rely on mechanical moving

parts, mainly mirrors, to switch an optical signal from an input port to an output

port [47]. Switching is implemented by signal deflection in free space; for an input

port, a micro-mirror is biased into an angle with respect to the incident light and

deflects it to the output port, either directly or indirectly via a second micro-mirror

for that output port.

For direct switching, an array of N2 mirrors is used. Each mirror is “binary”

i.e. configurable to only two states; either in the data path or out of it [47]. As

a result, the reconfiguration time is in microseconds. Such switches are typically

implemented on a single two-dimensional plane. However, the N2 mirrors required,

their size and the area to lay them out limits the switch port-count to N ≤ 32.

Indirect switching, by steering a pair of micro-mirrors, is implemented in a

three-dimensional (3D) plane and it requires only 2N mirrors configurable to at

least N discrete angles. Optical 3D-MEMS switches have been shown to scale

to N > 1000 with a 4 dB maximum insertion loss [48] and current commercial

products already support up to N = 320 with a 3 dB maximum insertion loss and

25 ms reconfiguration [15]. The reconfiguration speed is determined by the mirror

response time, which is limited by mirror size and precise movement between N

discrete angles [19].

Optical switching can be implemented based on piezoelectric actuation to steer

an optical signal in free space, directly from an input port to an output port without

any mirror deflection. In a three-dimensional plane, two opposing fibre arrays are

used, one for the input ports and one for the output ports [49]. Electronic closed

feedback loop from integrated position sensors is used to move the fibre collimators

based on piezoelectric actuator technology. A commercial optical circuit switch
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can currently scale to a 384×384 size with a 2.7 dB maximum insertion loss and a

25 ms reconfiguration time [16].

Waveguide devices such as a Mach-Zehnder interferometer (MZI) can perform

switching by exploiting the thermo-optic effect; changing the waveguide refractive

index (n) through a change in temperature (T ) [50]. Silicon is an attractive thermo-

optic material due to its high thermal conductivity and good thermo-optic coefficient

(∂n/∂T ) [50, 51]. Furthermore, it allows for integration with CMOS electronics.

In a 2×2 MZI-based switch, a 3 dB coupler divides the input optical power to the

two MZI arms where the phase of each guided signal can be shifted, before the two

interfere at the output 3 dB coupler. The phase shift is induced by heating the arm,

thereby changing its refractive index. In the “off” state, the two MZI arms are in

phase and a signal entering an input waveguide leads to constructive (destructive)

interference at the crossover (through) waveguide in the output coupler, switching

the input signal [51]. In the “on” state, the two arms are in anti-phase leading to

constructive (destructive) interference at the through (crossover) waveguide. The

0 to π phase difference can be induced by having a heater on one of the arms or

one per arm operating together in a push-pull configuration to swing from 0 to π/2,

which improves the insertion loss and crosstalk [51]. A silicon integrated 16× 16

switch was experimentally demonstrated based on 2×2 MZI-based switch elements

in a Beneš architecture featuring 22 µs reconfiguration time, 5.2 dB insertion loss

and -30 db crosstalk [52]. A strictly non-blocking 32×32 silicon on insulator (SOI)

integrated switch, based on push-pull driven 2× 2 MZI-based switches, was also

reported in [53] with 30 µs reconfiguration time but with 15.8 dB insertion loss and

-20 dB crosstalk.

Another waveguide device that can exploit the thermo-optic (TO) effect for

switching is a micro-ring resonator (MRR); a waveguide bent back onto itself to

form a circular resonant cavity of micrometer-scale radius (r). The ring resonates

when its optical path length is an integer multiple (m) of the guided wavelength

(λ ), according to (2πr)ne f f = mλ , where ne f f is the effective refractive index of

the ring. Hence, multiple resonances are supported and the spacing between them
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is known as the free spectral range (FSR). The FSR is inversely proportional to r

and for WDM application, the wider the FSR the larger the number of wavelengths

supported. In silicon photonics, the high refractive index (n) contrast between the

silicon waveguide core (n≈ 3.5) and the silica cladding (n≈ 1.5) allows to strongly

confine light and thus engineer bend radii smaller than 5 µm. This also enables

large scale photonic integration compatible with standard CMOS processes [51, 54].

For switching, one or more rings are placed between two bus waveguides for an

optical signal, at the resonant wavelength, to be coupled from one waveguide to

the other. Heating a ring changes its effective refractive index and shifts its resonant

wavelength, thereby enabling wavelength-selective switching. Using more than one

rings avoids a Lorentzian wavelength response, giving instead a box-like response

with a wide pass-band and sharp out-of-band roll-off for high extinction ratio. A

silicon photonic 8× 8 switch, based on 2× 2 TO-tuned dual-ring resonators, was

recently reported [55] with 8.4 dB average insertion loss and -16.75 dB average

crosstalk. The reconfiguration time is of the order of a few microseconds [51].

Liquid crystal (LC) technology can be used to switch light based on the LC’s

birefringence to control the polarisation of incident light [56]. In a 2×2 free-space

switch, input light is split into two beams with orthogonal polarisations before they

are incident on the LC. At the LC, the polarisation of each beam is rotated by 90 ◦,

or not if the LC is biased. At the output, the two beams are recombined and the light

is directed to one of the two outputs depending on whether polarisation rotation has

been applied. The broadband operation of such switches allows for space switching

application [57]. For this switch type, 80 ms reconfiguration time, 0.4 dB insertion

loss and -20 dB crosstalk have been reported [58]. In a more complex 2×2 switch

design [59], multiple ferroelectric LC rotations and more optical components are

used to improve reconfiguration time to 35 µs and crosstalk to -40 dB, but insertion

loss increases to 2 dB. The 2×2 elements can be arranged in at least log2N stages

in a topology such as Beneš or Banyan to build larger N×N switches, at the cost of

higher insertion loss [57].

A more practical approach for larger size, wavelength selective switching
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(WSS) is based on liquid crystal on silicon (LCoS) technology; a reflective array

of LC cells deposited on a silicon backplane which contains the CMOS driving

electronics [57]. Depending on the voltage applied across an LC cell, the phase

of incident light can be shifted. In a wavelength selective switch, an input WDM

signal is first directed at a diffraction grating, where the wavelength channels are

diffracted at different angles. At the LCoS device, every channel is focused on a

pixel area spanning multiple phase-shifting LCs that collectively form a control-

lable linear phase grating, in the range 0 to 2π , to steer a reflected channel to an

output port. Since each channel is switched separately, multiple channels can be

selected and multiplexed into the same output port. The reconfiguration time is of

the order of tens of milliseconds [60]. A 1× 40 LCoS WSS with 8 dB insertion

loss and -40 dB crosstalk has been demonstrated [61]. Multiple 1×N WSSs can be

stacked in a Spanke topology for N×N switching [57].

2.6.1.2 Nanosecond Reconfiguration

For wavelength routing in WDM switching, an arrayed waveguide grating (AWG) is

commonly used for wavelength multiplexing (MUX) and demultiplexing (DeMUX)

[62, 63]. An AWG has one input and one output star coupler, joined by a waveguide

phased array. In 1×N DeMUX operation, an input WDM signal of N wavelengths

is first launched onto the input waveguide, which leads to the star coupler. The

coupler splits the signal to the N waveguides of the phased array. Each individual

waveguide has a fixed length difference with respect to its adjacent waveguides,

such that for any given wavelength there is a specific linear phase change across the

array waveguides. In the output star coupler, this phase shift causes constructive

interference of each wavelength field at a different focus point. Output waveguides

placed at the N focus points are used to couple the individual wavelength fields. The

AWG device operates with no 1/N splitting loss and can be integrated on silicon

[64]. It is attractive as it inherently provides passive wavelength-dependent routing,

without using any active switching elements. Routing is periodic with wavelength;

any wavelength for which the phase shift across the array waveguides has changed

by 2π , is routed to the same output waveguide [62, 63]. The wavelength span over
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a period is the AWG free spectral range (FSR) and it needs to be at least N times

the channel spacing. In this way, wavelengths routed to the same output waveguide

fall in different periods to avoid crosstalk.

An N×N AWG can be used to built a passive router, assuming wavelength

tuning is used at the input/output ports [65, 66]. In an AWG router (AWGR), the

same N wavelengths are reused at each input port to establish a strictly non-blocking

all-to-all connectivity, at the same time. In practice, this would require a total of N2

fixed wavelength transceivers or N wavelength tunable transceivers. An AWGR is

cyclic; the wavelengths from two adjacent input ports appear at the output ports

cyclically rotated by one position. Hence, each output port receives N wavelength

channels, one from each input port. The input waveguides/ports are spaced such

that, on any phased array waveguide, signals of the same wavelength, from N input

ports, have an additional phase difference [65, 66]. Thereby, although combined in

an array waveguide, they are separated again at the output coupler and directed to

different output ports. Since an AWGR is passive, reconfiguration time is limited

by the time required for wavelength tuning, which can be less than 10 ns [67]. A

silicon AWGR with N = 512 has been fabricated [68] but with a high inter-channel

crosstalk of -4 dB and a prohibitively large transceiver count (N2). A silicon 8×8

AWGR has been reported with crosstalk less than -20.5 dB and 2.32 dB insertion

loss [42].

Similar to the thermo-optic (TO) effect, the electro-optic (EO) effect can also

be used to change the refractive index of a waveguide, in this case by applying

an electric field, to achieve nanosecond reconfiguration. As already discussed,

by changing the waveguide refractive index, the phase of the guided signal can

be shifted to perform switching in devices such as Mach-Zehnder interferometers

(MZIs). As in TO MZI switching, phase tuning in 2× 2 MZI-based switches can

be driven single-ended (one arm) or push-pull [69]. Silicon photonic nanosecond

16×16 switching, based on MZIs driven single-ended [70] or push-pull [71], have

been reported. To date, the largest demonstrated silicon integrated EO MZI switch

was 32×32 built in Beneš architecture and reconfigurable in 1.2 ns with push-pull
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drive [24]. However, the measured insertion loss and crosstalk were as high as

20.8 dB and -14.1 dB, respectively.

In a silicon EO-tuned micro-ring resonator (MRR), heavily doped p- and n-

regions surround a ring waveguide, to form a p-i-n junction. The ring’s effective

refractive index (ne f f ) is changed by appropriately biasing the resulting diode to

vary the carrier concentration in the ring, through injecting and extracting carriers.

Small, 2×2 silicon EO-tuned MRR switches have been demonstrated [72, 73], with

a reconfiguration time less than 2.0 ns but with high insertion loss (> 10 dB) and

crosstalk (>−20 dB).

Semiconductor optical amplifier (SOA) technology can be used to gate optical

signals. When biased, the SOA is turned “on” providing broadband amplification.

Otherwise, when “off”, the SOA blocks an incident signal. N×N SOA-based space

switches have been predominantly implemented in a broadcast-and-select (B&S)

configuration, which requires a single SOA gate per switch path, and is therefore

logically equivalent to a crossbar. In the B&S architecture, an input signal is split

N ways for broadcasting to all output ports where N parallel SOA gates are used

per output port, each selecting one input port, when turned “on”, to establish an

input-output port connection. The inherent SOA gain compensates for the splitting

and combining losses and its broadband operation allows handling WDM signals.

Also, the high “on”/“off” extinction ratio allows for excellent crosstalk suppression.

However, scalability in an integrated B&S configuration is limited by the N2 SOAs

requirement and the high number of waveguide crossings [23]. Instead, smaller

B&S modules can be arranged in a multi-stage architecture to scale to a larger size.

Although insertion loss and crosstalk are not significant, scalability in multi-stage

architectures is limited by amplified spontaneous emission (ASE) noise and signal

saturation-induced distortion at high bit-rates. Lossless, integrated 16×16 switches

have been fabricated [74, 75], based on 4× 4 or smaller B&S switching modules

interconnected in a three-stage Clos architecture. SOA reconfiguration times of the

order of hundreds of picoseconds, have recently been reported [20].
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Technology Time Scale Insertion Loss Crosstalk

LCoS WSS O(10) ms 1×40 Medium Low

Piezoelectric O(10) ms 384×384 Low Low

3D-MEMS O(10) ms 1100×1100 Low Low

2D-MEMS O(10) µs 32×32 Low Low

LC O(10) µs 2×2 Low Low

SiP TO-MZI O(10) µs 32×32 High Medium

SiP TO-MRR O(1) µs 8×8 Medium High

SiP AWGR O(1) ns 512×512 Medium High

SiP EO-MZI O(1) ns 32×32 High High

SiP EO-MRR O(1) ns 2×2 High High

III-V SOA O(100) ps 16×16 Low Low

Table 2.1: Switching Technologies Comparison

2.6.2 Technologies Review and Comparison

The switching technologies are compared in terms of reconfiguration time, scale

of implementation, insertion loss and crosstalk. For the latter two, three levels of

performance are defined. More specifically, a medium level is assigned for values

in the range 5dB≤ Insertion Loss≤ 10dB and −40dB≤ Crosstalk≤−20dB. Any

values out of range are considered to be of low or high level. Table 2.1 compares

the reviewed technologies, sorted by reconfiguration time in decreasing order.

Beam steering switches, based on 3D-MEMS and piezoelectric actuation, can

scale to hundreds of ports with very low insertion loss (< 3 dB). Hence, they can

be cascaded, without any signal regeneration or amplification, to build large optical

networks. Due to their millisecond reconfiguration time, they can be used for circuit

switching, which has been the subject of many research proposals [8, 17, 18, 76].

For microsecond switching, up to moderate switch sizes (N ≤ 32), the low

loss and crosstalk of the 2D-MEMS technology makes it more attractive than liquid

crystal (LC) or thermo-optically (TO) tuned Mach-Zhender interferometer (MZI)

and micro-ring resonator (MRR) technologies. The Mordia 24×24 circuit-switched

architecture prototype [19] was built on six 1×4 2D-MEMS optical switches. The



2.6. Optical Switching 62

square law relationship between size and component count or area, increases the

complexity of the implementation and hinders scalability.

For compatibility with packet and circuit switching, and silicon photonic (SiP)

integration, electro-optically (EO) tuned MZI and MRR technologies may be used

[9, 69]. MRRs allow for compact, energy-efficient space switching or wavelength-

routing, but they have narrow bandwidth and require accurate temperature control.

MZIs can be used for space-switching and are less temperature dependent, but they

are larger in size and consume more energy. The high insertion loss and crosstalk

of the EO-MRR and EO-MZI technologies, prevent scaling to large switch sizes.

For wavelength-routing and SiP compatibility, an AWGR is the other main

alternative to MRR technology. AWGR technology is attractive because it allows

for passive packet routing, in contrast to the TO- and EO-MRR technology. Speed

of reconfiguration is determined by the wavelength tuning time at the hosts. The

number of fast tunable lasers required, as size is scaled, increases implementation

complexity, cost and energy consumption, outweighing the benefits of the passive

fabric. Other limiting factors to scalability are the insertion loss and inter-channel,

as opposed to inter-port, crosstalk.

Among nanosecond-reconfigurable solutions, the SOA appears to be one of

the most promising technologies. It is typically deployed in a the broadcast-and-

select (B&S) configuration on a III-V platform [77]. Its inherent amplification in

the “on” state, compensates for the splitting and waveguide loses in the B&S fabric.

Additionally, the optical power suppression in the “off” state, significantly reduces

crosstalk. However, the gain required to compensate for the losses, limits scalability

due to noise building up. Using smaller B&S modules, interconnected in a multi-

stage topology, has been proposed for building larger switches [23]. SOA-based

switching has been the subject of a number of architecture proposals, as discussed

in the next subsection.

A combination of technologies may be used to enhance switch performance.

A hybrid-technology MZI-SOA switch has been proposed [78], to improve energy-

efficiency and noise performance in large switches, compared to using the SOA-
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based B&S configuration. The hybrid approach uses the MZI technology for low-

power switching and the SOA technology for insertion loss mitigation and crosstalk

suppression. An MZI avoids any splitting or combining losses, thus less SOA gain

is needed, improving both the power requirement and the ASE noise contribution.

In addition to using SOAs, the crosstalk is further reduced by using dilation. That is,

each 2×2 MZI carries at most one input signal at a time. This technique therefore

trades off crosstalk performance with component count, as twice as many parallel

MZIs and SOAs would be needed, for a given switch size. An integrated, hybrid,

dilated 2×2 space switch has been reported with 3 ns reconfiguration time, 3.6 dB

insertion loss and -40 dB crosstalk [79]. Switch operation using 10 wavelengths

at 10 Gb/s has also been demonstrated, for WDM application. Compared to the

SOA B&S architecture, an order of magnitude improvement in noise and more than

50% improvement in power consumption, have been reported. In an experimental

recirculating loop, using this 2×2 switch, scalability up to a 128×128 switch size,

in Beneš architecture, has been demonstrated [80].

2.6.3 Architectures

Optically-switched architecture prototypes, based on the above technologies, have

been built to demonstrate the potential of optical networking. In this subsection,

some of the most notable demonstrations in the literature are presented.

A number of optical circuit-switched architectures have been proposed for data

centres, including Helios [8], c-Through [18], Mordia [19] and RotorNet [17]. They

all use commercially available MEMS technology, which offers low insertion loss

and can scale up to hundreds of ports. The network servers connect to electronic

ToR packet switches. The ToR switches are interconnected using both an optical

circuit-switched network and an electrical packet-switched network. Both networks

work in parallel to cater to different traffic dynamics; the optical network is used

for high-volume slowly-changing traffic whereas the electrical network caters to

small-size and bursty traffic patterns. This hybrid network approach is a result of

the long optical switch reconfiguration times, ranging from microseconds to tens

of milliseconds, imposed by the MEMS technology. The reconfiguration time is in
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addition to the control plane latency, which could also be on millisecond timescales,

as discussed next.

Apart from RotorNet, the aforementioned architectures all use a centralised

scheduler to reconfigure the entire architecture, in response to the traffic dynamics.

This requires network-wide demand estimation, resource allocation, and schedule

distribution [19, 17]. These control functions can add up to a significant latency.

For example, in order to achieve high network utilisation in c-Through and Helios,

the Edmond’s algorithm [81], for resource allocation, can take 100s of milliseconds

to converge to a network-wide matching [18]. Hence, the proposed architectures are

better suited for large data centres, implementing circuit switching at the network

core where traffic is aggregated [8], or to support applications that generate non-

bursty traffic [18].

The RotorNet architecture [17] interconnects electronic ToR switches using

a layer of small-size MEMS-based optical switches, reconfigurable in O(10) µs.

Each switch rotates through a set of pre-determined configurations and collectively

they provide full connectivity between the ToR switches. In this way, no central

scheduling is required and switch configurations are not dependent on the traffic

dynamics. This, in turn, avoids additional control overheads, such as traffic demand

estimation and global allocation. But, even with a small set of switch configurations

to cycle through and limiting the transmission time, ToR switches still have to wait

more than a millisecond, before they regain circuit access. An electrical packet-

switched network is still required to cater to traffic with sub-millisecond latency

requirements. Moreover, for non-uniform traffic, the network utilisation can be

severely degraded, as many ToR switches can be idle.

Optical packet switches, enabled by nanosecond-reconfigurable technologies,

can be deployed at any layer of the data centre network and can handle arbitrary

traffic. In terms of control, no traffic demand estimation is needed and scheduling

can be performed in parallel and independently, for every optical switch. There

are, however, formidable challenges facing optical packet switching. Buffering and

signal processing in the optical domain are very limited compared to electronics
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[10]. In electronic packet switches, buffering is a critical mechanism to resolve

contention. There is no practical optical equivalent to electronic random access

memory (RAM). However, significant efforts have been made recently towards that

end [82]. Given the thesis focus is on practical optical packet switch design, in the

following sections, notable bufferless optical packet-switched architectures from

various research groups are presented and discussed in detail.

2.6.3.1 Data Vortex

The Data Vortex [22] is a bufferless, SOA-based, packet-switched architecture. The

packets are of fixed size and are initially buffered at their respective sources. They

are injected into the Data Vortex in a wavelength-striped format; the header and

payload are serialised onto k different wavelengths and transmitted/received as one

wavelength-parallel structure, enabled by WDM. This increases the port throughput

and simplifies the routing implementation.

The architecture is hierarchical based on C concentric cylinders, as shown in

Fig. 2.17. On each cylinder there are H 2× 2 space-switch modules [83]. Packets

are injected on one of A angles on the outermost cylinder and they are routed to

their destinations on the innermost cylinder [22]. Routing is pre-determined based

on the packet header. The Data Vortex is a synchronous and time-slotted system.

In each time slot, at the same time, every packet arriving at a module moves one

angle forward, either being deflected towards a module on the same cylinder or

it progresses inwards towards a module on the next cylinder. Deflecting packets

ensures that, at any given time, there can be at most one packet arriving at a module.

Since there can be no output port contention, the modules are bufferless.

Flow control is distributed to the switch modules where routing decisions are

made locally [83]. Deflection routing is enabled by control backpressure between

switch modules. A module A has two input ports, one for packets from module B,

on the same cylinder, and one for packets from module C, on the preceding cylinder.

Before a packet is deflected from B to A, B issues a control signal backwards to C,

to prevent any packet progressing from C to A. Routing priority is therefore fixed

and always given to same-cylinder packets.
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Figure 2.17: A 12× 12 Data Vortex with C = 3, H = 4 and A = 3. Module connectivity
shown from (a) top view and (b) side view. Module coordinates are (c,h,a),
where 0≤ c≤C−1, 0≤ h≤ H−1, 0≤ a≤ A−1.

Figure 2.18 shows a Data Vortex module [83]. A module is contention-free

and therefore no output port allocation is necessary. The only digital logic required

is for routing. Wavelength filters are used to detect any input valid bit and address

bit, which are then converted from optical to electrical (O/E) form. At the routing

logic, the valid bit marks the presence of a packet as opposed to noise. The address

bit is compared against a preset value, which could be either a logic-0 or a logic-1,

depending on the module’s position in the Data Vortex. If the address bit matches

the preset value, the packet is forwarded to the next cylinder in the hierarchy, unless

the input deflection signal has been asserted. If there is an address bit mismatch, or

the input deflection signal is asserted, the packet is forwarded to the deflection port

and remains on the same cylinder. At the same time, the output deflection signal is

asserted. In the meantime, the packet is propagated in a fibre delay line until the

module is reconfigured. If the valid bit is de-asserted, both SOAs are off to block
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Figure 2.18: A 2×2 Data Vortex SOA-based B&S module. Header valid (V) and address
(A) bits are recovered to make routing decisions. Control logic turns SOAs
“on”/“off”, based on address bit and input deflection signal, and asserts output
deflection signal, if necessary. Deflection input/output signals shown in red.

any noise from propagating in the Data Vortex.

A proof-of-concept 12× 12 Data Vortex architecture was implemented [84].

Error-free operation at 8×10 Gb/s per port was demonstrated, verifying contention-

free routing to all output ports, enabled by the deflection control.

2.6.3.2 SPINet

The Scalable Photonic Integrated Network (SPINet) [85, 11] is a packet-switched

architecture which, as the name implies, is designed to be suitable for photonic

integration. SPINet uses a butterfly topology composed of 2×2 or larger modules.

As shown in Fig. 2.19, a butterfly network is a multi-stage architecture in which

there is exactly one path between any input-output pair [11, 86]. Simple destination-

tag routing can be applied, in which the destination address bits determine the route

at each network stage [86]. Although blocking, this topology not only simplifies

routing but also implementation, therefore is scalable. Similar to Data Vortex, the

modules used are bufferless and perform SOA-based space switching [87]. Unlike

in Data Vortex, there is no deflection signalling and hence SPINet modules are not

contention-free. Contending packets are dropped and re-transmitted.

A SPINet is synchronous and operates in time slots [85, 11]. At the start of

a time slot, sources inject wavelength-striped packets, which increases throughput

and simplifies the module design, similar to the Data Vortex. Packets are of fixed
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Figure 2.19: An 8× 8 binary butterfly network and destination-tag routing from source 5
to destination 2. The destination address in binary is 210 = 0102 and selects
the route at each network stage as up (0), down (1), up (0). Regardless of the
source, the pattern 010 always routes to destination 5. This is valid for all
possible destinations.

size and they consist of header bits and payload segments, which are serialised

onto dedicated wavelengths. The header is a composed of a valid bit, indicating

a packet’s presence, and address bits. Once a packet is transported onto SPINet,

it is routed through the network stages based on the header address and then off

SPINet to its destination. The entire data path across SPINet is reserved so that

a packet receipt acknowledgement (ACK) can be sent from the destination back

to the source. The minimum time slot duration is therefore limited by the source-

destination round-trip time, through SPINet. If, at any network stage, the packet is

not allocated the requested module output port, the packet is dropped. In that case

an ACK is not received by the end of a time slot, and the source can re-transmit that

packet in the next time slot.

SPINet implements distributed flow control for scalability [85, 11]. Routing

decisions are made locally at the switch modules, based on allocation. Allocation is

needed because, unlike in Data Vortex, in SPINet more than one packet may arrive

at a module at the same time, on different input ports, requesting the same output

port. In an N ×N SPINet, based on 2× 2 modules, a header has log2N address

bits, one for every network stage, plus the valid bit. As illustrated in Fig. 2.20, a
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Figure 2.20: A 2× 2 SPINet SOA-based B&S module. Header valid (V) and address (A)
bits are recovered to make routing decisions. Control logic performs routing-
aware output port allocation and turns SOAs “on”/“off”.

module uses wavelength filters to extract the valid bit and the appropriate address

bits, before they are converted from optical to electrical (O/E) form [87]. Using the

extracted bits, allocation takes place based on variable priority (rotating, random,

round-robin) arbiters, and the appropriate SOAs are turned “on” [11]. Meanwhile,

the data path in a module is longer so that packets arrive at the SOAs as soon as they

are turned “on” [85]. Any packets losing allocation are dropped (SOAs are “off”)

and re-transmitted in subsequent time slots. SPINet modules do not communicate

any control information between them, such as the deflection signals in Data Vortex.

A 4×4 SPINet was experimentally demonstrated, verifying error-free routing

of wavelength-striped packets, contention resolution and ACK signalling [88].

2.6.3.3 OSMOSIS

The Optical Shared Memory Supercomputer Interconnect System (OSMOSIS)

[89], although originally aimed at high-performance computing, it certainly applies

to current data centres TO address their networking requirements.

OSMOSIS is based on N×N bufferless optical packet switches interconnected

in a leaf-spine topology. To avoid central allocation of the entire system, packet

buffering and accompanying O/E/O conversions would be necessary in between

the topology layers. Internally, an OSMOSIS switch uses SOA gates arranged in
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a broadcast and select architecture. Using WDM, packets from a group of N/k

sources on k different wavelengths are multiplexed onto a broadcast module. There,

the WDM signal is amplified and split to 2N select modules, two per output port.

Every select module has two ranks of SOAs; the first rank chooses a source group

and the second one chooses an individual source. A central scheduler performs

allocation in response to packet requests and turns “on” the appropriate SOA gates,

prior to packet transmission. By using 2N select modules, there are effectively two

data paths from a source to a destination, which improves latency at higher traffic

loads at the cost of increased switch complexity.

At every source, fixed-size packets are buffered per destination, using N VOQs,

in the network interface. The system is synchronous and operates in time slots,

whose duration is determined by the packet serialisation delay, given by the packet

size and bit rate. For every new packet, a request is issued to the central scheduler,

where a pending request matrix is updated. The scheduler performs allocation based

on a purpose-built fast low-latency parallel pipelined arbitration (FLPPR) scheme

[90]. Next, scheduler grants are issued, releasing a packet from the winning VOQ at

each source. At the same time, the B&S switch is reconfigured so that packets are

forwarded to their destinations, as soon as they reach the switch. Due to using two

select modules per output port, up to two packets may be received in a time slot. The

minimum packet end-to-end latency, when no contention occurs, includes a request-

grant round-trip to the scheduler, the scheduling delay and the packet propagation

delay from source to destination, including packet de/serialisation delays.

Speculative (non-scheduled) packet transmission was proposed to reduce the

latency at low loads [91]. The local control at a network interface chooses a non-

empty VOQ, based on a predetermined policy (random, oldest-packet-first, etc),

and forwards the head-of-line packet to the switch, without waiting for a scheduler

grant. This scheme is to be used together with the scheduled transmission scheme,

which improves throughput at higher loads. The two schemes take advantage of

the dual-module output port implementation; the first module is used for either

scheduled or speculative packets and the second one only for speculative packets.
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The speculative scheme has been shown to achieve significant latency reduction up

to 50% traffic load [92].

A proof-of-concept OSMOSIS demonstrator was built [12]. A 64× 64 B&S

switch was built out of discrete optical components. The packets had a size of

256 bytes and they were serialised at 40 Gb/s, resulting in 51.2 ns time slots. All

packet transmissions were scheduled (non-speculative). At the time, to implement

the scheduler alone, spanned multiple FPGA boards. As a result there were many

chip crossings and the minimum latency was approximately 1.2 µs. A maximum

port throughput of 75% was also demonstrated.

2.6.3.4 OPSquare Switch

OPSquare [21, 93] is a flat data centre architecture in which electronic top-of-rack

(ToR) switches, separated in clusters, are interconnected using two parallel optical

networks; one for intra-cluster connectivity and one for inter-cluster connectivity.

Both networks use N×N optical packet switches and support a total of N2 ToRs,

hence the name OPSquare.

In an N×N OPSquare switch, every input/output port clusters k racks, each

transmitting/receiving packets on a given wavelength, using WDM [94]. A copy

of the packet is buffered at the source for possible re-transmission. As shown in

Fig 2.21, the switch is divided into N modules, one for each input port. The WDM

input is de-multiplexed and each wavelength is processed in a dedicated module.

The in-band label/header is extracted and forwarded to the control logic, after O/E

conversion, while the payload is forwarded to a 1×N SOA-based B&S crossbar.

In the control logic, the packet destination is recovered from the extracted header

and allocation is performed to reconfigure the k crossbars in a module. Allocation

ensures at most one wavelength is matched with an output port. The control logic

issues acknowledgements (ACKs) to inform the sources whether re-transmission is

necessary [95]. The payloads arrive at the corresponding crossbars as soon as those

are reconfigured. Then, every AWG multiplexes at most one switched wavelength

to an output port. There, fixed wavelength conversion (WC) takes places to resolve

output port contention between wavelength received from different modules. An
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Figure 2.21: An N ×N OPSquare switch. It is based on a parallel modular architecture
with distributed control.

AWG multiplexes wavelengths into a WDM output, for a cluster of racks. The

1×N crossbar has been shown to scale to 64 ports [95].

Control in the OPSquare switch is distributed to the input modules. A label

is transported in-band with the payload, encoded offset to the payload wavelength.

It contains M distinct RF tones which collectively form a binary representation of

the packet destination address [96]. Hence, the header can address 2M output ports.

At a module, once the header is extracted, it is converted from optical to electrical

(O/E) form. In the control logic, the M RF tones are then processed independently

and in parallel, for each wavelength. Every tone is captured using a dedicated band-

pass filter (BPF), centred at the appropriate frequency. Next, an envelop detector

is applied, comprising an RF amplifier and a low-pass filter (LPF). Round-robin

allocation then takes place, based on the recovered address bits [95], to reconfigure

the crossbars and resolve contention. Packets losing allocation are dropped and re-

transmitted, upon receiving a NACK. It has been shown that M = 30 tones can be

used per header. Multiple headers positioned at different payload offsets can further
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increase the address bits, at the cost of duplicate hardware per extra header.

Every cluster controller issues either a positive or negative ACK back to the

corresponding cluster sources, depending on the allocation results [95]. To do that,

a small percentage of the header power is re-modulated using a reflective SOA

(RSOA), driven by the controller ACK signal. The ACK signaling is shown in

Fig. 2.21. Meanwhile, packets are buffered at the sources until a positive ACK

is received. However, as the traffic load is increased, the fixed-size buffers may

overflow and packets are dropped. In terms of control latency, this ACK scheme

incurs a round-trip propagation delay which adds to the packet end-to-end latency.

A 4× 4 OPSquare switch has been experimentally demonstrated [95]. The

input port sources ran at 40 Gb/s with a 16-packet FIFO buffer to verify the ACK

scheme. Results show that such a system can be operated up to 50% input traffic

load with a 1× 10−5 packet loss. For the same load, the average packet latency

was 500 ns, dominated by the round-trip to the switch (2× 25 m) due to the ACK

scheme. In more recent work [97], a photonic-integrated module for the OPSquare

switch has been experimentally evaluated. An eight-way WDM input was broadcast

to two wavelength selective switches (WSSs). In each WSS, the WDM input is first

de-multiplexed by an AWG and then eight parallel SOAs allow selecting one or

more wavelengths to be multiplexed onto the output, by a second AWG. Results

verified lossless operation at 40 Gb/s demonstrating nanosecond wavelength and

space switching, critical for the OPSquare switch concept.

2.6.3.5 LION Switch

The low-latency interconnect optical network (LION) switch is based on AWGR

and tunable laser technologies to implement packet-switched, wavelength-routed

data centre networks [98].

The LION switch architecture uses two AWGRs, one for the data plane and

one for the control plane [98], as shown in Fig. 2.22. Packet buffering only occurs

at the hosts/sources. Depending on the packet destination, the host first tunes its

laser to the appropriate wavelength, according to a local lookup table, and then

generates a token request (TR). The TR is fed to a network interface card (NIC),
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Figure 2.22: An N×N AWGR-based LION switch. The switch supports all-optical token
(AO-TOKEN)-based transmission and all-optical negative acknowledgement
(AO-NACK)-based re-transmission to avoid packet loss.

which forwards it to the control plane AWGR. The TR is then passively routed to

the same AWGR output port that the packet is destined to in the data plane AWGR.

Finally, the output port issues a token back to the host NIC to indicate its availability.

In the meantime, the host uses the already-tuned laser for the TR to transmit the

corresponding packet. Upon arrival at the NIC, depending on the token received,

the packet may be forwarded to the data plane AWGR. Once at the AWGR input

port, the packet is passively routed to its destination.

Control is distributed to the control plane AWGR output ports, based on an all-

optical token (AO-TOKEN) scheme [99]. Optical arbitration is performed locally

at every output port, based on a reflective SOA (RSOA) operated at its saturation

power point. When a TR on λi is incident on the RSOA of a free output port, the

RSOA is saturated and it will amplify and reflect the incident signal back. The

counter-propagating signal is treated as a transmission token. At the NIC threshold
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detector, the received token is O/E converted and its power level is compared to

a threshold value. In this case, the power level will be greater than the threshold,

indicating a grant. The NIC control logic enables the arriving packet from the host

to be forwarded to the data plane AWGR, by configuring the 1× 2 switch in the

data plane. The TR on λi is held, keeping the RSOA saturated, until the packet

transmission is complete, or for multiple packet transmissions if those are destined

to the same output port. To do so, the control logic keeps the 1× 2 switch in the

control plane configured, since the time the edge detector first sensed the TR. In

the meantime, if a second host issues a TR for the same output port, the already

saturated RSOA returns a token at a lower power level, which would be detected

as a failed grant back at the second host’s NIC. As a result, the NIC control logic

recirculates the forwarded packet back to the second host and blocks its TR, by

configuring the data- and control-plane switches accordingly. At the same time, the

NIC of the first host, currently in transmission, detects a drop in the token power,

below threshold. This indicates that another host is requesting that output port and

hence the port should be released. This is to avoid host starvation.

Any blocked packet is re-circulated back to the host from the NIC, acting as

a NACK, to trigger a re-transmission. This all-optical NACK (AO-NACK) scheme

[100] allows for bufferless routing in the LION switch architecture. Morever, to

improve throughput, k receivers and RSOAs may be used, per data- and control-

plane AWGR output port, respectively. This reduces contention and more packets

can be delivered per output port, on different wavelengths.

The control latency consists of the wavelength tuning time to generate a TR,

the round-trip propagation delay from the NIC to the RSOA and the token detection

(O/E and threshold) and control logic processing time at the NIC [99]. The round-

trip delay is the dominating contribution. The total control latency is fixed and is

used as an offset between a packet and its TR [98].

A 32× 32 LION switch architecture has been experimentally validated [98].

The switch concept, using the AO-TOKEN distributed control, was verified with

and without packet contention. In case of packet contention, re-transmission was
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correctly triggered, verifying the AO-NACK scheme. Error-free operation was

demonstrated in both cases. To scale, smaller size AWGRs arranged in a Clos-

inspired architecture, can be used [98]. This reduces the number of wavelengths

required, which in turn improves the switch crosstalk performance and reduces the

wavelength range of the tunable lasers. In the same architecture, in more recent

work [101, 102], it was shown that micro-rings can be used at the AWGR inputs,

to drop specific wavelengths, and forward them to a micro-ring-based crossbar for

space switching, to increase port bandwidth. Each AWGR-crossbar switch in the

architecture has been shown scalable to 32 ports [101].

2.6.4 Architectures Review and Comparison

The Data Vortex can support a large number of hosts, due to its modular multi-

stage topology and its distributed control. However, the packet latency distribution

in a Data Vortex architecture has a long tail. The complex topology as well as the

packet-deflection routing, cause packets to be routed on unpredictable paths with a

different number of hops. The highly-variable and non-deterministic packet latency

not only renders the architecture unfit for latency-sensitive applications, but also

raises packet re-ordering issues. Also, the Data Vortex is not suitable for photonic

integration. Even though it is implemented based on bufferless modules, the packet

deflection mechanism effectively turns the entire architecture into an optical buffer.

Every packet occupies a fixed waveguide length and therefore the total waveguide

length required would be too high, making Data Vortex impractical to implement as

a photonic-integrated switching architecture.

A SPINet scales by increasing the switching stages of the butterfly topology

and distributing control to the modules. Control is simplified because of the static

routing in butterfly networks [86]. However, because the modules are bufferless,

packets are dropped upon contention and re-transmitted based on ACK signaling.

This incurs a control round-trip contribution to the packet latency. This penalty

applies to all other reviewed architectures using ACK signaling.

The Data Vortex and SPINet both rely on blocking architectures to simplify

switch implementation, at the cost of reduced throughput compared to a non-
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blocking architecture such as a crossbar or a Clos network [85]. For butterfly

networks, such as SPINet, extra network stages can be added to increase the path

diversity, thereby improving the throughput performance [11, 86]. This, however,

increases implementation complexity and packet latency.

Unlike in the other architectures, the source throughput in Data Vortex and

SPINet can be increased by exploiting the wavelength-striped transmission format.

Using k wavelengths, a source can transmit at k× rb, where rb is the bit-rate of

a single wavelength. Sources in OSMOSIS, for example, transmit using a single

wavelength, i.e. at rb, which is limited by the speed of the modulating electronics.

An N×N OSMOSIS scales by increasing the number of B&S modules and

wavelengths. Scaling is limited by the data plane and control plane complexity

[89]. The single-stage B&S switch requires O(N2) optical components and 1/N

optical power split, which increases the power requirement for an acceptable bit

error rate (BER). As for the control plane, in order to increase throughput while

completing a switch schedule within a time slot, log2(N) individual allocators are

used to perform multiple iterations in a pipelined fashion [90]. For large N, the

scheduler implementation spans multiple interconnected chips, increasing not only

complexity but also the packet latency [12].

OPSquare uses a parallel-module switch architecture with distributed control

and scales by adding more modules and wavelengths. Unlike SPINet, there is only

one switching stage, irrespective of the port-count, implemented in the modules.

Hence, packet propagation delay through the switch fabric remains constant as the

switch size is increased. Since a B&S crossbar is used per switch module, data plane

scalability is limited by the inherent power split, similar to OSMOSIS. The use of

distinct RF tones for the in-band header allows for parallel address processing, thus

the overhead is constant and independent of the number of address bits. However,

a cascade of components is used per bit. Also, this overhead is in addition to the

allocation time, which is dependent on the wavelength-count. In the meantime, the

payload has to be optically delayed in the module. The delay increases with payload

size and wavelength-count, with the latter limiting switch scaling. The large number
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of components in the control path and the long optical delay waveguide in the data

path, impede the module’s photonic integration. In comparison, the wavelength-

striped packet format in SPINet and Data Vortex, allows for the modules to be

integrated; a much simpler address processing circuitry is required, adding a small

overhead, and payloads of arbitrary size can be delayed over short waveguides. The

LION switch does not need any address processing, due to the passive routing in

AWGRs, and OSMOSIS avoids it, as requests are electrical and the scheduler can

use them directly for allocation.

The LION switch architecture scales by using parallel AWGRs in the data

plane, in order to relax the constraints on the AWGR port count and wavelengths

required. The use of tunable lasers at the sources, increases the implementation

cost, compared to the other architectures that use fixed-wavelength transceivers.

However, the LION switch core is more energy efficient as it does not use any

active switching elements, such as SOA gates; packets are passively routed to their

destinations depending on their wavelength. Also, it suffers no power split as the

other architectures using B&S switching do. The switch is scheduled based on all-

optical arbitration, distributed to the switch output ports. This is implemented by

using an extra AWGR for every data plane AWGR, and placing an RSOA at every

output port, to perform local arbitration on a first-come, first-served basis. This has

the advantages of no O/E conversion at the switch, no address recovery overhead

and lower request-to-grant overhead, compared to the other architectures. However,

scheduling is completed upon arrival and processing of the grant back at the host

NIC, incurring a round-trip delay penalty, as already discussed. More importantly,

the optical arbitration scheme is not as effective as an electronic one would be, due

to limited processing capabilities in the optical domain. More specifically, unlike an

electronic arbiter, when there are multiple requests for the same output port at the

same time, the RSOA-based scheme grants none. Also, the first-come, first-served

priority has weak fairness compared to a round-robin arbiter.

Table 2.2 compares the architectures in terms of flow control, sorting them

according to scheduling delay, in decreasing order. The scheduling delay values
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Scheduling

Prototype Delay (ns) Size Method Request ACK

Data Vortex Module 5.0 2×2 Distributed Out-of-band No

SPINet Module 5.0 2×2 Distributed Out-of-band Yes

LION 9.0 32×32 Distributed In-band Yes

OPSquare Module 25.0 8×8 Distributed In-band Yes

OSMOSIS 51.2 64×64 Central Out-of-band Yes

Table 2.2: Flow Control Comparison for Different Switch Architectures

listed are calculated based on values published in the literature, in the respective

proof-of-concept discrete-component demonstrations.

Scheduling a 2×2 module in Data Vortex [83] and SPINet [87] is estimated at

5.0 ns. This includes the delays for address bit recovery and output port allocation.

It should be noted that this 5.0 ns scheduling delay will be incurred per architecture

stage, increasing the total scheduling delay. For an N×N SPINet, that is a minimum

of log2(N)× 5.0. The Data Vortex uses no ACK signalling and therefore has no

extra round-trip delay contribution to the total control delay, in contrast to SPINet.

In the OPSquare switch, a more complex address recovery circuit is required

due to the in-band header with encoded RF tones. A 15.0 ns address recovery

has been demonstrated [94]. This overhead is independent of the port-count. For an

8×8 crossbar, internal to a module, allocation added 10.0 ns. Unlike in Data Vortex

and SPINet, a packet experiences the scheduling delay only once, since OPSquare

has only one switching stage. The total control delay has an extra ACK transport

delay added.

In the LION switch, scheduling is optical and distributed to the AWGR output

ports, thus its delay is independent of port-count and estimated at 9 ns. This includes

a 5 ns round-trip delay to the RSOA, at the AWGR output, plus 4 ns for token

recovery at the network interface [99]. The latter assumes no more than two clock

cycles in a 500 MHz hardware implementation of the network interface. For the

total control delay, laser tuning time (≥ 8 ns) and ACK propagation delay are added.

OSMOSIS uses a time-slotted central scheduler for the entire 64× 64 B&S



2.6. Optical Switching 80

switch [12]. The time slot duration is 51.2 ns, determined by the fixed packet size

(256 Bytes) and transmission rate (40 Gb/s). The input requests are electrical and

thus can be used directly, without any O/E conversion or adding address recovery

overheads. Using the proposed FLPPR method [90], a grant can be issued in a time

slot. The speculative transmission scheme [92] allows packets to be forwarded to

the switch without waiting for a grant. An ACK has to be issued back to the source

to confirm packet receipt, increasing the total control latency.

Apart from OSMOSIS, the other reviewed architectures all encapsulate the

control functionality within the switch itself, similar to electronic packet switches.

In OSMOSIS, however, the control plane is physically separated from the data

plane, exposing its complexity to the overall network, due to the required control

wiring [11, 17]. Nevertheless, the two planes can be upgraded independently [89],

if necessary.



Chapter 3

System Concept

The proposed switch system concept, as part of a leaf-spine data centre network,

is presented in this chapter. This covers the control plane design, extending from

the servers to the switch, but also data plane aspects such as server transmission

format. The switch design is described in detail, including the choice of photonic

architecture, routing scheme and flow-control method. The aim is ultra-low packet

latency, which is key to realising optical packet-switched networking. In contrast to

an electronic switch, the design of an optical switch is transparent to bit rate. This

is exploited in the proposed system by using a broadband photonic architecture for

the switch and wavelength-division multiplexing transmission for the servers, to

substantially increase bit rate and reduce packet serialisation delay.

3.1 Switch Application
Nanosecond-reconfigurable optical switches, at least up to a 64×64 size, have been

shown practical for photonic integration in SOA technology [23] or a combination

of MZI and SOA technologies [103, 80]. An optical switch of this size, can be used

to replace the currently electrical top-of-rack (ToR) switch, in the leaf-spine data

centre network.

The proposed data centre network concept is shown in Fig. 3.1. Optical ToR

switches interconnect servers and spine switches using WDM fibre links. Under

no path contention, packets from one server rack are switched to another, in two

hops. Every new packet is initially buffered in a first-in, first-out (FIFO) queue
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at the server network interface card (NIC). At the switch, packets may again be

buffered to resolve contention for a switch path. Buffering packets at the switch

a) reduces minimum packet latency and b) avoids packet loss. However, packets

failing allocation, due to contention, would require optical to electrical (O/E) and

electrical to optical (E/O) conversions, before traversing the switch, while the rest

of the packets cut-through the switch with no additional buffering. While O/E and

E/O conversions reduce the energy advantage of optical switching, they also allow

for regenerating optical signals. Hence, multiple such switches can be cascaded, to

scale the overall network size, as optical noise becomes irrelevant. The switch can

be implemented in a Clos architecture, to enhance scalability. A dedicated scheduler

is used to allocate switch paths and reconfigure the switch, in nanoseconds.

3.2 Wavelength-striped Transmission
A rack server connects to the ToR switch using an optical fibre link. Similar to the

Data Vortex and SPINet, the total bit-rate on the link is significantly increased by

using the WDM technology.

At the transmitter, every packet is divided into k segments and each segment is

serialised, at a fixed bit-rate, onto a specific wavelength. For example, a dedicated
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silicon photonic transceiver [104], integrated onto the server NIC, can be used per

wavelength. Enabled by WDM, the segments are then transmitted as one unit, in a

wavelength-parallel format, to the switch input port, as shown in Fig. 3.2.

This method, known as wavelength striping, has many benefits. It increases

the input port bandwidth to k times the wavelength channel bit rate. This, in

turn, increases switch capacity by a factor of k. Moreover, it reduces the packet

(de)serialisation delay, or head-to-tail delay, given by the ratio of packet size to the

input port bandwidth. Also, by dynamically reconfiguring how many wavelength

channels are bonded, based on the packet size, a low packet (de)serialisation delay

can be achieved, for variable-size packets.

3.3 Switch Architecture
The chosen switch architecture is important as it directly affects performance, such

as saturation throughput, its implementation complexity and scalability, but also the

practicality of the switch. That is, for example, if the switch can be integrated on a

single circuit or if it can be applied for packet or circuit switching. Also, based on

the architecture, the routing method and flow control are designed accordingly.

An optical packet switch needs to be reconfigurable on nanosecond timescales.

The broadband SOA technology, featuring sub-nanosecond switch transients, is

suitable for WDM photonic-integrated packet switching. For switch sizes up to
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Figure 3.3: Clos module architecture using parallel 2×2 SOA-based B&S switch elements.
The fundamental (a) 2×2 switch element is used to build (b) a 4×4 module.
An 8×8 module is built using the 4×4 module, and every twofold increase in
size is implemented as such, recursively around the 2×2 base element.

N = 32, a single-stage B&S architecture can be used, which is logically equivalent

to a crossbar switch; strictly non-blocking and any input-output pair are directly

connected by a dedicated path, activated by turning “on” a single SOA gate. The

resulting space switch can therefore achieve a high throughput and benefit from

simplified routing as well as flow control. The inherent amplification in the “on”

state, compensates for losses due to splitting/combining and waveguide crossings,

and in the “off” state crosstalk is dramatically suppressed. However, ASE noise is

added to the switched packets. In a leaf-spine data centre network, a packet has

to traverse a cascade of up to three switches, which is not a significant number of

hops. More importantly, the proposed input-queued switch, regenerates contending

packets, eliminating any noise contribution per hop.

The N2 component requirement, as well as the high number of waveguide

crossings, prohibit large-scale implementations in a single B&S switch stage. To

scale the switch beyond N = 32, an (m,n,r) Clos network is proposed to be used as

the switch fabric. The modules in the Clos switch can be implemented, for example,

using parallel 2×2 SOA-based B&S switches [23], as illustrated in Fig. 3.3.

For an m= n= r =
√

N, three-stage Clos switch, the module size is
√

N×
√

N.

Using B&S modules, N SOAs are required per module, keeping stage complexity

at a reasonable level. The total number of SOAs required for the Clos switch is

3N
√

N. As shown in Fig. 3.4, the total count is smaller for N ≥ 16, compared to
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Figure 3.4: Switch architecture comparison.

a single-stage B&S switch, such as the one in OSMOSIS. In a three-stage Clos

switch with B&S modules, only three SOAs are cascaded per data path, irrespective

of its size. Hence, ASE noise and saturation-induced distortion for high bit-rate

channels, remains at a fixed and low level as switch size increases. The Clos switch

scales by increasing the module size. Even though the module splitting/combining

losses increase with switch size, the SOA gain advantageously compensates for

those. This architecture therefore provides a good balance between the number of

switching stages and the loss at each stage, important for optical signal integrity. At

the same time, the relatively low stage complexity makes the switch practical for

photonic integration.

3.4 Switch Routing
Routing in the single-stage B&S switch is simple. There is one dedicated path,

directly connecting every input port to every output port. Once it allocates the

requested output port, the flow-control method executes routing by activating the

switching element (SOA) for that input-output pair. Due to the routing simplicity,

no additional control logic is required to make a routing decision, hence no control

overhead is incurred.

In an (m,n,r) Clos switch, there are m paths from an input port to an output

port. Routing logic is therefore required to choose a path, which can add a control
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overhead depending on how the paths are assigned. For the proposed Clos switch,

with m = n = r, the traditional software looping algorithm [31], rearranges already

assigned paths, to add new paths, and iterates until any arising conflicts are resolved.

Although it enables rearrangeable non-blocking connectivity, the overhead can be

prohibitively long for packet switching. Other path assignment schemes, such as

random, rotating or static, may be used to reduce or even eliminate the routing

overhead, at the cost of a blocking probability.

3.5 Flow Control

The proposed system concept is shown in Fig. 3.5. The system is asynchronous and

operates in single clock cycle time slots. Global clock distribution, for the entire

network, is therefore avoided. At every server NIC, the packets are initially buffered

in a first-in, first-out (FIFO) queue. The Request Control reads the destination of

the head-of-line (HOL) packet and issues a request for a switch output port to the

scheduler. The request structure consists of a valid bit and an output port field of

log2(N) bits. Hence, a request can be efficiently transported to the scheduler over
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Figure 3.6: Control delay comparison for two flow control methods: (a) non-speculative,
(b) speculative - successful allocation and (c) speculative - failed allocation.

[log2(N)+1] low-speed parallel electrical wires, each carrying a single bit.

Once the request is sent, the Packet Control holds onto the HOL packet for a

configurable number of hardware clock cycles, before it forwards it speculatively

to the transmitter (TX). This delay, between request and packet transmission, is

fixed and determined by the scheduler delay, tscheduler, including allocation and the

switch reconfiguration. Thereby, the packet arrives at the switch as soon as it is

reconfigured.

Unlike bufferless switching, where a packet is stored at the source until an

ACK (or grant) is received, here every packet is forwarded to the TX speculatively,

without a scheduler grant. Thus, the source NIC implements a “send and forget”

scheme. As shown in Fig. 3.6, this reduces the control delay, by eliminating the

overheads for grant transport from the switch back to the server NIC and for grant

synchronisation and processing at the NIC. In case of failed speculation, the packet

is buffered at the corresponding switch input port, to avoid packet loss, and it is

forwarded to its destination in a subsequent switch reconfiguration round.

At the TX, the packet is serialised onto the WDM fibre link, in a wavelength-
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striped format, and forwarded to the switch input port, as shown in Fig. 3.5. In

case of no packet contention, hence no failed speculation, the packet cuts through

the already reconfigured switch and is received at the destination with the minimum

end-to-end latency. Otherwise, the packet is stored at the switch input port.

At every switch input port, electronic buffering is implemented in a NIC, either

as a single FIFO queue or as N parallel FIFO queues, one for each output port. The

latter is known as virtual output queuing (VOQ). Compared to using a single queue,

the VOQ arrangement avoids the case where the HOL packet, while waiting to be

switched to its destination, blocks the preceding packets in the queue even though

they may be destined elsewhere. Thereby, the switch throughput is increased and

buffering delay is reduced, at the cost of increased scheduler wiring and allocation

complexity. Optical to electrical (O/E) and electrical to optical (E/O) conversions

are required when a packet is stored or released from a queue. Also, the packets

stored at the switch are wavelength-striped, which increases transceiver count. This,

however, is outweighed by the advantages of this transmission format, as outlined

in section 3.2.

The Request Control in the NIC, at every switch input, sends requests to the

scheduler in a parallel electrical format, just like at the sources. Switch NICs and

wiring to scheduler are not shown in Fig. 3.5, for diagram clarity. To implement

the VOQ buffering, N wires are required, compared to log2(N) for single-queue

buffering. Unlike speculative transmission at the sources, the Packet Control here

does not release the HOL packet from a queue, until a scheduler grant is received,

to avoid packet loss.

As shown in Fig. 3.5, for every switch input, a “FIFO full” signal is asserted,

when a queue is occupied beyond a threshold value, to notify the corresponding

source NIC to pause transmission (packets and requests). This provides control

backpressure and enables managing a small queue size at the switch inputs. Every

signal is either single-bit or an N-bit vector, if VOQ buffering is used. Overall,

this is the only control signalling from the switch back to the sources. The queue

threshold value depends on the propagation delay, tpropagation, between the switch
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and a source (round-trip) and the fixed delay before speculative transmission, tstx,

in the source buffer while scheduling completes. The threshold value is given by

the following equation and determines the minimum queue size required at a switch

input, to avoid packet loss up to 100% of input traffic load:

Threshold = tstx +2tpropagation (3.1)

The central scheduler is co-located with the optical switch, to keep the overhead for

control signal transport low. The scheduler receives two sets requests; one from the

sources, in response to new packets, and one from the switch, in response to packets

buffered at its inputs. The scheduler performs round-robin output-port allocation,

in parallel for the two request sets, and reconfigures the switch accordingly. This

includes the control signals for storing and releasing packets at the switch queues.

Priority is always given to switch requests, over new requests from the sources, for

strict in-order packet delivery and low packet latency. The scheduler delay is fixed,

dependent on the digital design. As shown in Fig. 3.6, it is the dominant control

path delay and, for packet switching, it has to be on packet timescales. However,

nanosecond scheduling becomes challenging as the switch size increases, due to

the allocation overhead. The next chapters discuss latency-optimised scheduling,

focusing on the allocation circuit design, to enable scalable packet switching.

In summary, the control plane latency is reduced by: (a) scheduler design,

(b) speculative transmission, (c) switch architecture and (d) switch routing. The

average end-to-end latency is further reduced by having: (a) wavelength-striped

packets and (b) virtual output queuing (VOQ) at the switch inputs. The focus of this

work is the scheduler design, optimised for clock speed and scalability.

3.6 Review and Comparison to Related Work
Compared to OPSquare, LION and OSMOSIS, in which a single wavelength is used

per source, the wavelength-parallel structure allows for a factor of k improvement

in transmission bandwidth, switch capacity and reduction in packet (de)serialisation

latency, for the same switch port count and packet size. If redundancy is employed,
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the number of parallel transceivers used can be increased dynamically to support

larger packets for the same or less serialisation latency. This is not an option for the

single-wavelength switch designs. Furthermore, wavelength-striped transmission

allows for a more cost-effective solution for E/O conversion. For example, a set

of k low-cost vertical-cavity, surface emitting lasers (VCSELs) or on-chip silicon

photonic transceivers can be used, to replace prohibitively expensive high-speed

serial transceivers [11]. These advantages come at the cost increased transceiver

count at the switch inputs, for storing wavelength-striped packets.

The Data Vortex and SPINet switch designs also increase throughput using

wavelength-striped transmission. In contrast to those designs, in the proposed

single-stage B&S architecture, being strictly non-blocking, the throughput saturates

at a higher fraction of capacity. The square law relationship, between component

count and port count, and the increasing waveguide crossings, however, limit size

to 32 ports, in a single-stage integrated B&S switch. The OSMOSIS switch scaled

to 64 ports using a discrete-component implementation with eight 8×64 broadcast

modules and sixty-four 8×1 select modules, in a parallel configuration. However,

high coupling losses, cost and footprint, associated with packaging the OSMOSIS

switch, make it impractical. The OPSquare switch has only two stages; one for

space switching and one for wavelength multiplexing. The switching stage also

uses a B&S configuration, which limits size to 64 ports. A viable LION switch size

is also 64 ports [105], limited by crosstalk and insertion loss, in a single AWGR

device. Larger sizes would also require more wavelengths to tune over at the

transceivers, increasing cost and complexity.

A Clos network with m = n = r, cascading smaller SOA-based B&S modules

in three-stages, is proposed to be used as the switch architecture for sizes greater

than 32 ports. Such architecture has been shown viable for scalable photonic-

integrated packet switching. Irrespective of switch size, the number of switch stages

remains fixed at three and so is the number of SOA cascades a packet traverses, if

single-stage B&S modules are used. This is important in data centre network as it

keeps the ASE noise and saturation-induced distortion per switch hop at a low level,



3.6. Review and Comparison to Related Work 91

important for low bit-error rate (BER). For comparison, a SPINet switch has at least

log2N stages, hence cascades more SOAs per data path, for N > 8. For example, a

64×64 SPINet requires cascading twice as many SOAs as the Clos switch, for the

same size.

As in the single-stage B&S switch, the OPSquare and LION switches require

no routing logic, since there is only one path from an input to an output. Also, the

LION switch benefits from passive routing, dependent on the packet wavelength.

However, there is a laser tuning overhead for passive routing, of the order of 10 ns,

compared to less than 1 ns reconfiguration for the SOA-based B&S architecture.

Routing a Clos switch is more challenging than a single-stage switch, because

there exist multiple paths through the switch, for every input-output pair. It requires

additional logic in the scheduler for route calculation, which increases complexity.

The delay of the traditional software looping algorithm, to converge to a routing

solution, would be prohibitively long for large packet switches. For high-speed

hardware implementation, a more practical approach is to assign predetermined

paths, similar to Data Vortex and SPINet, or choose a path randomly. However,

such routing schemes, trade off throughput for latency, as the Clos switch would

no longer be (rearrangeably) non-blocking. Nevertheless, the wavelength-striped

transmission can increase the switch throughput.

Transmitting parallel-electrical requests allows for (a) efficient transmission

and (b) simplified detection. Low-speed [log2(N)+1] wires can be used per source

to transmit requests. Since the scheduler is electronic, no O/E conversion is required

in the entire control plane. Compared to Data Vortex, SPINet, OPSquare and LION

switches, this simplifies detection by avoiding photodetectors in the control path.

In the proposed concept, having a single request bit per line, also simplifies request

synchronisation with the scheduler clock signal. Moreover, request transmission is

out-of-band which, compared to the OPSquare switch, avoids a cascade of multiple

components and associated overhead, for request/header recovery, per control path.

An input-buffered optical switch enables speculative packet transmission with

a “send-and-forget” source NIC. This eliminates the round-trip overhead for grant
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transport back to the source and also the overhead for grant processing, compared

to bufferless switch designs which store a copy of the packet at the source, until

a grant/ACK is received. In this way, the proposed switch design can achieve an

ultra-low minimum (no path contention) packet latency.

Although switch buffering based on fibre delay lines (FDLs) allows for all-

optical switching, the required waveguide length hinders the switch impractical for

photonic integration. In the proposed concept, silicon photonic transceivers and

fast dense electronic memory, is aligned with the industry goal to integrate CMOS

electronics with photonics, on a single chip, to share the packaging cost over a larger

system [106].

Electronic buffering at the switch, reduces the potential for energy and latency

merits of optical switching. Notwithstanding, it allows regenerating the optical

packets, per network hop, which makes the data centre network highly scalable,

as multiple network hops are supported.

As in OSMOSIS, in the proposed system concept, a dedicated centralised

scheduler is used per optical switch. This keeps the switching core all-optical

and separate from the control plane, which also allows for independent data plane

and control plane upgrade, if necessary. Centralised scheduling is sensible for the

single-stage B&S switch. In a multi-stage architecture, however, it is considered to

be adding a significant allocation overhead, because it handles requests from more

switch inputs, limiting scalability. The next thesis chapters are aimed at showing

otherwise; a centralised scheduler can be designed in a highly-parallel fashion, with

a small overhead on packet timescales, for large switch sizes. Additionally, central

scheduling can potentially increase allocation fairness, compared to a distributed

approach, due to its inherent global view of the allocation problem.

3.7 Tools and Methodology

A network emulator, with a packet level of detail, has been developed to model

the proposed system concept, in order to evaluate the switch performance for a

given traffic pattern. The main performance metrics used are the packet latency
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and switch throughput, to assess the choice of switch architecture, routing scheme

and flow control. The emulator and constituent hardware modules, are developed

in SystemVerilog, a hardware description language (HDL) for register-transfer level

(RTL) digital design and hardware implementation. An HDL emulator allows for

cycle-accurate measurements. For example, the end-to-end packet latency can be

reliably measured in hardware clock cycles, from the clock cycle a packet is injected

at a source to the clock cycle it is received at the destination. Another advantage

of using a SystemVerilog model is that key hardware modules, such as a source

NIC or the scheduler, can be directly synthesised as an ASIC or implemented on an

FPGA, to measure the minimum clock period. Hence, emulation latency results can

be translated from clock cycles to nanoseconds, for a highly-accurate measurement.

Scheduler synthesis and implementation is done using the Synopsys Design Vision

and Xilinx Vivado tools. The entire emulation is ran in Mentor Graphics ModelSim,

a simulation environment that allows network- and module-level verification. The

emulator setup is shown in Fig. 3.7, for an N×N switching system. It consists of N

packet sources, the network model and a packet sink.

A packet source is attached at every input port of the network. In the emulation,

the source generates packets of fixed size according to a given traffic pattern. As the

network model should be evaluated against a specific traffic pattern, a FIFO packet

queue is used in each source to isolate the applied traffic from the network. Given

an infinitely long queue, the network state cannot impact the traffic generation. For

instance, the case where a network input is unable to accept an injected packet, due

to a full buffer, is avoided. In the emulation, a queue with a depth of 4096 packets is

used. Packets are timestamped, before the source queue, so that the packet latency

includes the time spent in the queue. Next, the packets are forwarded to the network

and also to the packet sink, for counting.

At the packet sink, every packet arriving from the network is again counted

and timestamped. The packet latency is the time required for a packet to traverse

the network, from source to destination. It is calculated as the difference between

the two timestamps. The minimum packet latency is the main focus of the switch
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Figure 3.7: Network emulation setup includes N packets sources, the N×N network under
test and the packet sink. The network module verifies control and data plane
functionality and adds delays to accurately model the system concept. Once
performance is evaluated, the scheduler is either implemented on an FPGA or
synthesised as an ASIC.

design. Throughput describes the rate at which the network delivers packets to

their destinations. It is measured by counting the packets at each output port of the

network. A feature of interest is the saturation throughput and also how the network

behaves beyond saturation, as the input traffic load is increased.

The network model implements N server NICs, the allocator, and another set

of N NICs, one for each switch input. The packet sources are directly connected

to the server NICs, in a one-to-one mapping. Each server NIC has a FIFO queue,

as short as four packet entries, due to speculative packet transmission. The NICs

at the switch inputs, buffer packets either in a single FIFO queue or in N parallel

FIFO VOQs. Unless control backpressure is applied, the queue depth here varies

with input traffic load, and depends on buffering implementation (single queue or

parallel VOQs), switch architecture, routing and flow control. The switch buffering

requirement, for the different switch designs, is discussed in their respective thesis
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chapters. As shown in Fig. 3.7, in terms of functionality, the network model fully

implements the control plane, including NIC request and packet control for the

servers and switch inputs, scheduler allocation and switch reconfiguration, and also

backpressure control. The model includes data plane delays for packet speculative

transmission and buffering at the servers and switch. Extra delays are added for

control and packet propagation and packet (de)serialisation, to accurately capture

the latency characteristic of the proposed system concept.

The emulation is ran over four phases: reset, warm-up, measurement and cool-

off. A reset time of 100 clock cycles is used, over which the packet sources are

off and no packets are injected. During the warm-up period, the packet sources

are active, but the injected packets are neither counted nor are timestamped. The

warm-up period reduces the impact of systematic error on measurements. Without a

warm-up, packets injected early on in the emulation would have an advantage over

later packets, as they would see a more “empty” network, such as emptier buffers

and more idle resources. Hence, these packets would experience less contention

and lower latency. A warm-up period of 200 clock cycles is used to minimise the

influence of the initialisation. After warm-up, any packets injected are considered

as measurement packets and they are counted and timestamped at the source and

then once more at the sink. A measurement period of 10×103 clock cycles is used.

Finally, during the cool-off phase, the emulation is ran for as long as it takes for

all the measurement packets to be received at the sink. This could take up to an

additional 10×103 clock cycles, depending on the input traffic load.

The packet sources collectively generate the network workload. That is, the

traffic pattern applied at the network inputs, over time. In this network emulation,

the workload is synthetic, because it can capture the important aspects of a realistic

application-driven workload, while it is easier to design and control. A synthetic

workload has an injection process x, which is binary; a packet is injected when

x = 1, or not when x = 0. In the emulation, every packet source injects packets

randomly, using a dedicated Bernoulli process. In a clock cycle, the packet injection
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Figure 3.8: Behaviour of a Bernoulli process injecting packets at a rate rp over time. The
expected injection period is E(Tp) = 1/rp.

probability is:

P(x) =

1− p, for x = 0

p, for x = 1

In this case, the injection rate, rp, is equal to p and it is the same for all packet

sources, in any given clock cycle. The behaviour of a source using a Bernoulli

injection process is illustrated in Fig. 3.8.

A universal traffic load parameter is input to the emulation to set the injection

rate for all sources. The emulation is ran through all four phases, for a given load in

the range 0% to 100%. At 100% input traffic load, every source generates packets

in every clock cycle. The following pseudo-code demonstrates how the Bernoulli

injection process is typically implemented:

Algorithm 2: Pseudo-code model of a Bernoulli injection process
if rnd num( ) ≤ load then

inject packet( );
end

The function rnd num( ) generates uniformly distributed random numbers in

the range 0 to 100. The SystemVerilog built-in function dist uniform( ) is used for

this purpose. As for the packet destinations, every packet source uses a dedicated

uniform distribution, to assign a random switch output port to every injected packet.

This is implemented by also using the dist uniform( ) function, but random numbers

here are in the range 0 to N−1, for an N×N switch.
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Parameter Value

T 3.2 ns

Switch Size (N) 4 - 256

tstx 1T , 2T , 3T

tserial 1T

tpropagation 3T

FIFO Depth ≥ (tstx +2tpropagation)

Traffic Load 5% - 100%

Table 3.1: Parameters for Network Emulation

The emulation parameters are listed in Table 3.1. The emulation clock period

(T ) is set to 3.2 ns, the same clock speed as a server NIC, assuming transmission at

10 Gb/s and a 32-bit parallel bus driving the serialiser. The size for the crossbar and

Clos switches ranges from 4 ports up to 256 ports. The scheduler delay (tscheduler)

depends on its design and the target is 1T or 2T for a crossbar switch, and 3T for

a Clos switch, irrespective of switch size. Thus, the delay before server packets are

speculatively forwarded to the local TX (tstx), is either 1T , 2T or 3T . The packet

serialisation delay (tserial) is 1T . The propagation delay (tpropagation), for packets and

control signals, is set at 3T to emulate the time-of-flight over 2 m connections to

and from the switch. This cabling length is considered sensible for a rack-scale

switching system. When control backpressure is used, from the switch buffers to

the server NICs, the buffer depth required at the switch inputs can be as short as

8 packets, for a crossbar switch. With backpressure, the FIFO depth is a function

of tstx and tpropagation. Otherwise, without backpressure, the minimum buffer size

requirement becomes a function of traffic load. For a set switch size, the emulation

is ran once for every input traffic load, in the range from 5% to 100%.

The packet latency is calculated by subtracting the two timestamps associated

with each packet. The result is an end-to-end measure, expressed in clock cycles.

The packet latency, in the proposed system, is given by the following equation:

tpacket = tctrl + tqueue + tpropagation + tserial (3.2)
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The term tqueue accounts for the queuing delay at a switch input, due to contention.

The contention probability increases with input traffic load. Therefore, the packet

latency is a function of the traffic load.

The term tctrl refers to the control plane delay, which is constant and given by:

tctrl = treq + tpropagation + tscheduler (3.3)

The control plane delay includes overheads for request generation, treq and the

scheduler delay, tscheduler. The treq delay is 2T , comprising 1T at the source and

1T at the server NIC. Also, the tpropagation term appears twice in the packet latency

calculation. In Equation 3.3 it refers to the request propagation, from the server

NIC to the scheduler, over an electrical wire. In Equation 3.2, it refers to the packet

propagation, from the switch to the destination, over optical fibre.

The scheduler delay is a function of T, depending on the scheduler design:

tscheduler = P×T (3.4)

The multiplication factor, P, is to account for the number of pipeline stages in the

scheduler design. Pipelining is a technique used to decrease the clock period in a

design. The work aims at designing a crossbar scheduler with up to two pipeline

stages (P = 2) and a Clos scheduler with up to three pipeline stages (P = 3). If no

pipelining is used, P = 1. More details on pipelining and how it can be applied on

the scheduler design, are discussed in the next chapters. Therefore, 1≤ tscheduler≤ 3,

as already mentioned.

The minimum tpacket occurs when a packet experiences no contention, as it

traverses the switch. That is, tqueue = 0 in Equation 3.2. Hence, the minimum

packet latency is constant, independent of the traffic load.

In the emulation, the latency sum for all measurement packets is divided by the

total packet count, to calculate the average packet latency. This is then plotted as a

function of input traffic load. At low loads, the average packet latency converges to

the minimum value, which is the focus of the proposed switch designs. As the load



3.7. Tools and Methodology 99

is increased, the contention probability between packets for a switch path increases,

leading to more packets being buffered at the switch, thus increasing queuing delay

(tqueue), and consequently the average packet latency.

The packet latency distribution, at specific traffic loads, is also interesting to

plot, to examine the length of the distribution tail. The “shorter” the distribution tail

the less variable and more deterministic the packet latency is, an important feature

for latency-sensitive applications. The average packet latency per input-output pair

can also be plotted, to investigate the allocation fairness at the flow level.

The switch average throughput, as a function of input traffic load, is another

important performance metric. For a given input traffic load, the average throughput

is calculated as the ratio of the total number of measurement packets to the total time

taken to receive them at the sink, in clock cycles. It is expressed as a fraction of

switch capacity, which is N packets/clock cycle for an N×N switch, to allow direct

comparison between different switch designs, including switch size, architecture,

routing and flow control. When average throughput is plotted against traffic load,

an important feature is the saturation throughput; the highest average throughput

value that matches the input traffic load. It is the point where demand meets supply.

Equally significant is the throughput performance beyond saturation; the switch is

said to be stable, if it continues to deliver packets at the peak throughput, after

saturation. This demonstrates a fair scheduler design.

Once all the emulation results are collected, the scheduler is synthesised as

an ASIC chip or implemented on an FPGA board. Results, such as minimum clock

period (Tscheduler) and resource utilisation, are collected. More importantly, by using

the minimum clock period results, the level of detail of the network emulation can

be further increased, from packet level to hardware level. MathWorks “MATLAB”

is used to express packet latency in absolute time, i.e. in nanoseconds.

Table 3.2, list the parameters used to express packet latency in nanoseconds.

The delay tsync represents the scheduler overhead for request synchronisation, due to

the asynchronous control plane. The synchroniser logic runs at the scheduler clock

period, Tscheduler. For a synchroniser implementation as a cascade of two registers,
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Parameter Value (ns)

treq 3.2

tpropagation 10.0

tsync 2×Tscheduler

tswitch 0.115

tserial ≤ 1.28

Table 3.2: Parameters for Absolute Packet Latency Calculation.

the worst-case delay is 2Tscheduler. More details on bit-level synchronisation, its

implementation and delay, can be found in Chapter 6. The delay tswitch is to account

for the switch reconfiguration time, which can be as low as 0.115 ns for an SOA-

based optical switch. The packet serialisation delay, tserial, is assumed to be at most

1.28 ns, for 64 B packets wavelength-striped across 4 wavelengths, each modulated

at 100 Gb/s. The 64-byte packet size represents the minimum Ethernet packet size.

Given the latency of a single packet in clock cycles, the fixed delays for treq,

tpropagation and tserial, as listed in Table 3.1, are first subtracted. The remaining delay

contains the tscheduler and tqueue components. This delay sum is then multiplied by

the Tscheduler, for a given switch size. Finally, the fixed delays, now in nanoseconds

as listed in Table 3.2, are added back to obtain tpacket in absolute time.

The network emulation not only can return the packet latency for every packet

but also the total packet latency and number of measurement packets, for a given

switch size and traffic load. Given these results, the packet latency distribution

and the average packet latency can be converted in nanoseconds, as described, and

plotted to evaluate and compare switch design performance.

The following equation describes the packet latency, in absolute time:

tpacket = tctrl + tqueue + tpropagation + tserial + tswitch (3.5)

The scheduler delay, included in tctrl, is given by:

tscheduler = tsync +P×Tscheduler (3.6)
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A more accurate packet latency calculation allows for a more reliable comparison

between different switch designs, including architecture, routing and flow control.

The minimum scheduler delay, tscheduler, achievable on hardware, is important

for viable packet switching and it is the dominant component of minimum packet

latency, in a rack-scale system. The primary aim of the work is the design of a

nanosecond scheduler module, for large-size optical packet switching, in order to

achieve an ultra-low minimum packet latency. This particularly suited to latency-

sensitive applications and it is the subject of the subsequent thesis chapters.



Chapter 4

Crossbar Scheduler Design

The crossbar, as an architecture concept, has been widely deployed since the early

days of telephony networks. An N × N crossbar provides direct strictly non-

blocking connectivity between N ports, in a single stage. It does not require a

routing scheme and port-to-port paths are established by activating only one of N2

gating elements, laid out in a matrix configuration. A crossbar can also be used as

a switching module in other multi-stage architectures, such as a Clos network, to

increase network size. To this end, the focus of this chapter is the digital design of a

parallel scheduler for a crossbar switch architecture, optimised for clock speed, for

packet-switched networks. The chapter starts off with the baseline design, which

identified clock speed limitations, and then presents the proposed design which is

parallel in both dimensions, space and time, to significantly increase clock speed

and switch scalability. The design is compared to that in other crossbar schedulers

in the literature. Furthermore, the contributed designs discussed in this chapter have

been reviewed and published in [29].

4.1 Baseline Scheduler Design
The scheduler is designed as a synchronous sequential circuit. It consists of parallel

combinational logic blocks and registers that hold the state of the scheduler. Every

F-bit register is a bank of F parallel flip-flops that share a common clock signal.

On the rising edge of the clock, the input bit at every flip-flop is transferred to the

output, and the output state (0 or 1), is held until the next clock edge. The scheduler
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Figure 4.1: Scheduler design for an N ×N crossbar. There are two critical paths in the
design, depending on N, shown in red.

design is synchronous because all registers receive the same clock signal. That is,

the state of the scheduler is synchronised to the clock.

Figure 4.1 shows a block diagram schematic of the scheduler design, for an

N ×N crossbar switch. The circuit has two banks of registers, one at the input

and one at the output. The input registers sample in the request matrix R, for new

packets at the source NICs, and the request matrix RS, for packets buffered at the

switch inputs. The output registers hold the current state for the grant matrix, G,

as well as the switch control signals for reconfiguration, CCNFG, and for storing

and releasing packets from the switch buffers, namely the write-enable, CWE and

read-enable, CRE, signals, respectively.

The Arbiter Request logic generates the arbiter requests. Every request in R

and RS consists of a port field, to indicate the output port requested, and also a

valid bit that marks the presence of a non-zero request, when asserted. For every

valid request, the Arbiter Request logic effectively performs a log2 N : N decoding

of the port field, so that an arbiter can process a request directly. The requests

are forwarded to the appropriate arbiter, depending on their port field. The entire
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process is executed in parallel for R and RS, by using two copies of the Arbiter

Request logic, as shown in Fig. 4.1. The only difference between the two copies, is

that the logic for new packets ignores any requests from input ports for which RS

has valid requests. In this way, input port priority is given to packets buffered at

the switch. The purpose is to maintain strict in-order packet delivery, which also

reduces the average packet latency.

For every switch output port there is a dedicated N-bit arbiter. Therefore, each

arbiter handles at most N output port requests, from the input ports, in any given

clock cycle. The arbiters ensure that at most one request per output port is granted.

Every arbiter operates on the round-robin principle; the input port currently served

takes the least priority in the next round of arbitration, and the next input port in line

gets the highest priority. If that port does not have any request, priority decreases

sequentially from port to port. The entire arbiter set is referred to as the allocation

logic, or an allocator. As shown in Fig. 4.1, there are two parallel allocators, one for

R and one for RS. This approach allows to give priority to RS grants, without using

any feedback signalling that would slow down the scheduler, as described below.

The Grant Multiplexer (MUX) logic gives output port priority to packets

buffered at the switch, over new packets arriving from the servers. Since output port

allocation is executed in parallel and independently, it is possible that two arbiters,

in different allocators, grant the same output port to a new packet at the servers and

to a packet at the switch. Also, the two packets would be from different input ports,

since input port priority has already been given to packets buffered at the switch, in

the Arbiter Request logic for new packets. The Grant MUX logic ensures that only

the packet at the switch is granted the output port. The output vector of the Grant

MUX logic is used to create the next outputs of the scheduler circuit.

The priority vector, of any R arbiter, is updated only if the arbiter has issued

a grant, and that grant has not been filtered out by the Grant MUX. A feedback is

used from every RS arbiter to the R arbiter responsible for the same output port. In

Fig. 4.1, only the feedback for the first output port is shown, for diagram clarity.

The Grant logic generates the output vector G, which holds the grants issued



4.1. Baseline Scheduler Design 105

for new server packets. G is an N-bit vector in which every bit asserted indicates a

switch input port that is issued a grant. The Grant logic reads the output of the Grant

MUX, and asserts the appropriate bit for every grant that belongs to a new packet.

The significance of G is that every bit that is set high, corresponds to a packet that

will be switched with the minimum latency. More specifically, a server packet that

has won output port arbitration and does not contend with packets buffered at the

switch, neither for access to the switch input port nor for the destination output port.

The Write-Enable (WE) logic generates the output vector CWE to store new

packets from the servers, at the corresponding switch inputs. These are packets that

have either lost output port arbitration, due to contention with other server packets,

or competed for a switch input or output port, with packets already buffered at the

switch. The WE logic reads the Grant MUX output and generates the N-bit CWE.

Every bit asserted enables the buffer at a specific input port to store an incoming

packet, upon arrival at the switch.

The Read-Enable (RE) logic outputs the N-bit vector CRE, to release packets

buffered at the switch inputs. The RE logic checks the output of the Grant MUX, for

any grants that correspond to requests in RS, and asserts the appropriate bits in CRE.

For every switch input that a packet is to be released, a corresponding bit in CRE

is asserted. The packets are then switched to their destinations, with no additional

delay, as switch paths to the respective destinations are configured at the same time

as CRE is generated, as described next.

The Switch Configuration logic produces the output control signals in CCNFG,

to reconfigure the switch and setup paths through it, for the packets to traverse. The

logic reads the output vector of the Grant MUX and generates an output if any grant

is issued, irrespective of whether the grant is for a new packet or a packet buffered

at the switch. For every input port associated with a grant, the switch element

(SOA) to be activated, is addressed using log2(N) bits. Similar to the input request

matrices, an additional valid bit is used to indicate the presence of a valid switch

configuration. Therefore, in terms of size, the output CCNFG is an N× [log2(N)+1]

matrix.
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Figure 4.2: Average switch throughput vs. input traffic load, under Bernoulli traffic.

The critical path in the design determines the minimum clock period of the

scheduler. As the switch increases in size, the critical path in the scheduler changes.

Both possible critical paths are marked in Fig. 4.1. For small switch sizes, the

critical path is from the RS register, through the one of the RS arbiters and Grant

MUX, to the priority register in one of the R arbiters. Hence, the priority-enable

feedback signalling from Grant MUX to the R arbiters, forms the critical path. For

larger switch sizes, the delay through the logic for the outputs increases, causing the

critical path to continue from the Grant MUX to the Grant logic. A more detailed

discussion on the critical path is presented in the hardware implementation section.

4.1.1 Network Emulation Results

One of the most important metrics to assess switch performance is throughput. The

average switch throughput is calculated as the ratio of all received packets to the

time taken to receive them. In Fig. 4.2, the average switch throughput is plotted as a

function of input traffic load, for different switch sizes. As previously explained, the

load is expressed as a percentage of capacity, in order to directly compare different

switch designs. In this case, it highlights the effect of switch size on the throughput

performance. The “ideal” throughput is also plotted in the graph as the baseline. It

represents the case in which a switch delivers packets at the same rate as they are

generated.
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Throughput Saturation

Switch Size Traffic Load (%Capacity)

4×4 67.6

8×8 64.7

16×16 63.3

32×32 62.4

Table 4.1: Throughput Saturation Traffic Load vs. Switch Size.

As shown in Fig. 4.2, at low traffic levels, the function is linear with unity

gradient, for all switch sizes. That is, the switched traffic equals the offered traffic,

independent of switch size. As the load is increased, the switch eventually reaches

saturation, the highest throughput that matches input traffic load. The saturation

load is lower for larger switches, as shown in Table 4.1. However, the difference

is very small; the size penalty is approximately 5% between a 4-port switch and a

32-port switch. This demonstrates that the scheduler design can be scaled to control

larger switches with negligible degradation in switch average throughput.

The throughput results demonstrate that the switch is stable, irrespective of its

size. As the input traffic load increases beyond saturation, the average throughput

remains constant. A stable switch indicates that the underlying flow control method

is fair. In this case, the output-port allocation fairness is attributed to the round-robin

arbitration.

Buffering at the switch avoids packet loss while it enables speculative packet

transmission, at every server NIC, without ACK signalling. When no control back-

pressure is applied, the buffer size at the switch is a function of the input traffic load.

Figure 4.3 shows how the minimum buffer size varies as the load is increased, for

different switch sizes.

As expected, the buffer size increases with traffic load. For all switch sizes

examined, an 8-packet buffer is enough to support an input traffic load up to 25%

of port capacity. A buffer size of 16 packets enables lossless operation up to a

50% traffic load. Even for a packet size of 1500 B, which represents the Ethernet

maximum transmission unit (MTU), a 16-packet buffer translates to a small 24 KB
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Figure 4.3: Minimum switch buffer size vs. input traffic load: (a) 4×4 crossbar, (b) 8×8
crossbar, (c) 16× 16 crossbar and (d) 32× 32 crossbar. The crossbar is under
control of the baseline scheduler.

buffer, per switch input port. The throughput results are reflected on the minimum

buffer size. At the saturation throughput, up to an eight-fold increase in buffer size

is recorded, considering all switch sizes. Beyond saturation, the size requirement

increases rapidly with load, reaching a maximum of 2048 packets at a 100% load,

for a 32× 32 switch. Nevertheless, running a link at full capacity, is rarely the

case in a network. For some loads, before and also after saturation, the buffer size

requirement increases for larger switches. This is attributed to higher contention

probability in larger switches. However, comparing the smallest (N = 4) to the

largest (N = 32) switch, the increase in the required buffer size is never more than

double. Hence, there is a weak dependence between switch size and its buffer

requirement, demonstrating scalability.

The packet latency, given by Equation 3.2, is a function of the input traffic

load. The average value is calculated as the ratio of the total packet latency to the

number packets. Figure 4.4 plots the average packet latency against traffic load, for

different switch sizes. Latency curves are shown up to the saturation load. Since the

clock cycle duration in the emulation is the same for the entire network and for all
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Figure 4.4: Average end-to-end packet latency vs. input traffic load, for different switch
sizes. Network model assumes 3 clock cycles propagation delay to and from
the switch, for both optical and electrical links. Packets are 1 clock cycle long
and injected based on a Bernoulli process.

switch sizes, the minimum packet latency is fixed and it is plotted in the graph for

reference. In practice, the minimum clock cycle of the scheduler circuit increases

with switch size, which in turn results in a size-dependent minimum packet latency.

This is discussed in detail in the hardware implementation section below, where

also latency results, in nanoseconds, are reported up to a 100% traffic level.

At low loads, the average packet latency converges to the minimum value, as

shown in Fig. 4.4. As the traffic level is increased, the probability of contention is

higher, and therefore more packets are buffered at the switch. This is also evident

from the minimum buffer size results, which show an increase with traffic load, as

presented in Fig. 4.3. Hence, the packet queuing delay (tqueue) increases, which in

turn increases the average packet latency, for any switch size. All latency curves

exhibit a slow rate of increase with traffic load, with negligible difference between

them, up until a 55% load. As the saturation load is approached, the average packet

latency increases rapidly, and the increase is higher for larger switches, due to higher

contention. At 65% load, a difference of 45 clock cycles in average packet latency

is shown between the 4× 4 switch and the 32× 32 switch. Also, for these switch

sizes, there is a 5% difference in saturation load, which is in agreement with the

throughput results. The average packet latency, up to the saturation load, is less
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Minimum LUT Count FF Count

Switch Size Clock Period (ns) (% Total) (% Total)

4×4 2.5 0.02 0.01

8×8 3.6 0.12 0.02

16×16 5.0 0.46 0.09

32×32 7.7 1.79 0.37

Table 4.2: Xilinx Virtex-7 XC7VX690T FPGA Timing and Utilisation Results.

than 100 clock cycles, for all switch sizes.

4.1.2 Hardware Implementation

Once the scheduler functionality has been verified and its performance tested, in

the network emulation, the next step is to implement the scheduler on a hardware

platform. The minimum clock period results can then be used to obtain a more

accurate measure of the packet latency, in nanoseconds, instead of clock cycles.

The scheduler is implemented on the Xilinx Virtex-7 XC7VX690T FPGA. The

lookup table (LUT) count and flip-flop (FF) count, for this device, are 433,200 and

866,400, respectively. A clock period constraint is specified and if the implemented

scheduler meets timing, the clock period constraint is decreased. This method is

repeated until the scheduler implementation fails timing, in order to determine the

minimum clock period. Table 4.2 lists the minimum clock period achievable, as

well as the percentage of LUTs and FFs used, for different switch sizes.

As shown in Table 4.2, the minimum clock period and resources utilisation are

increasing with switch size. For an N×N crossbar, an N-bit arbiter lies in the critical

path of the scheduler design. This causes the minimum clock period to increase, as

N is increased. Also, as expected, more scheduler LUTs and FFs are required for a

larger switch size. The number of LUTs and FFs used is approximately quadrupled,

when N is doubled. However, for the largest switch size, less than 2% of LUTs and

0.5% of FFs are used.

The number of FFs used is in agreement with the number of registers in the

scheduler design, including those in the arbiters that hold the priority state. This
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verifies that the FPGA implementation tools have not removed any logic during

design optimisation, and therefore the scheduler design, as shown in Fig. 4.1, has

been fully implemented on the FPGA board.

The critical path in the design, which determines the scheduler minimum clock

period, is shown in Fig. 4.1. For small switch sizes, the critical path is formed due

to the feedback from the Grant MUX to the arbiters for new packet requests, used

to control when arbiter priorities are updated. As a result, the critical path starts

from the input register for the switch buffer requests, RS, through one of the arbiters

for RS, and terminates at the priority register of one of the arbiters for R. As the

switch size is increased, the signal delay through the logic for the outputs increases,

causing the critical path to continue from the Grant MUX to the output register for

the Grant logic.

Using the Tscheduler results, in Table 4.2, the minimum scheduling delay,

tscheduler, can be calculated using Equation 3.6, for every switch size. Since no

pipelining has been implemented in the scheduler design discussed so far, P = 1.

Therefore, tscheduler = 3Tscheduler, assuming worst-case tsync. Thus, the minimum

scheduling delay is 7.5 ns for the 4-port switch and 23.1 ns for the 32-port switch.

4.1.2.1 Packet Latency

As described in section 3.7, the packet latency for every switch size can be expressed

in nanoseconds, by using the minimum Tscheduler results, listed in Table 4.2, and the

fixed delays listed in Table 3.2.

The minimum end-to-end packet latency occurs when there is no contention

for a switch path. That is, in Equation 3.5, tqueue = 0. Substituting the minimum

Tscheduler results into the same equation, the minimum packet latency, for different

switch sizes, is as listed in Table 4.3.

Figure 4.5 shows the packet latency cumulative distribution function (CDF),

evaluated at 25%, 50% and 75% of traffic load, for 4 ≤ N ≤ 32. At a 25% load,

more than half of the packets are delivered with the minimum packet latency. Due

to higher contention probability, the fraction of minimum latency packets decreases,

as the switch size is increased. The fraction difference, however, is small; only 0.1
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Minimum

Switch Size Packet Latency (ns)

4×4 32.1

8×8 35.4

16×16 39.6

32×32 47.7

Table 4.3: Minimum End-to-End Packet Latency vs. Switch Size.

difference between N = 4 and N = 32. Furthermore, the packet latency, including

the minimum value, is longer for larger switches. This is mainly due to the longer

scheduler clock period, which increases the total scheduler delay. The increasing

packet latency is exhibited in Fig. 4.5a as a right-shift, for every curve representing

a larger switch.

At a 50% traffic load, the fraction of packets with minimum latency is reduced,

for all switch sizes. For the 32×32 switch, only a tenth of the packets are delivered

with minimum latency. This is mostly due to the buffers at the switch being non-

empty. The scheduler is designed to give input port priority to packets buffered

at the switch, to maintain packet order and reduce average packet latency. More

specifically, the Grant MUX in the scheduler, will filter out any grant issued for a

new server packet, if the corresponding switch input has a non-empty buffer. By

filtering out new packet grants, less packets are delivered with minimum latency.

As the load is increased, it is more likely new packets face non-empty buffers at

the corresponding switch inputs. Apart from input port priority, the fraction of

minimum latency packets also decreases due to increased output-port contention,

either between servers or servers and switch buffers.

At a 75% load, the switch is in the saturation regime. New packets at the

servers, irrespective of switch size, see a more occupied switch; it is highly likely

that buffers at the switch inputs are not empty and contention for output ports is

high. As a result, very few packets are switched with minimum latency. Also,

compared to lower traffic loads, more packets are buffered at every switch input,

increasing the overall packet latency. In contrast to 25% and 50% traffic loads,



4.1. Baseline Scheduler Design 113

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

(a)

4x4

8x8

16x16

32x32

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

(b)

10
1

10
2

10
3

10
4

Packet Latency (ns)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

(c)

Figure 4.5: Cumulative distribution of the packet end-to-end latency at (a) 25%, (b) 50%
and (c) 75% input traffic loads for different switch sizes. The Network model
assumes SOA-based crossbar with a 2 m link distance to every connected
source and destination. Packets are 64 B, wavelength-striped at 4× 100 Gb/s
and injected based on a Bernoulli process.
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Figure 4.6: Packet end-to-end average latency vs. input traffic load, for different switch
sizes. Network model assumes SOA-based crossbar with a 2 m link distance to
every connected source and destination. Packets are 64 B, wavelength-striped
at 4×100 Gb/s and injected based on a Bernoulli process.

the median packet latency is significantly higher, with a considerable difference

between different switch sizes.

The length of the “tail” of a CDF, is a measure of packet latency variance. Here,

the tail is defined as the latency difference between the 99th and 100th percentiles.

Figure 4.5 shows that the tail, for all switch sizes, at 25%, 50% and 75% traffic

loads, is very short. In fact, extending the tail definition to the 90th percentile, all

tails still remain very short. This indicates that the packet latency, even at traffic

levels as high as 75% of capacity, has a small variance.

The average packet latency in nanoseconds, for different switch sizes, is plotted

as a function of traffic load in Fig. 4.6. Based on the results, the 32×32 switch has

an average latency of approximately 100 ns at 60% load. For the same load, smaller

sizes achieve a lower average latency. Beyond the saturation traffic load, the average

latency increases rapidly for all switch sizes. For sub-microsecond operation, there

is a 5% decrease in maximum traffic load, as the switch doubles in size. At 100%

traffic load, the average latency is less than 10 µs for all switch sizes.
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Figure 4.7: Scheduler design parallelism: (a) spatial and (b) temporal.

4.2 Pipeline Scheduler Design

In the previous section, the scheduler design presented is capable of processing new

server requests and requests from the switch, in parallel. This form of parallelism

is spatial, since two hardware copies of the Arbiter Request logic and Allocator are

used. A second form of parallelism is temporal, i.e. in time as opposed to space.

With temporal parallelism, also known as pipelining, multiple tasks are divided into

stages and they overlap in time.

Figure 4.7, illustrates the concepts of spatial and temporal parallelism, for the

scheduler design. As depicted in Fig. 4.7 (a), the scheduler discussed in the previous

section performs allocation for server and switch requests in parallel, followed by

the switch configuration. Allocation for new requests cannot start until the switch

configuration task is complete. With a pipeline design, however, a second round of

allocation can start, while the scheduler executes switch configuration for the first

round of allocation. As illustrated in Fig. 4.7 (b), the pipeline scheduler runs at
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in the design is shown in red.

twice the clock speed, enabling three rounds of switch configuration in the time the

original scheduler, without pipelining, produces only two switch configurations.

Pipelining is implemented by placing registers between combinational logic

blocks, to divide the circuit into P pipeline stages that can run at a lower clock

period. In the illustration in Fig. 4.7, the allocation and switch configuration tasks

are shown to take the same time to complete, which enabled creating a two-stage

pipeline with equal-length stages. This is an ideal case in which a circuit divided

into P pipeline stages, reduces clock period by a factor of P, for the same total

circuit delay. In practice, it is often not possible to divide a circuit into stages of

exactly the same delay, and also registers add delay. The minimum clock period is

determined by the pipeline stage where the critical path lies, i.e. the longest stage

in terms of time.

The proposed scheduler design, for a crossbar switch, uses both spatial and

temporal parallelism techniques, as illustrated in the block diagram in Fig. 4.8.

Output-port allocation for new server packets and packets buffered at the switch,
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is executed in a space-parallel fashion, as before. In the new design, pipelining

is implemented by registering the arbiter grants. This makes the scheduler a two-

stage pipeline; in the first stage the output-port allocation task is performed, and in

the second stage, the task of generating the new switch configuration is executed.

A second modification to the scheduler design is the absence of a priority-enable

feedback signalling to the arbiters for new packet requests. The implementation of

the non-pipelined scheduler revealed that a feedback in the design may form long-

delay paths or even the critical path, for small switch sizes. Removing the feedback

increases clock speed, at the expense of occasionally updating the priorities of the

R arbiters for non-winning grants.

The critical path in the pipelined scheduler design, is shown in Fig. 4.8. It

extends from the RS register, through one of the RS arbiters, to either the priority

register of that arbiter or the arbiter grant register.

4.2.1 Network Emulation Results

The switch performance, using the pipeline scheduler design, is evaluated in the

network emulation and compared to the one using the baseline design. The delay

before speculative packet transmission, tstx, is increased by a clock cycle, since the

scheduling now requires two clock cycles to complete, due to the pipeline design.

The switch average throughput, as a function of the input traffic level, is shown

in Fig. 4.9. Throughput curves for different switch sizes, as well as the “ideal”

throughput, are also plotted for comparison.

For all switch sizes, as the input traffic load is increased, the switch average

throughput equals the offered load, until it saturates at a certain load. Saturation load

decreases with switch size, as shown in Table 4.4. Compared to the baseline design,

the saturation load, for a given size, is approximately the same. Same as with the

baseline design, the pipeline design shows only a 5% decrease in saturation load,

as the switch is scaled from 4 ports to 32 ports, and the average throughput remains

constant beyond saturation. Therefore, the pipeline scheduler is fair and enables

scaling the switch size with a very small penalty in saturation throughput.

The minimum buffer size required at the switch inputs, as a function of traffic
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Figure 4.9: Average switch throughput vs. input traffic load, under Bernoulli traffic.

Throughput Saturation

Traffic Load (% Capacity)

Switch Size Baseline Pipeline

4×4 67.6 67.3

8×8 64.7 64.4

16×16 63.3 63.3

32×32 62.4 62.5

Table 4.4: Comparison of Throughput Saturation Traffic Load vs. Switch Size.

load and switch size, is shown in Fig. 4.10. The buffer size is shown increasing with

traffic level. Nevertheless, a small buffer size of 16 packets is enough for operation

up to 50% of capacity, for all switch sizes. Therefore, pipelining the scheduler

design has no effect on the switch buffer size, for loads as high as 50% of capacity.

As the load is increased beyond the saturation level, the minimum size requirement

increases at a higher rate, reaching a value of 2048 packets, for the larger switches.

Figure 4.11 shows how the average packet latency varies as a function of the

input traffic load, for 4≤ N ≤ 32. The minimum packet latency is also plotted and

it is one clock cycle longer compared to that in Fig. 4.4. This is because of the

pipelined scheduler design, which adds an extra clock cycle to tscheduler.

At low loads, all latency curves are shown converging to the minimum packet

latency. As the the load is increased, the curves exhibit a low rate of increase with
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Figure 4.10: Minimum switch buffer size vs. input traffic load: (a) 4×4 crossbar, (b) 8×8
crossbar, (c) 16×16 crossbar and (d) 32×32 crossbar. The crossbar is under
control of the pipeline scheduler.
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Figure 4.11: Average end-to-end packet latency vs. input traffic load, for different switch
sizes. Network model assumes 3 clock cycles propagation delay to and from
the switch, for both optical and electrical links. Packets are 1 clock cycle long
and injected based on a Bernoulli process.
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Minimum LUT Count FF Count

Switch Size Clock Period (ns) (% Total) (% Total)

4×4 2.0 0.02 0.01

8×8 2.4 0.11 0.04

16×16 3.2 0.45 0.16

32×32 5.0 1.77 0.63

Table 4.5: Xilinx Virtex-7 XC7VX690T FPGA Timing and Utilisation Results.

a very small difference in value between them, up to 55% of traffic load. This

indicates that the average packet latency has a weak dependence on traffic load and

that it is fairly independent of switch size. As saturation is approached, the curves

rapidly slope upwards. The average packet latency remains below 100 clock cycles

up to the saturation load, for all switch sizes.

In summary, the network emulation results verify that the switch performs

equally well, in terms of throughput and packet latency, when the scheduler design

is pipelined. The minimum buffer size requirement, at the switch inputs, is higher

when pipelining is used. Nevertheless, for the largest switch (N = 32), a modest

size of 64 packets is required for zero packet loss up to the saturation throughput,

compared to a 32-packet buffer for the baseline scheduler design.

4.2.2 Hardware Implementation

The pipeline scheduler design has also been implemented on the Xilinx Virtex-7

XC7VX690T FPGA board, to allow for a direct comparison against the baseline

design. Table 4.5 lists the timing and resource utilisation results.

The timing results show that the scheduler minimum clock period increases

with switch size, but at a lower rate compared to the baseline design. Furthermore,

a significant decrease in minimum clock period is recorded, for all switch sizes.

For the 32×32 switch, the minimum clock period is reduced by 35%, from 7.7 ns

to 5.0 ns. This is because pipelining shortens the critical path in the design. As

shown in Fig. 4.8, the critical path is from the R or RS register, through one of the

corresponding arbiters, to either the Grant register or the arbiter priority register.
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Minimum

Switch Size Packet Latency (ns)

4×4 32.6

8×8 34.2

16×16 37.4

32×32 44.6

Table 4.6: Minimum End-to-End Packet Latency vs. Switch Size.

The FPGA resources utilisation also increases as the switch size is increased.

The rate of increase is the same with or without pipelining; resources used are

quadrupled when the switch is doubled in size. For a given switch size, the LUT

count for the pipeline design is slightly lower, since the logic associated with the

priority-enable feedback has been removed. However, the FF count is higher, since

more registers are used to pipeline the design. The FF count is as expected, hence

the entire scheduler circuit has been correctly implemented on the FPGA device.

Decreasing the minimum scheduler clock period, through pipelining, reduces

the total scheduling delay, as given by Equation 3.6. Since the scheduler design has

two pipeline stages, P = 2 and tscheduler = 4Tscheduler, assuming worst-case request

synchronisation. Substituting the Tscheduler results from Table 4.5, for 4 ≤ N ≤ 32,

the minimum scheduling delay is 8 ns ≤ tscheduler ≤ 20 ns, compared to 7.5 ns ≤

tscheduler ≤ 23.1 ns without pipelining.

4.2.2.1 Packet Latency

The packet latency is converted from clock cycles to nanoseconds. Table 4.6 lists

the minimum end-to-end packet latency, for different switch sizes, calculated using

Equation 3.5, with tqueue = 0. In the calculation, the fixed delays from Table 3.2 are

added to the scheduling delay, tscheduler, for a given switch size.

The minimum end-to-end packet latency, using the pipeline scheduler design,

is lower for all switch sizes. As expected, it increases with switch size, due to

the increasing scheduling delay, but at a lower rate compared to using the baseline

scheduler. For a 32×32 crossbar, the minimum packet latency is 44.6 ns.

The CDF for the packet latency, for different switch sizes and at different traffic
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loads, is shown in Fig. 4.12. At 25% traffic load, a large fraction of the packets

are received with the minimum latency. The fraction is higher for larger switches;

approximately 0.60 for N = 4 and 0.45 for N = 32. The difference in packet latency,

as the switch size is increased, is small. Also, for any switch size, all packets are

received with an end-to-end latency less than 100.0 ns.

At 50% traffic load, the fraction of minimum latency packets is significantly

reduced. It ranges from approximately 0.15 to 0.10, as N is increased from 4 ports

to 32 ports. The latency difference between switches of different size, is still small

at this traffic load. For N ≤ 16, the latency remains under 100.0 ns. For N = 32, all

packets are delivered with a latency less than approximately 145.0 ns.

At 75% traffic load, the fraction of minimum latency packets is very small.

Furthermore, the median latency is significantly increased, as the switch size is

increased. Also, the packet latency becomes more variable, for all switch sizes;

10% of the packets are received with a latency of approximately 100.0 ns and 90%

with a latency of approximately 1.0 µs or higher.

In Fig. 4.12, the CDF tail from the 99th, for all switch sizes and traffic loads, is

short. Hence, packet latency has a small variance, irrespective of switch size, even

at high traffic loads.

Pipelining the scheduler design reduces scheduling delay which in turn reduces

packet latency. Hence, all CDF curves in Fig. 4.12 appear as left-shifted compared

to the CDF curves for the baseline scheduler (Fig. 4.5). Even though the minimum

packet latency is shorter, with a pipeline scheduler, less packets are received with

the minimum latency. This penalty decreases with traffic load. Without a priority-

enable feedback in the design, an arbiter for new packets may update its priority for

a grant that is subsequently filtered out by the Grant MUX logic. This trades-off

round-robin effectiveness for clock speed, causing less packets to be switched with

the minimum latency. As the load is increased, less new packets are switched due

to the increasing packet queuing at the switch inputs, and the effect of no priority-

enable feedback is decreased.

Figure 4.13 plots the average packet latency against traffic load, for 4≤N≤ 32.
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Figure 4.12: Cumulative distribution of the packet end-to-end latency at (a) 25%, (b) 50%
and (c) 75% input traffic loads, for different switch sizes. The network model
assumes SOA-based crossbar with a 2 m link distance to every connected
source and destination. Packets are 64 B, wavelength-striped at 4×100 Gb/s
and injected based on a Bernoulli process.
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Figure 4.13: Average end-to-end packet latency vs. input traffic load, for different switch
sizes. The network model assumes SOA-based crossbar with a 2 m link
distance to every connected source and destination. Packets are 64 B,
wavelength-striped at 4×100 Gb/s and injected based on a Bernoulli process.

At low loads, all curves approach the minimum latency, as listed in Table 4.6. The

average latency shows a small increase with switch size and remains below 100.0 ns

up to the saturation loads, reported in Table 4.4. As the traffic load is increased

beyond the saturation level, the average latency increases at a high rate, for any

switch size. Doubling the switch size, reduces the highest load for sub-microsecond

latency by 5%. For operation at full input-port capacity, the average latency is well

below 10.0 µs, for all switch sizes. The average latency performance is better with

the pipeline scheduler design, due to the reduced scheduling delay component.

4.2.3 Crossbar Scheduler Comparison

The proposed scheduler is compared to other pipeline designs in the literature, for

a crossbar switch. More specifically, against the iterative parallel longest-queue-

first (ipLQF) scheduler [107] and the fast low-latency parallel pipelined arbitration

(FLPPR) scheduler [90] used in OSMOSIS. A more comprehensive flow-control

comparison, including scheduler design, is presented in section 5.2.5.1.

The OSMOSIS demonstration used a 64× 64 crossbar, built using discrete

components. Although a crossbar switch of this size is impractical for photonic

integration, the proposed scheduler is scaled to support this size, to allow for direct
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Switch Size

Scheduler 4×4 8×8 16×16 32×32 64×64

This Work 2.0 ns 2.4 ns 3.2 ns 5.0 ns 9.2 ns

ipLQF 6.4 ns 15.3 ns 33.3 ns - -

FLPPR - - - - 51.2 ns

Table 4.7: Minimum Clock Period for Different Scheduler Designs.

comparison between designs.

The proposed scheduler, for a 64× 64 crossbar, is implemented on the same

Xilinx Virtex-7 XC7VX690T FPGA device as for smaller sizes. The minimum

clock period achievable is 9.2 ns, indicating that the clock speed continues to scale

sub-linearly with the switch size.

The different schedulers are compared in terms of minimum clock period, as

published in the literature. Even though the ipLQF and FLPPR schedulers have

been implemented on different FPGA devices, the timing results should no vary

significantly from device to device, for a given design.

Table 4.7 lists the timing results, for different scheduler designs, as a function

of switch size. Compared to ipLQF, the proposed scheduler is significantly faster;

for a 16×16 crossbar, it can run at clock period 10 times shorter. Also, for a clock

period of 6.4 ns, the proposed scheduler can control a 32×32 crossbar, whereas the

ipLQF scheduler only a 4×4 crossbar. Against FLPPR, for a 64×64 crossbar, the

proposed design is more than 5.5 times faster.

The ipLQF and FLPPR schedulers are slower because they use more complex

allocation algorithms. Aiming at high switch throughput, both those schedulers

are designed to match crossbar outputs to inputs equipped with N VOQs, instead

of a single queue. Thus, the request size for allocation, per clock cycle, is N2,

compared to N for the proposed scheduler. The reduced design complexity allows

for a throughput-latency trade-off. Notwithstanding, a throughput higher than 60%

is achieved with the proposed scheduler, for the target 32×32 size.
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4.3 Summary

This chapter focused on the design of parallel schedulers for crossbar switches,

applicable to packet-switched networks.

The baseline crossbar scheduler was first discussed, to present the clock speed

limitations in the design. It was found that the N-bit arbiter, used for the allocation

of a switch output port, lies in the critical path and limits clock period. Any feedback

signalling based on the arbiter results further increases critical path and therefore the

minimum clock period. The scheduler for a 32×32 crossbar was implemented on

the Xilinx Virtex-7 XC7VX690T FPGA and a minimum clock period of 7.7 ns was

achieved. This is also the minimum scheduling delay. For rack-scale switching of

64-byte wavelength-striped packets, at 4× 100 Gb/s, with an SOA-based crossbar

and asynchronous control plane, the minimum end-to-end packet latency for the 32-

port switch is 47.7 ns. In the network emulation, at this size, it was shown that the

crossbar throughput saturates at a load ≈ 60.0% of capacity with an average packet

latency of≈ 100 ns at this load, under control of the scheduler, for Bernoulli traffic.

A pipeline crossbar scheduler design was presented to increase clock speed

and scalability. The proposed design has two pipeline stages; one for fast round-

robin allocation of switch output ports, without any feedback signalling, and one

for generating the new switch configuration. Implementation on the same FPGA

as the baseline scheduler, for a 32-port crossbar, gave a minimum clock period of

5.0 ns. At this clock speed, the baseline scheduler can be used for a switch half the

size. However, due to the pipeline implementation, the minimum scheduling delay

is 2×5.0 = 10.0 ns, against 7.7 ns for the baseline scheduler. The delay benefit of

the pipeline implementation is evident in an asynchronous control plane scenario,

where up to two scheduler clock cycles are incurred for request bit synchronisation.

In that case, the minimum scheduling delay increases to 4× 5.0 = 20.0 ns and

3× 7.7 = 23.1 ns, for the pipeline and baseline designs, respectively. This results

in a minimum end-to-end packet latency of 44.6 ns, for the pipeline design. In

the network emulation, results showed that pipelining the scheduler reduces the

average packet latency, due to the shorter minimum clock period, without a penalty
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in crossbar saturation throughput.

Compared to ipLQF and FLPPR, the pipeline scheduler design dramatically

increases clock speed, for the same switch size. More specifically, it is at least 10

times faster than ipLQF, for a 16-port crossbar, and 5.5 times faster than FLPPR, for

a 64-port crossbar. The trade-off is switch throughput. Both ipLQF and FLPPR use

complex scheduling algorithms to increasing the matching size for input-buffered

switches that use VOQs, aiming at 100% throughput. This significantly increases

their minimum clock period.

Despite the scheduler being scalable, the crossbar architecture is not, due to

the square law relationship between component-count and size. The next chapter is

dedicated to the scheduler design for scalable Clos-network optical switches.



Chapter 5

Clos Switch Scheduler Design

The processing and storing capabilities of a data centre network are dependent on

the number of interconnected resources, such as servers. The resource count in a

network is directly dependent on the switch size. It is therefore important that the

proposed packet switch design can be scaled, in terms of both the data plane and

control plane.

In the previous chapter, even though the pipeline scheduler design has been

shown to scale sub-linearly with the switch size, the switch architecture itself limits

the data plane scalability. This is due to the square law relationship between switch

size and components required, to implement a crossbar switch. Alternatively, a Clos

network may be used as the switch architecture, which has been shown practical for

the photonic-integration of large optical switches, addressing the required data plane

scalability.

Control plane scalability, in the proposed system concept, is limited by the

complexity and delay of the switch scheduler. To this end, two approaches to

scheduling a Clos switch are presented, based on simple flow control and routing

methods. Both designs implement parallelism, in space and in time (pipelining), for

nanosecond scheduling. This work has been reviewed and published in [28, 27].

The two Clos schedulers are compared to one another and also to scheduling

approaches in state-of-the-art switch designs, from various research laboratories in

the field. The comparison is in terms of scheduler delay and also achieved packet

latency and switch throughput, under scheduler control.
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5.1 Global Scheduler Design

Unlike a crossbar switch, a Clos switch requires routing. For a given routing

scheme, the only free decision is at the input module (IM), to choose one central

module (CM) out of m possible options. At the CM, the single path to the output

module (OM), where the requested output port resides, has to be chosen. Similarly,

at the OM, the requested output port must be chosen.

The looping algorithm, for non-blocking routing of Clos networks, iterates

the current routing matrix, rearranging entries where necessary, to choose a non-

conflicting CM. Such approach is impractical for scalable packet switching, due to

the long time required to converge to a solution.

Instead, a random path assignment is proposed, to allow choosing a path in

a single hardware clock cycle. The trade-off is switch saturation throughput; the

architecture becomes blocking, therefore the path allocation matching quality is

sub-optimal. This leads to less grants being issued per clock cycle, and thus a

decrease in saturation throughput. For a three-stage Clos switch, with random path

assignment, a request from any input port has to win output port arbitration three

times along the chosen path, once at every Clos module.

In the proposed design, the switch output ports, i.e. the OM output ports, are

globally allocated by considering all input port requests, just like for a crossbar

switch. For the IM and CM output ports, distributed allocation is performed by

taking into account requests from the local input ports only.

The block diagram in Fig. 5.1 illustrates the scheduler design for a Clos switch.

The design is divided into three pipeline stages: (a) global output-port allocation,

(b) distributed path allocation and (c) new switch configuration. The scheduling

delay is therefore fixed to three clock cycles. For an asynchronous control plane, an

extra clock cycle needs to be added for request synchronisation.

The first pipeline stage implements two parallel N×N output-port allocators;

one for R and one for RS. Each allocator is a set of N, N-bit round-robin arbiters,

one for each output port. In this way, allocation is performed globally, since each

allocator takes into account all N input ports of the switch, as opposed to those local
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Figure 5.1: Scheduler design with 3-stage pipeline for an N×N Clos switch. The critical
path in the design is shown in red.

to a Clos module. Global allocation is chosen for better fairness, compared to the

modular approach.

Multiple copies of the Arbiter Request logic generate the path requests, for

each IM and CM allocator. According to the proposed routing scheme, every IM

input port may request at most one random IM output port. The requested output

port on a CM depends on the packet destination. For the IMs, r copies are used

for the R matrix and r more for the RS matrix. The Request MUX logic filters out

any request in R that contends with an RS request, for an IM output port. Similarly,

2m copies of the Request Logic are used for the CMs, each followed by a Request

MUX to remove any conflicting R requests.

The second pipeline stage implements distributed path allocation, for routing

the Clos switch. For every one of r IMs, a dedicated m× n allocator reads the
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corresponding (registered) request matrix, generated in the first pipeline stage, and

chooses at most one of n input ports for each local output port (or CM). Similarly,

for every one of m CMs, a dedicated r× r allocator chooses at most one of r IMs,

for every local output port (or OM). All IM and CM allocators operate in parallel.

The Path Grant logic reads the outputs of all IM and CM allocators and generates

an N×m matrix, to identify the path granted to each input port, if any.

Meanwhile, the Grant MUX logic processes the two (registered) output port

grant matrices, for R and RS, generated in the first stage. It filters out any R grant

that contends with an RS grant for an output port. The resulting N×N grant matrix

identifies the output port granted to each input port, if any. The port grant and path

grant matrices are registered into the third pipeline stage.

In the third pipeline stage, the corresponding port and path grant bits for every

input port are “ANDed” together, in the output logic for the Grant (G), Write- (CWE)

and Read-Enable (CRE) vectors and the Switch Configuration matrix (CCNFG). That

is, a request from an input port is only served if it is issued both an output port grant

and a path grant. If that request is from the R matrix, the corresponding G bit is

asserted. If it is an RS request, then the corresponding read-enable bit, in CRE, is

set high. For every valid request in R that fails output port or path allocation, the

appropriate write-enable bit, in CWE, is asserted. For every bit-pair in the port grant

and path grant matrices that is true, the appropriate SOA gate is addressed in CIM,

CCM and COM, to reconfigure the Clos modules.

The critical path in the design is marked on the block diagram in Fig. 5.1. It is

the same as that for the crossbar pipeline scheduler. It extends from either the R or

RS register, through one of the arbiters in the corresponding allocator, to the grant

register or the priority register, for that arbiter. Consequently, it is expected that

this Clos scheduler design can run at a clock speed as high as that for the proposed

crossbar scheduler.

5.1.1 Network Emulation Results

The scheduler design and routing scheme are evaluated for a 32× 32 Clos switch,

implemented in different architecture configurations. More specifically, the (4,4,8),
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Figure 5.2: Average switch throughput vs. input traffic load, for a 32× 32 switch built in
different architectures, under Bernoulli traffic.

(8,4,8), (8,2,16) and (16,2,16) Clos networks are examined. The (4,4,8) Clos

configuration is particularly interesting, as it is practical for photonic integration.

The remaining configurations enable to assess how effective the random routing

scheme is, as the ratio m/n is increased, which decreases the probability of path

contention.

Figure 5.2 shows the average switch throughput, plotted against the input traffic

load, for the different Clos configurations. The average throughput curve for a

32× 32 crossbar switch, with the pipeline scheduler design, is added to the graph

for comparison. As shown, the average throughput for the (4,4,8) Clos saturates

at the lowest traffic load and for the crossbar at the highest. As the m/n ratio is

increased, the saturation load increases, approaching that for the crossbar switch.

Table 5.1 lists the saturation load for the different 32×32 switch architectures. The

(8,4,8) Clos significantly increases saturation throughput, compared to the (4,4,8)

Clos. The (8,2,16) Clos and (16,2,16) Clos switches, not only are impractical for

photonic integration, but also offer a small gain in saturation throughput.

In the Clos scheduler, the switch output ports are allocated in the same way as

in the crossbar scheduler. The difference between the two designs is that the Clos

scheduler has an additional pipeline stage for routing. Therefore, the difference

in saturation throughput is interpreted as a measure of the routing scheme penalty.
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Switch Throughput Saturation

Architecture Traffic Load (%Capacity)

(4,4,8) Clos 32.1

(8,4,8) Clos 47.5

(8,2,16) Clos 57.0

(16,2,16) Clos 60.2

Crossbar 62.5

Table 5.1: Throughput Saturation Traffic Load vs. 32×32 Switch Architecture.

Switch Minimum LUT Count FF Count

Architecture Clock Period (ns) (% Total) (% Total)

Crossbar 5.0 1.77 0.63

(4,4,8) Clos 5.4 3.20 0.85

(8,4,8) Clos 5.4 4.80 1.02

(8,2,16) Clos 6.1 6.57 1.55

(16,2,16) Clos 7.8 11.46 2.42

Table 5.2: Xilinx Virtex-7 XC7V690T FPGA Timing and Utilisation Results.

Based on the results, there is a 15% routing penalty in throughput performance,

between the (8,4,8) Clos switch and the crossbar switch.

5.1.2 Hardware Implementation

The scheduler is implemented on the Xilinx Virtex-7 XC7VX690T FPGA board,

for a 32× 32 switch size, built in different Clos network configurations. The aim

is to investigate the effect of switch architecture on the scheduler design timing and

resource utilisation. Table 5.2 lists the minimum clock period and LUT percentage

(out of 433200 available) and FF percentage (out of 866400 available). The results

for the pipeline 32×32 crossbar scheduler design are also included for comparison.

Compared to the crossbar scheduler, all Clos schedulers investigated use more

FPGA resources and therefore are more area-demanding. The scheduler for the

(4,4,8) Clos uses the least amount of LUTs and FFs on the FPGA device. Since

there is an allocator for every IM and CM, the LUT and FF utilisation increases

as m and r are increased, in the rest Clos configurations. The scheduler for the
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Switch Minimum

Architecture Packet Latency (ns)

Crossbar 44.6

(4,4,8) Clos 51.6

(8,4,8) Clos 51.6

(8,2,16) Clos 55.1

(16,2,16) Clos 63.6

Table 5.3: Minimum Packet Latency vs. 32×32 Switch Architecture.

(8,4,8) Clos incurs the smallest increase, using less than 5% of available LUTs and

approximately 1% of the FFs. This represents only a 3.0% increase in LUTs and a

0.4% increase in FFs, compared to the crossbar scheduler.

The minimum scheduler clock period, for the (4,4,8) Clos and (8,4,8) Clos

switches, is the same and only 0.4 ns longer than that for the crossbar. This is

because the critical path in the three designs is the same; from one of the input

request registers, through one of the N-bit global allocation arbiters, to the grant or

priority register for that arbiter. The clock period is slightly longer for the two Clos

schedulers because of the path request logic in the first pipeline stage, which is not

present in the crossbar scheduler. For the (8,2,16) Clos and (16,2,16) Clos switch

schedulers, the minimum clock period is considerably longer. This is because the

critical path moves to the third pipeline stage, from either the port or path register

to the register for the output switch configuration logic.

5.1.2.1 Packet Latency

Using the scheduler timing results, the minimum packet latency for the different

32×32 Clos switches is calculated and listed in Table 5.3. The calculation assumes

2 m optical and electrical links, 64 B wavelength-striped packets at 4× 100 Gb/s

and an asynchronous control plane. For the (4,4,8) Clos and (8,4,8) Clos switches,

the minimum packet latency is 51.6 ns, against 44.6 ns for the crossbar switch. The

latency difference is due to the additional pipeline stage in the scheduler design, for

path allocation, and the slightly longer minimum clock period.

The average end-to-end packet latency, for the 32×32 Clos switches and also
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for the crossbar switch, are shown in Fig. 5.3. The (4,4,8) Clos has the worst

latency performance and the crossbar switch the best. Sub-microsecond switching

for all Clos architectures, up to the saturation traffic load, is demonstrated. Apart

from the (4,4,8) Clos, the rest switch architectures allow for an average packet

latency less than 10 µs, when operated at full port capacity.

According to the network emulation and scheduler hardware implementation

results, the (8,4,8) Clos switch offers a good balance of practical architecture for

photonic-integration, low scheduler delay and packet latency, as well as moderate

switch throughput.

5.2 Modular Scheduler Design
The (4,4,8) Clos switch, although suitable for photonic integration, it has a poor

throughput and latency performance, when random routing is applied. To improve

performance, doubling the number of CMs (m = 2n) was proposed, so that random

routing is more effective. Furthermore, an N ×N Clos switch scheduler, based

on global output-port allocation, can never run faster than an equivalent crossbar
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routing scheme, for m = n = r Clos networks, assigns fixed paths to eliminate
routing overhead and avoid contention at the central modules, simplifying the
scheduler design and reducing its delay.

scheduler. The clock speed is limited by the N-bit output-port arbitration, common

to both schedulers.

In this section, a scheduler design for Clos switches with m = n = r =
√

N,

based entirely on distributed path allocation, is presented. The design requires

only
√

N-bit arbitration, which significantly reduces scheduler delay and enables

a highly-scalable control plane. Additionally, a novel routing scheme is proposed to

limit scheduling delay to three clock cycles, i.e. to maintain a three-stage pipeline

design. To improve the switch saturation throughput and packet latency, VOQ

buffering at the switch inputs is considered. The trade-off is increased switch and

scheduler complexity.

5.2.1 Clos Routing

The proposed routing algorithm assigns dedicated paths, based on the source, i, and

destination, j, associated with a packet. The paths are assigned such that there can

be no output port contention at any CM. Figure 5.4 shows how the first path, to CM

0, is assigned at every IM. More specifically, at every IM, the first path/output port

leads to a different OM, thereby avoiding contention at CM 0. This is the case for
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the remaining paths as well. At any given IM, the path assignment to the OMs is a

circular shift by one position to the left, with respect to the previous IM, calculated

based on the following equation:

p(i, j) = (bi/nc+ b j/rc) mod m (5.1)

where 0≤ i, j ≤ N−1.

This routing algorithm benefits the scheduler design: (a) the route calculation

overhead is eliminated and (b) no path arbitration is required for the CMs. The latter

has the additional advantages of: (a) one less pipeline stage required, thus reducing

scheduling delay and (b) simplified scheduler implementation, since less hardware

resources are required.

As with random routing, the trade off is that the architecture is blocking, when

the paths requested are fixed. At every IM, at most one input port can be allocated

the route to a specific OM, even if different output ports on that OM are requested.

Hence, the switch throughput will saturate at a lower input traffic load, compared to

using the looping algorithm, for a given switch size.

5.2.2 Scheduler Hardware Modules

Since there can be no contention at the Clos CMs, distributed path allocation can

be implemented by having parallel output-port allocation modules, for the IMs and

OMs in the Clos switch. The allocation module for an IM, matches r OMs to n

local IM input ports (OM allocation). Similarly, the allocation module for an OM

matches n local output ports to r IMs (output-port allocation).

The block diagram in Fig. 5.5 illustrates the scheduler design for a Clos switch

with m = n = r. The design has three pipeline stages: (a) distributed OM allocation,

(b) distributed output-port allocation and (c) new switch configuration.

As shown in Fig. 5.6, the scheduler design can be visualised as having two

parallel path-allocation planes, one for processing new packet (server) requests and

the other one for processing VOQ packet (switch) requests. On each plane, there are

r allocation modules for the Clos IMs and r allocation modules for the Clos OMs,
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arranged in two different ranks and interconnected in a full mesh topology. The

module for switch configuration, processes the allocation results from both planes

to produce the configuration control signals for the Clos IMs and OMs. Also, every

allocation module, irrespective of rank and plane, makes decisions based on a group

of round-robin arbiters.

Based on the circuit visualisation in Fig. 5.6, the scheduler can be divided into

hardware modules, to optimise the design for clock speed. The hardware modules

are for: (a) OM allocation for the new packets plane, (b) OM allocation for the

switch VOQ packets plane, (c) output port (OP) allocation for both planes and (d)

new switch configuration. The module designs are presented next.

5.2.2.1 Output Module Allocation - New Packets

Figure 5.7 shows the OM allocation module design, used for every n× r IM in the

Clos switch. For every new server packet, that will be arriving on one of n IM input

ports, there is a switch output port request, based on the packet’s destination field.

Every one of these requests is held in matrix R and consists of a valid bit (v) and

an output-port field of log2(N) bits. A second matrix, RS, holds the higher-priority

requests from VOQ packets, on each IM input port. RS is used in this module only

for filtering purposes, as described below. Every request in RS is an N-bit vector and

the bit asserted, if any, addresses the requested output port. The circuit performs

allocation for any valid R request, that has not been filtered out, and generates the

matrices Gi and Gj to declare winning input ports and allocated OM output ports.

The Arbiter Request logic reads the RS requests to filter out any R requests

they contend with for IM input ports. This ensures input port priority to switch

VOQ packets, for strict in-order packet delivery. The logic then generates r n-bit

request vectors, one for each OM arbiter. Any bits asserted in a vector, indicate the

local IM input ports requesting a specific OM. Every arbiter then grants at most one

of n requests, based on round-robin priority.

The Grant logic generates the circuit’s output matrices, Gi and Gj, based on the

arbiter grants. Each matrix has at most r grants, one for every OM. Every grant in

Gi is a structure with an input-port field of log2(N) bits and a valid bit, to indicate
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for cross-reference with the digital design in Fig. 5.7.

the switch input port granted that OM. Every Gj grant is a one-hot n-bit vector and

the bit asserted, if any, indicates the granted output port on that OM.

Every valid grant pair, one from Gi and one from Gj, forms a request that is

forwarded to the appropriate output port (OP) allocation module, on the same plane.

The OP allocation module design is discussed in section 5.2.2.3.

Figure 5.8 illustrates an example of the circuit functionality, in a (4,4,4) Clos

scheduler. The input request matrices for new packets and switch VOQ packets,

R and RS, are for the second input module (IM 1), whose input ports are in the

range 4 to 7. Tags A and B are used for cross-reference with the design in Fig. 5.7.
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The Arbiter Request logic generates a binary matrix containing the arbiter requests

(Tag A), ignoring input port 5’s request as it contends with a VOQ request for the

same input and output ports. Next, every arbiter resolves any OM contention by

operating across a matrix column, selecting only one input port for that OM (Tag

A). The Grant logic generates the output matrices Gi and G j, based on the arbiter

grants (Tag B).

5.2.2.2 Output Module Allocation - Switch VOQ Packets

As shown in Fig. 5.9, the OM allocation module for IM VOQ packets requires a

more a complex design, compared to that for new server packets. This is because

there could be up to N switch output port requests at the same time, per IM input,

due to the VOQ buffering. The module allocates OMs to IM input ports, for a

chosen output port. In the scheduler plane for VOQ requests (Fig. 5.6), an instance

of the module is used for every n× r IM in the Clos switch. The circuit is a two-

stage pipeline and performs allocation based on the corresponding RS, to generate

the Gi and Gj matrices.

In the first pipeline stage, the Arbiter Request logic generates n, r-bit vectors,

one for every input port, and any bits asserted indicate the requested OMs. An

input-first n× r separable allocator is then implemented. Every first-rank arbiter

chooses at most one of r OM requests, for every IM input. Next, every second-rank

arbiter chooses at most one of n IM inputs, for every OM. The iSLIP method is used

to stagger the arbiter priorities. Although multiple iterations can be performed, to

further increase the number of grants and therefore the switch throughput, only a

single pass (1-SLIP) is executed to minimise the total scheduler delay. In iSLIP,

the priority of a first-rank arbiter is updated only if its grant output has also won

arbitration in the second arbiter rank. This creates a feedback which forms the

critical path in the design. In Fig. 5.9, only the feedback between the first two

arbiters is shown, for diagram clarity.

An additional allocation round is required for the winning requests. Due to

VOQ buffering, an IM input port matched with an OM, could be requesting up to n

of its output ports. Thus, an r×n allocator is used to choose one, since for unicast
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allocator, for the 2nd input module in a (4,4,4) Clos switch. Binary matrices
are tagged for cross-reference with the digital design in Fig. 5.9.

traffic only one output port request is permitted per input port. This additional

allocator is implemented in the second pipeline stage. The two allocators effectively

operate in a master-slave configuration, divided over two pipeline stages, with the

iSLIP allocator acting as the master.

As in the OM allocation module for new server packets, the Grant logic here

generates two matrices, Gi and Gj, to hold the input- and output-port grants, for

every matched OM. Every Gi-Gj grant pair, for an OM, is forwarded to the dedicated

OP allocation module, in the scheduler plane for IM VOQ packets (Fig. 5.6).

Figure 5.10 continues on the previous example (Fig. 5.8), to describe how an
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OM allocation module for IM VOQ packets, in the same (4,4,4) Clos scheduler,

functions. The hardware module is also for the second IM (IM 1), but operates in the

other scheduler plane (Fig. 5.6). The same request matrix, RS, is input to both OM

allocation modules in the two planes, at the same time. As shown in Fig. 5.10, the

Arbiter Request logic generates the binary request matrix for the first-rank arbiters.

For every input port, with a non-zero output port request in RS, the logic generates a

request for the corresponding OM (Tag A). Every first-rank arbiter operates across a

matrix row, to choose one requested OM from every input port (Tag A). The arbiter

grants (Tag B) are forwarded to the appropriate second-rank arbiters. Every second-

rank arbiter operates across a matrix column, to choose one input port for every

OM (Tag B). The Gi matrix is created directly, based on the second-rank arbitration

grants (Tag C). An additional arbitration round is executed, before G j is created.

In the second pipeline stage, the Arbiter Request logic generates the binary request

matrix for the arbiters. For every granted OM, for which there is a non-zero output

port request in RS, the logic asserts the corresponding request bit (Tag D). Next,

every arbiter chooses at most one output port for a specific OM (Tag D). Finally, the

arbiter grant matrix (Tag E) is used directly as the output G j matrix. In the example,

for input port 5, the first port on OM 1 (output port 4) is chosen.

5.2.2.3 Output Port Allocation

The output port allocation module design, for an r× n OM, is shown in Fig. 5.11.

The same module design is used in both scheduler planes (Fig. 5.6). The circuit

receives one Gi grant and one Gj grant, from every OM allocation module on the

same plane. Every grant pair forms a local output port request, from a specific IM.

The module matches local output ports to IMs and generates the final grant matrix,

G, to indicate the winning input ports. It also outputs two vectors; SOM, to indicate

winning IMs, and SOP, to indicate allocated ports.

The input port (IP) Map logic, reads the port field (0 to N− 1) of every input

Gi grant, and maps it to one of n input ports on the associated IM. This enables

the Grant logic to group output grants per IM. The IP Map logic generates an n-bit

vector, for every IM, and the bit asserted indicates the IM input port.
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Figure 5.11: Output port allocator design. The same design is used for new packets and
for switch VOQ packets. The critical path in the design is shown in red. Tags
A-C are for cross-reference with Fig. 5.12.

Gi

O
M

In
p
u
t

P
o
rt

12 1 3

In
p
u
t

M
o
d
u
le

2 1 0

5 1 1

10 1 2

Switch

In. Port

v

Gj

O
M

In
p
u
t 
P

o
rt

1 0 0 0 3

In
p
u
t M

o
d
u
le

0 1 0 0 0

1 0 0 0 1

0 0 1 0 2

4 5 6 7

Output

Port

In
p
u
t 
M

o
d
u
le 0 0 0 1 0

1 0 1 0 0

2 0 0 1 0

3 1 0 0 0

OM   

Input Port

In
p
u
t 
M

o
d
u
le 0 0 1 0 0

1 1 0 0 0

2 0 0 1 0

3 1 0 0 0

4 5 6 7

Output

Port

SOM

In
p
u
t 
M

o
d
u
le 0 1

1 1

2 1

3 0

SOP

O
u
tp

u
t

P
o
rt 4 1

5 1

6 1

7 0

A

B

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 0

4 5 6 7

Output

Port

C

G

0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 v

0 0 5 0 0 4 0 0 0 0 6 0 0 0 0 0

O
u
tp

u
t

P
o
rt

12840

Switch Input Port

Figure 5.12: Example request processing by the output port allocator for the 2nd output
module, in a (4,4,4) Clos switch. Binary matrices are tagged for cross-
reference with the digital design in Fig. 5.11.



5.2. Modular Scheduler Design 145

The Arbiter Request logic reads Gi and Gj and creates an n× r binary matrix

to indicate any requesting IMs, for every local output port. Next, every arbiter reads

the forwarded matrix entry and chooses at most one of r IMs, for a local output port.

The Grant logic translates granted output ports into global switch output ports,

in the range 0 to N−1, and matches them with IM input ports. It does so by pairing

IM inputs (IP Map output) with the corresponding arbiter grants. There are N output

grants in G, one for each input port, made of a valid bit and a port field of log2(N)

bits, to address the global output port.

The output module (OM) State logic creates the r-bit vector SOM, based on the

arbiter grants, to mark every IM granted an output port. The output port (OP) State

logic creates the n-bit vector SOP, to mark every granted output port.

Figure 5.12 continues the example, demonstrating the OP allocation module

functionality, in a (4,4,4) Clos scheduler. The hardware module is for the second

OM (OM 1), whose output ports are in the range 4 to 7, and lies in the scheduler

plane for VOQ packets. Therefore, it receives the corresponding Gi grant and G j

grant, from the example OM allocation module for IM 1, in Fig. 5.10. These two

grants, collectively form a request from input port 5 (IM 1) for output port 4 (OM

1). The interconnection pattern between OM and OP allocation modules, on a given

scheduler plane, is such that Gi and G j from IM 1 are input on the third port of the

OP allocation module, as shown in Fig. 5.12. Each remaining port receives a Gi and

G j from a different OM allocation module. For every valid grant in Gi, the input

port (IP) Map logic asserts the appropriate bit to indicate the granted input port, on

every IM (Tag A). At the same time, the Arbiter Request logic creates the arbitration

request matrix; for every valid grant in Gi and non-zero bit in G j, the appropriate

bit is asserted to indicate the output port requested by each IM (Tag B). Next, every

arbiter operates across a matrix column, to choose at most one IM for every local

output port (Tag B). The OM State and OP State logic use the arbiter grant matrix

(Tag C) directly, to generate the output SOM and SOP, indicating the winning IMs

and allocated ports. The Grant logic uses both the arbiter grants (Tag C) and the IP

Map logic output (Tag A), to create the output grant matrix, G. This matrix indicates



5.2. Modular Scheduler Design 146

the switch input port, in the range 0 to N− 1, matched to a local OM output port.

In this example, input ports 2, 5 and 10 have been granted output ports 5, 4 and 6,

respectively.

5.2.2.4 Switch Configuration

The switch configuration module generates the IM and OM reconfiguration signals,

CIM and COM, which switch on the appropriate optical gates (SOAs), as determined

by the routing scheme. The module also generates the write-enable (CWE) and read-

enable (CRE) signals, to store and release packets at the IM VOQs.

The module design is shown in Fig. 5.13. The inputs are the grants from the

OP allocation modules, from both scheduler planes (Fig. 5.6). The notation G and

GS is used to distinguish between grants from different planes. The states of the

output ports (SOP) and output modules (SOM), are only input from the VOQ packets

plane, to filter out grants issued in the other plane, as explained below.

The GS matrix holds grants from the VOQ packets plane and it is distributed to

all logic blocks in the circuit. It is used solely in the read-enable block and in one of

the IM and OM configuration blocks. In the remaining blocks, together with SOM

and SOP, it is used to filter G. In this way, switch reconfiguration for new packets

and VOQ packets is produced independently and in parallel.

The read-enable logic transfers GS directly to the output register for the VOQ

read-enable signals in CRE. In total there are N signals, one for every switch input

port, where each signal is a structure with a valid bit and log2(N) bits to address

each VOQ. A valid read-enable signal releases a packet from the corresponding

switch VOQ at an input port.

The IM and OM configuration logic for VOQ packets, shown in blue, generate

an IM and OM configuration signal for every valid grant in GS. An IM configuration

signal uses log2(n) bits to address one of n IM optical gates to switch “on”. In a

similar way, an OM configuration signal uses log2(r) bits to address one of r OM

optical gates to switch “on”.

In the Grant logic, every valid grant in G is transferred to the output only if:

(a) no GS grant is valid for that IM input port, (b) the destination OM is free for that
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packets and rest blocks for new packets. The critical path in the design is
marked in red.

IM, according to SOM and (c) the destination output port is free, according to SOP.

This 3-condition filter gives priority to VOQ packets. Any grant passing through

the filter corresponds to a new packet being switched with the minimum latency.

The Grant logic outputs are inverted and registered to produce the write-enable

signals in CWE, where a valid signal buffers a new packet in a switch VOQ, as

addressed by the log2(N) bits.

The IM and OM configuration logic, for new packets, generate an IM and OM

configuration signal for every valid grant in G that passes the 3-condition filter.

Finally, the IM configuration signals, for both new packets and VOQ packets, are

combined together into a single set of N signals, before they are registered out as

CIM. In the same way, COM is generated by combining OM configuration signals.
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Figure 5.14: Average switch throughput vs input traffic load, under Bernoulli traffic.

5.2.3 Network Emulation Results

The Clos switch throughput and VOQ buffering requirement, under the control of

the modular scheduler, are measured in the network emulation. The parameters used

in the network emulation are listed in Table 3.1. The (m,n,r) Clos configurations

for the switch architecture are the (4,4,4), (8,8,8) and (16,16,16), for N = 16, 64,

256, respectively.

The average throughput as a function of traffic load, for different size Clos

switches, is plotted in Fig. 5.14. As shown, the throughput saturates at a traffic

load ≈ 60% of switch capacity for all sizes, which verifies scalability. Also, for

loads beyond saturation, the average throughput does not drop, verifying that the

scheduler is fair irrespective of switch size.

For a server network interface, a small 4-packet buffer is enough to support

input traffic at 100% of capacity, irrespective of switch size. This is attributed to

speculative transmission, due to which a packet experiences a fixed delay of 4 clock

cycles in total; 1 clock cycle to be registered and 3 more clock cycles until the

pipelined scheduler processes the corresponding request (tscheduler = 3×Tscheduler).

The minimum VOQ size required at the Clos IM inputs, to avoid packet loss,

is examined. As shown in Fig. 5.15, the VOQ size requirement increases with the

input traffic load, due to increasing contention probability, which leads to more
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Figure 5.15: Minimum switch virtual output queue (VOQ) size vs. input traffic load: (a)
16× 16 Clos switch, (b) 64× 64 Clos switch and (c) 256× 256 Clos switch.
All VOQs at every switch input port are considered, to ensure no packet loss.

packets being buffered. At high loads, the required VOQ size decreases with switch

radix, because the packet destinations requested are uniformly distributed. That is,

the probability of a packet destination being requested is lower for larger switches.

For the 256×256 switch, the minimum VOQ size at 100% load is 32 packets, which

translates to 512 KB per switch input port, for 64-Byte packets. Operating the same

switch only up to the saturation load (60%), reduces the total port buffer required to

half (256 KB).

Using control backpressure, for buffering management, a small 8-packet VOQ

would suffice, irrespective of traffic load and switch size. This further reduces the

port buffer size by half (128 KB). The trade-off is that a larger FIFO queue would

be required, at every server network interface, depending on the traffic load.

5.2.4 Hardware Implementation

In this section, the implementation of the modular scheduler design, on hardware,

is discussed. Every hardware module in the scheduler, described above, has been

implemented separately, as an application-specific integrated circuit (ASIC), in a

45 nm CMOS process. For each module, the critical path is identified and the

minimum clock period is measured. The module in which the longest critical path
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Minimum Clock Period

Scheduler Module 16x16 64x64 256x256

OM Allocation 0.8 ns 1.1 ns 1.5 ns

OM Allocation - iSLIP 1.1 ns 1.4 ns 2.0 ns

OP Allocation 0.8 ns 1.1 ns 1.5 ns

Switch Configuration 0.5 ns 0.8 ns 1.1 ns

Table 5.4: Scheduler Modules Minimum Clock Period for ASIC Synthesis.

lies, determines the minimum clock period achievable, for the entire scheduler. That

particular module is then implemented on a Virtex-7 XC7V690T FPGA board, to

investigate how the modular scheduler compares to our previous designs, and also

to related work in the literature.

5.2.4.1 Application-Specific Integrated Circuit (ASIC)

The critical path, for every scheduler module, is marked in red in the corresponding

circuit diagram, in section 5.2.2. Table 5.4 lists the minimum clock period for every

scheduler module, at different switch sizes, for ASIC implementation. The longest

critical path is in the OM allocation module, for switch VOQ packets. It falls in

the first pipeline stage responsible for iSLIP allocation. It extends from the request

register through a cascade of two iSLIP arbiters and then back to the priority register

of the first arbiter, as shown in Fig. 5.9. This module sets the minimum clock period,

Tscheduler, for the entire scheduler. For a 256×256 Clos switch, Tscheduler = 2.0 ns.

According to Table 5.4, the increase in minimum clock period, as the switch

quadruples in size, is sublinear for all scheduler modules, demonstrating a scalable

scheduler design. The OM allocation module for new packets and the OP allocation

module, use same size arbiters, request and grant logic, hence the critical path is

of the same length. Moreover, there is only a small difference in minimum clock

period between the different scheduler modules, for the same switch size, indicating

an overall pipelining balance in the scheduler design. As shown in Fig. 5.5, the

entire scheduler design can be implemented as a 3-stage pipeline, in which case the

total scheduler delay, for a 256×256 switch, would be tscheduler = 3Tscheduler = 6 ns.
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Minimum Clock Period

Scheduler Module 16x16 64x64 256x256

OM Allocation - iSLIP 2.9 ns 4.5 ns 7.0 ns

Table 5.5: Scheduler Minimum Clock Period for FPGA Implementation.

5.2.4.2 Field-Programmable Gate Array (FPGA)

The critical path in a digital design is the same, irrespective of the hardware platform

onto which the design is implemented. The length of the critical path, however, does

vary with hardware platform. More specifically, a design runs faster as an ASIC,

than on an FPGA. In order to enable a fair comparison between the modular Clos

scheduler and other scheduler designs, the minimum clock period of the modular

Clos scheduler, in an FPGA implementation, is measured. To do so, only the OM

allocation module, for IM VOQ packets, needs to be implemented, as in this module

lies the longest critical path that determines the clock speed for the entire scheduler.

Table 5.5 lists the module’s minimum clock period, for different switch sizes,

for implementation on the Xilinx Virtex-7 XC7V690T FPGA board. As the switch

quadruples in size, the minimum clock period again shows a sublinear increase,

which verifies the scheduler is also scalable in an FPGA implementation. Compared

to the timing results for the ASIC OM allocation module (iSLIP), in Table 5.4, the

same module runs considerably slower on the FPGA. The ASIC improvement is

higher for larger switches; the ASIC scheduler runs 2.6 times faster for N = 16 and

3.5 times faster for N = 256. A delay comparison to different scheduling approaches

in the literature, is presented in section 5.2.5.1.

5.2.4.3 Packet Latency

The packet latency, using the modular Clos scheduler, was measured in the network

emulation and translated into absolute time, using the ASIC implementation results

presented above (Table 5.4).

For the packet latency results in this section, a synchronous control plane is

assumed (tsync = 0), therefore tscheduler = 3Tscheduler. At a network interface, for

the head-of-line packet in the FIFO queue, the time to generate the request is
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Minimum

Switch Size Packet Latency (ns)

16×16 26.3

64×64 27.8

256×256 30.8

Table 5.6: Minimum End-to-End Packet Latency vs. Switch Size.

treq = 2Tscheduler. The 64-byte packets are wavelength-striped across 8 wavelengths

channels, at a 100 Gb/s channel bit rate, giving tserial = 0.64 ns. Substituting the

fixed delays for propagation (tpropagation) and switch reconfiguration (tswitch), from

Table 3.2, into Equations 3.3 and 3.5, the minimum packet latency (tqueue = 0) is

calculated and listed in Table 5.6. For the 256× 256 Clos switch, the minimum

packet latency is 30.8 ns, out of which 20 ns is due to a 2×2 m propagation delay.

Clock and data recovery (CDR) at the receiver is excluded but the overhead will not

be significant, given the sub-nanosecond CDR time reported in [108].

Next, the packet latency distribution is examined. Figure 5.16 shows the packet

latency CDF, for 16≤ N ≤ 256 Clos switches, at 25%, 50% and 75% traffic loads.

At a 25% load (Fig. 5.16a), more than 20% of the packets are delivered with the

minimum latency, for all switch sizes. As the load is increased to 50% (Fig. 5.16b)

and 75% (5.16c), the percentage of minimum latency packets drops, as it becomes

increasingly difficult for new packets to pass through the 3-condition filter, in the

scheduler switch configuration module (section 5.2.2.4). This filter ensures strict,

in-order packet delivery and low average latency. The median packet latency is well

below 100 ns, at least up to a 50% load. At 75% load, the switch is operated beyond

saturation. The median latency is considerably increased and latency in general is

more variable, for all sizes. The CDF 99% to 100% tails, for all sizes and loads

investigated, have a latency range less than an order of magnitude, as shown in the

insets in Fig. 5.16.

Figure 5.17 shows the average packet latency against input traffic load, for

different size Clos switches. At low loads, the average latency converges to the

minimum value, for all switch sizes. The latency is fairly constant up to a 50%
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Figure 5.16: Cumulative distribution of the packet end-to-end latency at (a) 25%, (b) 50%
and (c) 75% input traffic loads, for different size Clos switches, and ASIC
scheduler. Network model assumes SOA-based Clos switch with a 2 m link
distance to every source and destination. Packets are 64 B, wavelength-striped
at 8×100 Gb/s and injected based on a Bernoulli process.
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Figure 5.17: Average end-to-end latency vs. input traffic load, for different size Clos
switches, and ASIC scheduler. Network model assumes SOA-based Clos
switch with a 2 m link distance to every source and destination. Packets are
64 B, wavelength-striped at 8× 100 Gb/s and injected based on a Bernoulli
process.

load, with a small increase for the larger switches. For latency less than 100 ns,

there is only a 5% decrease in maximum load, per 4-fold increase in switch size,

indicating scalability. The 256× 256 switch has a nanosecond average latency up

to an 80% traffic load.

5.2.5 Switch Design Comparison

5.2.5.1 Scheduling

Notable approaches to optical packet switch scheduling, from various research labs

in the field, are reviewed in this section. The switch architecture is important as

it could simplify scheduling and reduce its delay. At the same time, it should not

require many optical components, hindering implementation. Scheduling can be

executed centrally or in a distributed fashion, with the former usually considered

to be of high complexity and incurring a considerable delay. The aim here is to

show otherwise. In some approaches the packet header/request is optical and in

others electrical. Also, some switches use ACK signalling, to avoid buffering in the

switch. Table 5.7 compares the different scheduling approaches and their benefits

and shortcomings are discussed.

SPINet [11], distributes scheduling to the 2×2 modules in an N×N banyan-
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Scheduling Delay (ns)
Switch N=16 N=32 N=64 N=256 Method Request ACK

Clos-MDLR 3.3 - 4.2 6.0 Central Electrical No
(ASIC)

Clos-MDLR 8.7 - 13.5 21.0 Central Electrical No
(FPGA)

Clos-GLBL - 16.2 - - Central Electrical No
(FPGA)
AWGR- 17.0 17.0 17.0 - Distributed Optical Yes
LION

Banyan- 20.0 25.0 30.0 40.0 Distributed Optical Yes
SPINet
Spanke- 25.0 25.0 25.0 - Distributed Optical Yes

OPSquare
Crossbar- - - 51.2 - Central Electrical Yes
OSMOSIS

Table 5.7: Scheduling Comparison

topology switch architecture. It scales by cascading log2(N) internal stages.

Scheduling per module is executed in 5 ns [87] but cascading them in many stages

increases total scheduling delay (log2(N)×5 ns) and limits the switch throughput.

The OPSquare wavelength-routed switch [21, 95, 94] is also modular and

scales by stacking modules in a 2-stage Spanke architecture and by increasing

the wavelength channels. It avoids arbitration for the output modules by using

wavelength conversion. The arbitration time for the input modules depends on

the wavelength-count, bringing the total scheduling delay to 25 ns, independent

of switch size. However, wavelength conversion and the high optical components

count increase the implementation complexity and cost.

All aforementioned designs use optical request schemes, therefore have

scheduling overheads for optical filtering, O/E conversion and request detection,

in addition to arbitration. The LION switch [98] avoids these overheads because it

uses optical instead of electronic scheduling. Also, it is based on an N×N AWGR,

whose scaling is limited by the number of wavelengths supported by the AWGR

technology. Optical scheduling is distributed to the output ports [109], by using
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reflective semiconductor optical amplification (RSOA) for nanosecond arbitration

[99], independent of switch size. Scheduling delay is limited by laser tuning time

(8 ns), necessary for wavelength routing, and switch round-trip time (5 ns) and

grant detection time (4 ns) at the source, due to output-port grant acknowledgement

(ACK) prior to packet transmission [99]. Also, RSOA-based arbitration fairness, is

not as strong compared to electronic round-robin schemes.

The central scheduler in the OSMOSIS prototype [12] uses a parallel iterative

scheduling algorithm [90], to improve throughput in a crossbar switch, at the cost of

high scheduler complexity and delay. To schedule a 64×64 crossbar, the OSMOSIS

scheduler requires 51.2 ns [12]. Moreover, as already discussed, an N×N crossbar

is not practical for photonic integration at large sizes, due to the N2 switch elements

required to build it.

All designs that use ACK signalling, from the switch back to the packet source,

whether in an optical or electrical form, incur control overheads for ACK transport,

detection and processing at the source, in addition to scheduling.

The proposed switch design uses a 3-stage Clos architecture and a parallel

modular scheduler design (Clos-MDLR). The Clos switch modules use broadband

SOA gating elements, in the broadcast-and-select configuration. In comparison to

OPSquare, the low component count and lack of wavelength conversion, simplifies

architecture and allow for switch photonic integration. Using electrical requests,

eliminates all scheduling overheads for request detection, present in the SPINet and

OPSquare designs. Speculative packet transmission and buffered switch, eliminate

the round-trip and grant detection overheads in the proposed design, as grant/ACK

signalling is not used. Also, the proposed space switch avoids the wavelength tuning

overhead in scheduling wavelength-routed switches, such as the LION switch. Non-

iterative, modular arbitration and a novel Clos routing scheme, enable scheduling a

256× 256 switch in 6.0 ns, in an ASIC implementation, or in 21.0 ns in an FPGA

implementation, outperforming the best designs in the field, including our global-

arbitration Clos scheduler (Clos-GLBL).
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Figure 5.18: Switch average throughput vs. input traffic load, for different switch designs,
under Bernoulli traffic.

5.2.5.2 Switch Throughput and Packet Latency

The switch latency and throughput performance is compared to SPINet, OPSquare

and LION optical switches, as well as our global-arbitration Clos scheduler, under

Bernoulli traffic.

The average switch throughput is expressed as a percentage of output capacity,

hence different switch designs can be compared irrespective of their port count (N).

As shown in Fig. 5.18, our Clos-GLBL switch design, saturates at 32% of capacity.

The SPINet banyan switch saturates at 65% of capacity when a speedup factor of

2 is used [11], thus the effective input traffic load is only 32.5%. Both Clos-GLBL

and SPINet perform poorly, due to their blocking routing scheme. The non-blocking

OPSquare switch, saturates at approximately 50% of capacity [95]. The proposed

Clos-MDLR outperforms all three, saturating at a load 60% of capacity, despite

its blocking routing algorithm. The performance improvement is due to the VOQ

buffering scheme, at the switch inputs, which reduces the packet HOL blocking.

The LION switch [99], based on a non-blocking, wavelength-routed architecture,

saturates at 75% of capacity. The throughput gain in the LION switch is mainly due

to using 4 receivers per output port, which allows up to 4 packets being delivered in

the same clock cycle, on different wavelengths.
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designs. Clos-MDLR/GLBL latency is based on scheduler implementation on
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distance to every source and destination. Packets are 64 B and injected based
on a Bernoulli process.

For a fair packet latency comparison, the FPGA-based scheduler is assumed in

the latency calculation. As already discussed, the scheduler runs slower on an FPGA

than it does as an ASIC. For a 256×256 switch, the FPGA scheduler has a minimum

clock period (Tscheduler) of 7.0 ns, contributing a total scheduling delay of tscheduler =

3×7.0 = 21.0 ns, in the latency calculation. For consistency with the other designs,

the bit rate (Rb) assumed is reduced from 100 Gb/s to 10 Gb/s, increasing the packet

(de)serialisation delay (tserial) to 3.2 ns, assuming 16 wavelength channels (k = 16).

The packet latency for the 4× 4 OPSquare [95] and the 64× 64 LION [99]

switches has been reduced, to account for only a 2 m distance between switch and

network nodes. A 51.2 ns packet serialisation delay has been added to the OPSquare

latency, for 64 B packets serialised at 10 Gb/s onto a single wavelength. The latency

for LION, OPSquare, SPINet and Clos-MDLR, includes the scheduling delay listed

in Table 5.7. For a 64× 64 SPINet [11], only a minimum latency comparison is

carried out. This includes packet serialisation, a round-trip to the switch output port

(ACK signalling) and the total scheduling delay.

In Fig. 5.19, the average packet latency for a 256-port Clos switch, using the
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proposed modular scheduler (Clos-MDLR), is compared to the other designs. Clos-

MDLR achieves a sub-microsecond average packet latency up to a 65% traffic load.

This represents a 31% increase, for a switch size 8 times larger, compared to the

32×32 Clos-GLBL. For the minimum latency in a 64-port SPINet, the Clos-MDLR

can support 10% more traffic, for a switch 4 times larger. Clos-MDLR outperforms

the 64× 64 LION switch, for all reported traffic loads (up to 65%), also for a 4-

fold increase in switch size. Against the small 4×4 OPSquare switch, the 256-port

Clos switch achieves a lower latency, up to 55% traffic load. It should be noted,

however, that OPSquare drops packets and does not consider contending packets

that are re-transmitted more than once.

5.3 Summary

A three-stage (m,n,r) Clos network, in certain topological configurations, has been

shown to be a practical switch architecture for scalable photonic-integrated packet

switching. In this chapter, two scheduler designs for Clos switches were presented.

In the first design, output ports are allocated globally by considering requests

from all input ports, similar to a crossbar scheduler. In this way, however, the Clos

scheduler could never run faster than a crossbar scheduler, as it is limited by the

N-bit arbiter in the critical path. Implementation of the global Clos scheduler, on

the Xilinx Virtex-7 XC7VX690T FPGA, gave 5.4 ns minimum clock period against

5.0 ns for a crossbar scheduler, for a 32×32 switch size. Unlike a crossbar, a Clos

switch requires a routing scheme. In order to execute routing in a single clock cycle,

a random path assignment was used. In total, the Clos scheduler takes 3 clock cycles

to reconfigure the switch, compared to two clock cycles for the crossbar scheduler,

due to the additional pipeline stage for Clos routing. As a result, the minimum end-

to-end packet latency is 51.6 ns versus 44.6 ns for the crossbar, assuming rack-scale

distances and 64-byte packets serialised at 4× 100 Gb/s. However, using random

path assignment, the switch becomes blocking which in turn reduces the achievable

saturation throughput, compared to using the looping algorithm for re-arrangeable

non-blocking Clos networks. In a 32× 32 network emulation, the throughput for
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a (4,4,8) Clos switch was measured and compared to that for a route-less, strictly

non-blocking crossbar, to evaluate the penalty of random routing. Results showed

a saturation throughput at 32.1% of capacity versus 62.5% for the crossbar. To

improve saturation throughput, using a Clos network with m = 2n was proposed,

so that the probability of contention for a random path is lower. The (8,4,8) Clos

was implemented on the same FPGA achieving the same minimum clock period

(5.4 ns), and hence the same minimum packet latency as the (4,4,8) Clos switch.

Network emulation results showed a saturation throughput at 47.5% of capacity,

representing only a 15% routing penalty compared to the crossbar.

In the aforementioned switch design, the global Clos scheduler can never run

faster than a crossbar scheduler and requires that the switch uses at least twice as

many central modules, for satisfactory throughput performance, making the switch

less practical for photonic integration at large sizes. To this end, a second scheduler

for Clos switches with m = n = r =
√

N was designed. It reconfigures the switch

based entirely on distributed path allocation for the modules in the Clos switch. The

significance of this is that only a
√

N-bit arbiter is in the critical path, allowing for

a considerably shorter minimum clock period, compared to a crossbar scheduler.

To keep the scheduling delay to three clock cycles, a fixed path assignment is used

to eliminate contention at the Clos central modules for output modules. Therefore,

no extra pipeline stage is needed for output module arbitration. As with random

routing, fixed path assignment makes the switch architecture blocking. In order

to improve throughput, virtual output queue (VOQ) buffering at the switch inputs

was proposed. The distributed path allocation allowed designing the scheduler in a

modular fashion and then optimising those modules for clock speed. Each scheduler

module was synthesised as an ASIC in a 45 nm CMOS process and the critical path

module was identified. This was the module that performs iSLIP allocation for VOQ

requests, for a Clos input module, achieving a minimum clock period of 2.0 ns, for

a 256× 256 Clos switch. For design comparison, the critical path module was

implemented on the Xilinx Virtex-7 XC7VX690T FPGA, giving a minimum clock

period of 7.0 ns, for the 256× 256 Clos switch. This result verifies a significant
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scalability improvement over the global Clos scheduler, which achieves a minimum

clock period of 5.4 ns for a 32× 32 Clos switch. Moreover, the total scheduling

delay for the modular Clos scheduler is 3×7.0 = 21.0 ns, which is lower compared

to state-of-art switch designs in the literature, namely the LION, OPSquare, SPINet

and OSMOSIS.

The average switch throughput and packet latency were measured and also

compared to other switch designs, in the network emulation. Under control of the

modular Clos scheduler, the switch throughput saturates at 60% of capacity, which

is approximately double the one under global scheduler control or for the SPINet

switch, and 10% higher compared to OPSquare. The LION switch saturates at 75%

of capacity by using 4 times as many receivers per output port. Furthermore, the

modular scheduler enables a 256× 256 Clos switch to achieve a sub-microsecond

average packet latency up to a 65% traffic load. This is approximately 30% higher,

compared to using the global Clos scheduler, for a switch size eight times larger.

The modular scheduler allows the 256-port Clos switch to outperform the LION,

OPSquare, SPINet and OSMOSIS switches, despite its much larger size.

Although it is suggested that the proposed optical switch is used to replace

electronic top-of-rack switches in the leaf network layer, the demonstrated 256-port

Clos switch is large enough for application at the spine layer.



Chapter 6

Experimental Demonstration

The control plane, in the proposed system concept, is experimentally demonstrated

in an FPGA-based implementation. It includes two server-side network interfaces

and a crossbar scheduler, implemented on different FPGA boards. The components

in the control delay and packet latency are identified. The control plane is then used

to demonstrate nanosecond optical packet switching, in a laboratory setup, and the

minimum end-to-end packet latency is measured. The limitations on the minimum

packet latency and the significance of control plane synchronisation, are discussed.

A balanced pipeline scheduler design is then implemented on the same FPGA board

as the experimental scheduler, to quantify delay reduction and assess scalability.

In our network emulation, the packet latency for the two crossbar schedulers is

measured and compared to one another. The work reported here was reviewed and

published in [29, 30].

6.1 Control Plane Components

6.1.1 Server Network Interface

Every packet a server injects is first buffered in a first-in, first-out (FIFO) queue, in

the network interface (NI). When the queue is not empty, the Request Control reads

the destination of the head-of-line (HOL) packet and issues an output port request

to the scheduler. After a configurable delay, tstx, the Packet Control forwards the

HOL packet to the transmitter (TX), speculatively; it does not wait for an output

port grant from the scheduler. Therefore, the network interfaces “send and forget”
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packets, as opposed to storing them for possible re-transmission. The tstx delay is a

configurable number of clock cycles, where a network interface clock cycle is Ttx,

to ensure the HOL packet reaches the switch as soon as it has been reconfigured.

At the TX, the packet is divided and serialised onto k parallel wavelength channels,

with each channel running at a bit rate Rb. In this demonstration, the packet size

is 64 bytes, k = 8 and Rb = 10 Gb/s, giving a serialisation delay (tserial) of 6.4 ns.

Also, for a 32× 32 switch, the request structure consists of a 5-bit port field, to

address each output port, and a valid bit. The Request Control extends the duration

of a request, by a configurable number of clock cycles, so that a scheduler running

at a lower clock speed can detect them.

The constraints on the minimum Ttx, are due to the bit rate per lane (Rb) on

the wavelength-striped data path and the width of the parallel bus that drives the

serialiser. For this demonstration, 10 Gb/s per lane and a 32-bit parallel bus give

Ttx = 32 bits/10 Gb/s = 3.2 ns. Two network interfaces were implemented onto the

Xilinx Virtex-7 XC7VX690T FPGA board, with this clock constraint.

6.1.2 Switch Scheduler

The switch scheduler receives requests from the server network interfaces, performs

output port allocation, resolves any contention for output ports and reconfigures the

switch. In this demonstration, the scheduler design is a two-stage pipeline, hence

the total scheduling delay is fixed to two clock cycles, where a scheduler clock cycle

is Tscheduler.

The circuit design for the experimental scheduler is illustrated in Fig. 6.1. The

circuit has two input request matrices, one for new server requests (R) and one for

switch buffer requests (RS). Every matrix holds up to N valid requests, where each

request has a port field of log2(N) bits, to address the destination output port, and

a valid bit to indicate the request presence. In the first pipeline stage, the two input

request matrices are processed in parallel, by a dedicated Arbiter Request logic, to

generate the request vectors for the arbiters. Every vector has N bits to indicate the

requesting input ports, for a specific output port, that an arbiter will handle next.

In the second pipeline stage, the Request MUX logic gives input port priority, for
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Figure 6.1: Scheduler design with 2-stage pipeline for an N×N crossbar switch. Critical
path shown in red.

an output port request, to packets buffered at the switch, for strict in-order packet

delivery. The logic also receives feedback from the Grant register, to remove any

requests that have already been granted. Next, output-port allocation takes place,

based on round-robin arbitration. The arbiter grants are forwarded to parallel logic

blocks for generating the circuit outputs; the N-bit grant vector (G), the N-bit write-

enable (CWE) and read-enable (CRE) vectors, for the buffers at the switch inputs, and

the switch configuration matrix (CCNFG). In the latter, every signal has a port field

of log2(N) bits, to address a switch element (SOA), and a valid bit.

The feedback, from the Grant register to the Request MUX logic, forms the

critical path in the design. It extends from the Grant register, through one of the

arbiters and back to the Grant register itself, as marked in Fig. 6.1. For the 32×32

crossbar, in this demonstration, the minimum Tscheduler achievable on the Xilinx

Kintex-7 XC7K325T FPGA board, is 9.6 ns.

6.1.2.1 Metastability Resolution

In the experiment, to avoid clock distribution, the FPGA boards onto which the

control plane is implemented, are ran from independent crystal oscillators, hence
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they are asynchronous. As discussed above, the FPGA board onto which the server

network interfaces are implemented, runs at a 3.2 ns clock period. The FPGA board

for the scheduler, runs at a 9.6 ns clock period.

At the scheduler, since the input requests are asynchronous, it is possible that

a request arrives just as the clock rises. This may result in a phenomenon called

metastability, whereby the input flip-flop, in the first pipeline stage, captures a value

midway between a logic 0 and a logic 1. The flip-flop is said to be in a metastable

state and will, eventually, resolve the output to a stable state of either a logic 1

or a logic 0. The time, however, required until the output settles to that state, is

unbounded. This could cause an erratic scheduling failure that would be difficult to

detect and correct.

A synchronisation circuit, or synchroniser, can be used to significantly reduce

the probability of a flip-flop entering metastability. A synchroniser is a device that

receives an asynchronous input bit (D) and a clock signal (clk), and outputs a bit (Q)

that is either equal to D, if D does not arrive as clk rises, or equal to a logic 0 or 1.

Q settles to its final value within a bounded amount of time. A simple synchroniser

can be built as a cascade of two flip-flops, with no other logic in between. In case

the synchroniser input D changes as the clock changes, the output of the first flip-

flop D1 may be momentarily metastable. However, given the clock period is long

enough, D1 will most probably resolve to a valid state, before the period ends. The

second flip-flop will then sample a stable D1, generating a valid output Q.

Every input request bit has to pass through such a synchroniser, before entering

the scheduler. Both the scheduler and all preceding synchronisers are implemented

on the same FPGA board (Xilinx Kintex-7 XC7K325T). It is uncertain when a

request arrives, with respect to the scheduler clock edge, giving rise to a variable

synchronisation delay, tsync. In the best case, the request is aligned in time with the

clock edge, giving tsync = 1Tscheduler. In the worst case, the request arrives just after

the clock edge, giving tsync = 2Tscheduler. Therefore, 1Tscheduler ≤ tsync ≤ 2Tscheduler.

In this chapter, this phenomenon is referred to as synchronisation uncertainty.
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6.2 Experimental Setup

Figure 6.2 shows the setup for the control plane demonstration. It includes two

FPGA boards and an SOA-based 2×2 optical crossbar, built out of discrete optical

components. FPGA#1 is a Xilinx Virtex-7 XC7VX690T board and implements two

server-side network interfaces. It runs at a clock period Ttx = 3.2 ns, as described in

section 6.1.1. FPGA#2 is a Xilinx Kintex-7 XC7K325T board and implements the

scheduler, including synchronisers. It runs at a clock period Tscheduler = 9.6 ns, as

described in section 6.1.2.

The SOA devices used in the setup are from the Centre for Integrated Photonics

(CIP) with part number SOA-NL-OEC. They have a reconfiguration time, tswitch,

of approximately 3 ns. The cabling length in the control path, as well as in the

data path from the server network interfaces to the switch/scheduler and from the

switch/scheduler to the optical receivers, was kept as close to 2 m as possible, to

represent the case for a top-of-rack (ToR) switch application. For this cable length,

the propagation delay, tpropagation, is 10 ns.

Given the control plane design and minimum achievable packet latency are the

main focus, the data plane was simplified in the following ways:
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1. Although the crossbar scheduler was fully implemented for a 32×32 switch

size, only a 2×2 crossbar was implemented in the setup.

2. Since minimum latency occurs under no contention, no buffers were used at

the crossbar inputs. The scheduler still generates the buffer control signals.

3. A single-wavelength 10 Gb/s optical transceiver, per network interface,

was used and only 64 bits per packet were transmitted, to emulate 64 B

wavelength-striped packets transmitted at 8×10 Gb/s.

On FPGA#1, in addition to the two network interfaces and optical transceivers,

a packet generator has been implemented. The generator, periodically constructs

64-byte packets, representative of the smallest Ethernet packet size, for which the

minimum end-to-end latency occurs. A linear feedback shift register is used to

assign a pseudo-random payload to the packets. In each network interface, the

Request Control generates 6-bit requests, including the port field and valid bit, for

a 32-port switch. The port field, addresses only the two output ports in the partially

implemented crossbar, in the setup. The request duration is set to 4Ttx = 12.8 ns, for

the slower scheduler to detect them. The requests are transported to the scheduler

FPGA board in a bit-parallel format, over electrical lines (tpropagation = 10 ns). The

delay before speculative packet transmission, tstx, is set to 10Ttx = 32 ns to account

for the total scheduling delay and additional fibre delays in the discrete-component

setup (splitters/combiners, receivers).

On FPGA#2, the scheduler output signals, for switch reconfiguration, are held

for an additional clock cycle. This is to accommodate both tserial and tswitch, and

also to account for the synchronisation uncertainty, as described below. A Xilinx

Integrated Logic Analyzer (ILA) core is also implemented on FPGA#2, for real-

time monitoring of the internal scheduler signals, using probes C0-C6 as marked in

Fig. 6.2.

The control plane extends across both FPGA boards; it includes the Request

Control and Packet Control, in the network interfaces (FPGA#1) and the scheduler

(FPGA#2). The control plane delay is therefore given by the sum of the individual
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control processes, taking place on the two FPGA boards:

1. Request generation: The Request Control reads the destination of the HOL

packet and generates a request. The delay, treq, is equal to 1Ttx.

2. Propagation delay: The request is transported to the scheduler out-of-band,

on parallel electrical wires. The delay, tpropagation, is determined by the wire

length between the server and the scheduler.

3. Request synchronisation: The request synchroniser has a worst case delay,

tsync, of 2Tscheduler, when the request arrives just after the clock edge.

4. Scheduling: The scheduler performs output port allocation and generates the

new switch configuration, including the buffer control signals for the switch.

The total scheduling delay, tscheduler, is 2Tscheduler.

5. Switch reconfiguration: The time tswitch needed to switch “on” a single SOA.

This is 3 ns for the SOAs used in the setup.

The control plane delay, tcp, is calculated by adding the above components, for

the worst-case request synchronisation delay:

tcp = treq + tpropagation + tsync + tscheduler + tswitch

= 4Tscheduler +Ttx + tpropagation + tswitch

At a network interface, since the control plane delay is known, the delay before

a packet is speculatively transmitted, tstx, is set accordingly, so that a packet reaches

the switch as soon as it is reconfigured. If the scheduler has allocated that packet the

requested output port, the packet is switched with minimum latency. Therefore, the

minimum packet latency is also known and it is given by the following equation:

tpacket = tcp + tpropagation + tserial

The tpropagation term, in the packet latency calculation, refers to the packet time-

of-flight on the optical fibre, from the switch to the optical receivers. The tserial term,
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Figure 6.3: Experimental scenarios: a) switching packets from an input port to two output
ports and b) switching packets from two input ports to an output port.

refers to the packet head-to-tail delay required to receive a packet, also referred to

as the packet (de)serialisation delay.

For this experimental setup, using the above equations, the expected minimum

packet latency, tpacket, is 71.0 ns, out of which 54.6 ns is the control plane delay, tcp.

The scheduler delay, including request synchronisation, accounts for 70.3% of the

control plane delay. This highlights the significance of the scheduler clock period.

In the next section, optical packet switching is demonstrated, using the FPGA-

based control plane, and the packet latency is measured. The timing of the packets

is captured on a high-speed oscilloscope, at several points along the data paths, by

placing probes D0-D7 as indicated in Fig. 6.2 and using optical receivers where

necessary.

6.3 Experimental Demonstration and Results
The demonstration comprises two scenarios: (a) switching packets from one input

port to the two output ports and (b) switching packets from the two switch input

ports to an output port. Figure 6.3 illustrates the two scenarios.

6.3.1 Scenario A

The Packet Generator on FPGA#1 injects packets periodically, once every 48 ns,

feeding only one of the two network interfaces. The packet destination alternates

between the two possible output ports of the switch. The purpose of this scenario is
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to demonstrate successful packet switching, for the proposed system concept, and

measure the minimum packet latency.

6.3.1.1 Control Path Signals

Figure 6.4 shows the internal scheduler signals, as captured by the Xilinx ILA core

implemented on the same FPGA board. Each trace is labelled according to the

probe used. The probe placement is as indicated in Fig. 6.2. As shown, the request

(only the valid bit is shown) successfully arrives on the scheduler board (probe

C0). The request width is 2Tscheduler, so that the following synchroniser can detect

the request. The scheduler registers the request 2Tscheduler later (probe C2), due to

the request synchronisation delay, tsync. The scheduler takes tscheduler = 2Tscheduler

to perform output port allocation and generate the new switch reconfiguration. A

reconfiguration pulse is issued to the appropriate SOA (probe C4 or C6). The width

of a reconfiguration pulse is 2Tscheduler, to accommodate both tswitch = 3.0 ns and

tserial = 6.4 ns, accounting also for the request synchronisation uncertainty.

As shown in Fig. 6.4, only one SOA is active at a time, switching a packet to

the corresponding output port. The packets appear at the same output port on every

other scheduling round, as expected.

6.3.1.2 Data Path Signals

Figure 6.5 shows the packet timing along the data path to the two switch output

ports, requested in this demonstration scenario. The packet valid bit indicates the

time the packet generator injects a packet (probe D0). The falling edge of a packet’s
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82.4 ns
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Figure 6.5: Data path from a server network interface to the two switch output ports. Traces
are labelled according to the probe placement shown in Fig. 6.2. The minimum
end-to-end latency measurement is marked in this Figure.

valid bit marks the beginning of the packet latency measurement. The packet is

initially buffered in the FIFO queue and, once tstx = 32 ns is up, the Packet Control

forwards it to the optical transmitter. The packet arrives at the transmitter 36 ns

later (probe D2), where it is then serialised onto the optical fibre. It then takes

tpropagation = 12 ns for the packet’s leading edge to propagate to the switch input

(probe D4) and another 28 ns to propagate through the switch to the optical receiver

(probe D7). Finally, it takes the receiver tserial = 6.4 ns to de-serialise the packet

(probe D7). In total, the minimum latency is 82.4 ns against the expected value of

71.0 ns. The extra delay is attributed to additional printed circuit board (PCB) tracks

in the control path and fibre pigtails in the discrete components, such as combiners

(switch outputs) and optical receivers, which increase tpropagation.
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Figure 6.6: Effect of request synchronisation uncertainty on the switch configuration. The
switch configuration pulse timing is captured using a 5-second persistence on
the oscilloscope. The speculatively transmitted packet is shown arriving at the
switch SOA at the right time.

The SOA amplification effect appears as a voltage offset in the received packets

(probes D6 and D7). Although, this can be removed with an optical filter, none

is applied to show the packet arrival relative to the scheduler SOA configuration

pulse. As shown, the pulse is long enough to accommodate the packet duration.

The packet may arrive well after the relevant SOA is turned “on”, to avoid any bit

errors or packet loss due to the asynchronous control plane.

The effect of the synchronisation uncertainty on the switch configuration

is examined in Fig. 6.6. Due to 1Tscheduler ≤ tsync ≤ 2Tscheduler, the request-to-

configuration time could vary up to 1Tscheduler. The switch configuration signals

need to be broaden by at least 1Tscheduler, for error-free operation. All possible

timings of a switch configuration are captured using a 5-second persistence on the

oscilloscope, as shown in the Figure. As a result, a window of 3Tscheduler = 28.8 ns

is formed, over which no other packet may be switched to that output port. This is

the minimum guard time. The packet is shown arriving at the switch SOA at the

right time, indicating that tstx = 10Ttx = 32 ns is correct, for this experimental setup.

6.3.2 Scenario B

The Packet Generator on FPGA#1 feeds both server network interfaces, one at a

time, with a constant time difference. Also, all generated packets are destined to

the same output port. This allows investigating the minimum time spacing between
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Figure 6.7: Scheduler shown allocating one switch output port to the two requesting server
network interfaces, one at a time. Traces are labelled according to the probe
placement shown in Fig. 6.2. Each subdivision is 1Tscheduler.

packets, before output port contention occurs, to measure the effective port capacity.

6.3.2.1 Control Path Signals

The internal scheduler signals, as captured by the Xilinx ILA core, are shown in

Fig. 6.7. The requests issued by the two server network interfaces (probes C0 and

C1) are shown arriving at the scheduler, with a fixed 3Tscheduler = 28.8 ns difference.

The scheduler takes up to tsync = 2Tscheduler for request synchronisation (probes C2

and C3). It then takes 2Tscheduler = 19.2 ns to allocates the output port and generate

the configuration pulse (probes C4 and C5). The output port is allocated to one

network interface at a time, in a round-robin fashion.

6.3.2.2 Data Path Signals

The packet timing along the data path from each of the two server network interface

to one of the switch output ports, is shown in Fig. 6.8. The delay contributions

to the minimum packet latency (82.4 ns), for the data path to the first output port

(probes D0, D2, D4 and D6), are the same as those in Fig. 6.5. Packets from the

two servers are successfully received at the output port, one at a time, based on

round-robin priority (probe D6). The packet spacing is the minimum achievable in

this setup and it is 32 ns (probe D6). The effective port capacity is therefore only

(6.4 ns/32 ns)× 100 = 20.0% of the theoretical value (k×Rb), due to the request

synchronisation uncertainty and its effect on the switch configuration timing, as

described above. In a synchronous control plane, the effective port capacity would
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82.4 ns
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Figure 6.8: Data path from the two server network interfaces to the first switch output port.
Traces are labelled according to the probe placement shown in Fig. 6.2. The
minimum end-to-end latency and packet spacing measurements are marked in
this Figure.
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be (6.4 ns/9.6 ns)× 100 = 66.7% of the theoretical value. The theoretical port

capacity for the proposed switch could be very high by appropriately depending on

the number of wavelength channels (k) used and the channel bit rate (Rb).

6.3.3 Asynchronous Control Plane Limitations

Based on the experimental results, it is understood that an asynchronous control

plane, although easier to implement as no clock distribution is required, it limits the

performance of the switch.

The minimum control plane delay is increased due to the request synchronisers

preceding the scheduler circuit. Due to the request synchronisation uncertainty, the

delay tsync added is 2Tscheduler, to ensure correct packet switching.

Also due to the synchronisation uncertainty, the switch configuration needs

to be extended by at least one clock cycle, resulting in 3Tscheduler time window

over which no other packet may be allocated the assigned switch paths. This can

significantly reduce the effective port capacity of the switch.

In practice, synchronisation would also be necessary at the receivers, for data

recovery. Techniques such as injection clock recovery, electronic [110, 111] or

optical [112], and source-synchronous wavelength-striped operation [113, 114], can

be used for low-latency synchronisation. For optical switch application at the leaf

network layer, there are no clock domain crossings and hence no associated delay

for these techniques.

The performance limitations due to an asynchronous control plane, highlight

the significance of the minimum scheduler clock period, Tscheduler, achievable. The

pipeline crossbar scheduler design, presented in Chapter 4, reduces the minimum

Tscheduler, improving switch performance as discussed next.

6.4 Balanced Pipeline Scheduler Design
The scheduler design used in the experimental demonstration, although being a two-

stage pipeline, the logic delay is not balanced between the two stages. As shown

in Fig. 6.1, output port allocation and new switch configuration are both executed

in the second stage. Hence, the critical path falls in that stage, giving a minimum
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Figure 6.9: Minimum clock period vs. switch size, for two crossbar scheduler designs,
implemented on the Xilinx Kintex-7 XC7K325T FPGA.

Tscheduler = 9.6 ns, for the Xilinx Kintex-7 XC7K325T FPGA board.

In contrast, the crossbar scheduler, presented in Chapter 4, uses a balanced

pipeline design, as shown in Fig. 4.8. Compared to the scheduler design used in the

demonstration (Fig. 6.1), the balanced design reduces the minimum scheduler clock

period, Tscheduler, in the following ways:

1. Output port allocation and new switch configuration are divided in the two

pipeline stages.

2. Output port allocation is executed independently and in parallel for new server

requests and switch buffer requests.

3. Priority logic, for switch buffer requests, is moved to the pipeline stage for

new switch configuration.

The balanced scheduler pipeline design (DSGN-BLNC) is implemented on the

Xilinx Kintex-7 XC7K325T FPGA board, for different crossbar sizes (N). In this

way, it can be directly compared to the scheduler design used in the demonstration

(DSGN-DEMO). Figure 6.9 compares the minimum clock period achievable, for the
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two scheduler designs, as a function of crossbar size. For a a 32×32 crossbar, the

balanced pipeline scheduler design achieves a minimum Tscheduler = 5.5 ns, against

9.6 ns for the demonstration scheduler design, representing a 42.7% reduction in

minimum clock period. For Tscheduler = 5.5 ns, the demonstration scheduler design

can be used for a crossbar four times smaller (N = 8). Moreover, the balanced

pipeline design allows scheduling a crossbar switch twice the size, for the clock

period at which the 32-port scheduler ran, in the experimental demonstration.

Using the balanced pipeline design, for the 32× 32 crossbar scheduler in the

demonstration, would give a total scheduling delay, including worst-case request

synchronisation delay, tscheduler = 4Tscheduler = 22.0 ns. Based on the equations

above, the control plane delay and minimum end-to-end packet latency, would be

tcp = 38.2 ns and tpacket = 54.6 ns, respectively.

6.5 Network Emulation Results

In this section, the two crossbar scheduler designs are compared in terms of packet

latency, measured in the developed network emulation. The synthetic workload is

based on Bernoulli packet injection and uniformly-distributed packet destinations.

The latency is translated into absolute time, using the parameters listed in Table 6.1.

The network emulation captures the latency in the demonstrated control plane,

for a 32×32 crossbar. The clock period assumed for the server network interfaces

is Ttx = 3.2 ns and for the scheduler is Tscheduler = 9.6 ns, or Tscheduler = 5.5 ns for

the balanced pipeline design. A network interface takes treq = 3.2 ns to generate

a request, for the head-of-line (HOL) packet in its FIFO queue. Once the request

reaches the scheduler, a request synchronisation delay tsync = 2Tscheduler is assumed

(worst-case). A fixed scheduling delay tscheduler = 2Tscheduler is incurred, before the

switch configuration signals are generated. The duration of a switch configuration

pulse is extended to 2Tscheduler, or 3Tscheduler for the balanced pipeline scheduler

design, due to its shorter clock period (5.5 ns). The pulse width accounts for the

request synchronisation uncertainty and accommodates the switch reconfiguration

time tswitch = 3.0 ns, for the SOAs used in the setup, and the packet (de)serialisation
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Parameter Value

Crossbar Size (N) 32×32

Packet Size (S) 64 Bytes

Channel Bit Rate (Rb) 10 Gb/s

Channel Count (k) 8

Ttx 3.2 ns

Tscheduler 9.6 ns, 5.5 ns

treq 1Ttx

tsync 2Tscheduler

tserial (S×8)/(k×Rb) = 6.4 ns

tswitch 3.0 ns

tpropagation 10.0 ns

Switch Configuration 2Tscheduler, 3Tscheduler

Input Traffic Load 5% - 100%

Table 6.1: Parameters for Network Emulation.

delay tserial = 6.4 ns, for 64-byte packets (de)serialised at 8× 10 Gb/s. For a 2 m

distance between switch and servers, the propagation delay is tpropagation = 10.0 ns.

Figure 6.10 shows the packet latency cumulative distribution function (CDF),

at 50% input traffic load, for the two scheduler designs. For either DSGN-BLNC or

DSGN-DEMO, more than 10% of the packets are switched with minimum latency

and the median latency is less than 140 ns. The packet latency for DSGN-DEMO

is longer and more variable, compared to DSGN-BLNC. Also, the distribution tail,

accounting for 95% to 100% of the received packets, is considerably shorter for

DSGN-BLNC. The tail length is 406.7− 219.6 = 187.1 ns for DSGN-BLNC and

886.9−378.2 = 508.7 ns for DSGN-DEMO.

The average packet latency, at all traffic loads, for the two scheduler designs,

is shown in Fig. 6.11. The DSGN-BLNC scheduler design, enables a lower average

latency at all traffic loads. For an average packet latency ≤ 100 ns, DSGN-BLNC

increases the highest supported traffic load from 35% to 50%, compared to DSGN-

DEMO. Beyond 50% traffic load, the average packet latency increases rapidly for

both scheduler designs. Nevertheless, it remains below 10 µs, even at full port
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Figure 6.10: Cumulative distribution function of packet end-to-end latency, at 50% input
traffic load, for two different scheduler designs implemented on the Xilinx
Kintex-7 XC7K325T FPGA. The network model assumes an SOA-based,
32× 32 crossbar switch with a 2 m link distance to every connected source
and destination. Packets are 64 bytes, wavelength-striped at 8× 10 Gb/s and
injected based on a Bernoulli process.
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Figure 6.11: Average end-to-end packet latency vs. input traffic load, for two different
scheduler designs, implemented on Xilinx Kintex-7 XC7K325T FPGA. The
network model assumes an SOA-based, 32× 32 crossbar switch with a 2 m
link distance to every connected source and destination. Packets are 64 bytes,
wavelength-striped at 8×10 Gb/s and injected based on a Bernoulli process.

speed (100% load).

6.6 Summary
The proposed control plane, for a 32× 32 optical crossbar, was implemented on

FPGAs, in an experimental setup. This included two server network interfaces, on
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one FPGA, and the switch scheduler, on a second FPGA. In order to avoid clock

distribution, the control plane was asynchronous; the two FPGA boards were ran

from independent crystal oscillators. The network interfaces ran at a clock period

Ttx = 3.2 ns, for the the Xilinx Virtex-7 XC7VX690T FPGA, and the scheduler at a

clock period Tscheduler = 9.6 ns, the Xilinx Kintex-7 XC7K325T FPGA. To resolve

metastability, request bit synchronisation circuitry was used, before scheduling, on

the same FPGA board. This could incur up to 2Tscheduler delay, for requests that just

miss the scheduler clock edge. The switch configuration was extended by 1Tscheduler,

to account for the uncertainty in the request arrival, relative the the scheduler clock

edge. Although the control plane was fully implemented for a 32× 32 crossbar,

only a 2×2 crossbar was implemented in the experimental setup, using SOA gates

re-configurable in 3 ns. Packets were 64 bytes in size, representing the minimum

Ethernet size, and serialised at 8×10 Gb/s in wavelength-parallel format. Distances

were kept as close as possible to 2 m, to represent a realistic rack-scale network with

a 10 ns propagation delay per link. The delay contributions in the control plane and

packet latency were discussed in detail. The FPGA-based control plane was used

to demonstrate optical packet switching, in two different scenarios. The minimum

end-to-end packet latency measured was 82.4 ns, out of which 11.4 ns are due to

additional fibre in the discrete components used in the setup. The minimum packet

spacing measured was 32 ns, indicating an effective port capacity of only 20%.

An asynchronous control plane increases minimum packet latency and reduces

effective port capacity. Those are both dependent on the minimum scheduler clock

period achievable. To this end, a second scheduler design, optimised for clock

speed, was used. That design balances the logic delay between two pipeline stages.

For a 32-port crossbar scheduler, the minimum clock period is reduced by 42.7%,

from 9.6 ns to 5.5 ns. As a result, the minimum packet latency is reduced from

71.0 ns to 54.6 ns and the effective port capacity of the switch is increased from

20% to 29.1%. More importantly, for a clock period of 9.6 ns, the balanced pipeline

design can schedule a crossbar double the size (64×64).

A synchronous control plane would further improve minimum packet latency
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and effective port capacity, at the cost of extra wiring to distribute the clock. In

practice, data synchronisation would also be necessary for the receivers. Techniques

such as injection clock recovery and source-synchronous operation, can be used to

keep the overhead small.

In the developed network emulator, a more extensive packet latency study was

conducted, to evaluate the benefit of using the balanced pipeline scheduler design, as

opposed to the one used in the experimental demonstration. Under a 50% Bernoulli

traffic load, the balanced pipeline design showed shorter and less variable packet

latency, with a significantly shorter distribution tail. Also, for all traffic loads, lower

average packet latency is verified against the demonstration scheduler.



Chapter 7

Conclusion & Future Work

The research work carried out and described in the thesis is summarised in this

chapter. Potential directions in which the work can be taken in are discussed.

7.1 Conclusion
Optical interconnects is a viable solution to address the stringent requirements of

the intra-data centre traffic, exchanged between network nodes. In fact, optical

networking is already deployed in the form of point-to-point links between switches

at the network core. Over a copper link, an optical fibre link that uses wavelength-

division multiplexing (WDM) offers significantly higher bit rate, over much longer

distances, with dramatically lower energy per bit and higher signal integrity. The

switches, however, are still electronic which creates a bandwidth bottleneck and

limits energy efficiency. Optical switching is necessary to continue increasing the

network bandwidth. Also, the bit rate transparency of an optical switch means that

its energy consumption is independent of the switched bandwidth.

In order to keep increasing the bandwidth of switching systems, photonic-

integration and WDM are necessary. This is to overcome the limits imposed by

the number of high-speed pins available on a chip or the number of connectors

fitting on the front panel of a rack unit. Also, to scale switching systems, photonic-

integration is important for reducing the cost and power consumption, compared to

a discrete component implementation.

The technology upon which an optical switch is built, is very important as it de-
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termines whether the switch can be integrated, characteristics such as insertion loss,

reconfiguration time and operation mode. Space and wavelength-routed switching

are the two possible operation modes. In a space switch, multiple wavelengths can

be switched at the same time, yielding a high port bandwidth. In a wavelength-

routed switch, the signal wavelength onto which data is serialised, determines the

switch path. An optical switch is characterised by optical loss, crosstalk and noise

contributions. This limits the number of optical switches that can be traversed and

therefore the network size. Space switches with millisecond reconfiguration can be

built as micro-electro-mechanical systems (MEMS) or based on piezoelectric beam

steering technology. Those are already commercially available supporting hundreds

of ports with low insertion loss and crosstalk. Their long reconfiguration time makes

them suitable for circuit switching. For nanosecond-reconfigurable space switching,

compatible with both packet and circuit switching, Mach-Zehnder interferometer

(MZI), micro-ring resonator (MRR) or semiconductor optical amplifier (SOA) are

potential technologies. These are also suitable for photonic integration. MRRs are

attractive due to their small physical dimension, which could allow for a high level

of integration, important for scalability. However, they require accurate temperature

control. MZIs are larger in size but less temperature dependent. Large size MRR or

MZI switches have not been implemented, limited by loss and crosstalk. SOAs are

typically used as gating elements, in a broadcast-and-select (B&S) configuration, to

build a crossbar equivalent. The SOA technology is very promising for integrated

switches; its inherent amplification can compensate for losses due to splitting and

waveguide crossings. Also, when de-activated, it can strongly suppress crosstalk.

The gain required to compensate for losses, however, adds amplified spontaneous

emission (ASE) noise to the signal. Noise and component-count limit scalability in

a single-stage integrated switch. However, a 64×64 SOA-based integrated switch

has been demonstrated, by arranging smaller 8× 8 crossbars in a three-stage Clos

network topology. For wavelength routing, MRRs are a candidate technology. The

other main option, for passive routing, is the arrayed waveguide grating technology.

In this case, reconfiguration speed is limited by the laser tuning time, at the transmit
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and receive end nodes. Scalability in an arrayed waveguide grating router (AWGR)

is limited by wavelength crosstalk.

Many optical circuit-switched network architectures have been proposed in

the literature, based on MEMS switching. Notable examples include RotorNet,

Helios, and c-through. However, these solutions complement, rather than replace,

the electronic packet-switched network. Their millisecond reconfiguration cannot

cater to small size traffic that is rapidly changing.

Optical packet switching can be widely deployed in any network layer without

any limitation on traffic size or stability. Despite the demonstration of nanosecond-

reconfigurable photonic-integrated architectures, optical packet switching is not yet

employed in data centre networks. The main impediments are the lack of practical

optical random-access memory (RAM) and the limited optical signal processing

capabilities. The latter is necessary to perform the fundamental functions of routing

and switch scheduling. Memory is needed for buffering, to avoid packet loss while

scheduling completes. Scheduling refers to the allocation of switch resources, such

as output ports, and contention resolution. The switch is reconfigured based on the

scheduling decision. Indeed, scheduling in its own right is a main barrier to packet

switching. Decisions needs to be made on packet timescales, which continue to

decrease as the bit rate keeps increasing. Scheduling time is dependent on switch

architecture and increases with switch size. Optical packet switch prototypes based

on different architectures, that aim at scalable scheduling, have been demonstrated.

The OPSquare, LION, SPINet, OSMOSIS and Data Vortex are renowned examples.

Apart from LION, which is based on AWGR technology, the rest switches use SOA-

based crossbar modules in a multi-stage architecture. Scheduling is distributed to

the modules. In the thesis, these architectures have been reviewed in detail and their

merits and shortcomings have been discussed.

To this end, the research contribution has been on the design of highly parallel

hardware crossbar and Clos network schedulers. The aim is to implement an ultra-

low latency control plane, for scalable packet switching. The focus has been on the

minimum packet latency and highest switch saturation throughput achievable. The
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allocation circuit, or simply allocator, is the fundamental scheduler component. It

is responsible for the fair allocation of switch resources, such as output ports, and

contention resolution. In general, an n×m switch output port allocator, matches

n outputs to m inputs. To do so, n parallel m-bit variable priority arbiters (VPAs)

are used, one for each output. The design of a fast, hardware-optimised m-bit VPA,

has been presented. Also, the circuit for generating the priority input to the VPA, to

realise a round-robin arbiter, is discussed in detail. A round-robin arbiter exhibits

strong fairness and it was used for allocation in all scheduler designs in this research

work. In many heuristic scheduler designs, allocation is performed separately as

two sets of arbitration. This is implemented by having two ranks of parallel arbiters.

In order to increase the number of resources granted, per scheduling round, (a) the

top-priority requests across the first-rank arbiters can be staggered and (b) multiple

allocation iterations can be executed. For example, iSLIP is an iterative separable

allocation method, based on round-robin VPAs, which staggers first-rank arbiter

priorities by updating their top priority request, only if that request was successfully

granted in the second-rank arbiter too. The design of an iSLIP allocator has been

presented.

The scheduler is part of a proposed system concept, which uses electronics

for buffering and signal processing and optics for high bandwidth space switching.

Target switch architectures are the crossbar and Clos network, in an SOA-based

photonic-integrated implementation. A single-stage switch architecture such as the

crossbar, is proposed for a network size up to 32 ports. The SOA noise and high

component count would prevent integrated implementations beyond 64 ports. A

three-stage Clos network has been shown practical for scaling to sizes at least up to

64 ports. At this size, the proposed optical switch can replace electronic top-of-rack

(ToR) switches, in the leaf network layer. This provides sufficient WDM links to

interconnect a rack of servers to the electronic spine switches. At every input of

the optical switch, electronic buffering is implemented in the form of either a single

queue or N parallel virtual output queues (VOQs). This enables speculative packet

transmission, without ACK overheads, while avoiding packet loss. Transceivers for
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optical-to-electrical (O/E) and electrical-to-optical (E/O) conversion are required at

the switch. The VOQs increase switch throughput at the cost of more transceivers.

This reduces the energy and cost benefit of optical networking but regenerating

optical signals at the switch makes the network highly scalable.

In the proposed system concept, a server network interface first issues a switch

output port request to the scheduler, for the head-of-line (HOL) packet in its queue.

The scheduler reads the request, performs allocation and reconfigures the optical

switch, in nanoseconds. In the meantime, at the server network interface, the packet

is forwarded to the transmitter speculatively, without waiting for a scheduler grant.

The packet is serialised onto the optical fibre in a wavelength-striped format and

transported to the switch, as soon as it is reconfigured. The packet is switched to its

destination port with minimum latency, if it is allocated the requested output port.

Otherwise, it is buffered at the switch input after electrical conversion. In the next

round of scheduling, a packet buffered at the switch is given priority over a new

server packet, to maintain packet ordering and low average latency. A FIFO Full

signal is asserted when a switch buffer is occupied beyond a threshold value. This is

the only control backpressure signalling, from the scheduler to the servers, to allow

for a small buffer size at the switch inputs.

The concept proposed has been compared to the other packet switch designs

in the literature. Buffering at the switch implements a “send-and-forget” interface

at the servers. Unlike a bufferless switch, this avoids sending a scheduling grant or

acknowledgement back to the servers, reducing control plane latency. The trade-off

is O/E and E/O conversion at the switch. Transmitting a packet in a k-wavelength

parallel format increases port bandwidth and reduces packet serialisation delay by a

factor of k, compared to OPSquare, LION and OSMOSIS. However, k transceivers

are required per switch input port. In terms of switch architecture, the non-blocking

crossbar has a higher saturation throughput, compared to SPINet and Data Vortex,

but can only scale to 32 ports in an integrated implementation. The Clos switch

can be used for sizes beyond 64 ports, unlike the OPSquare and LION switches.

The OPSquare switch is limited by splitting/combining optical loss in the crossbar
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modules, whereas the LION switch is limited by wavelength crosstalk. The power

requirement and losses in the discrete-component OSMOSIS implementation limit

scalability to also 64 ports. The use of fibre delay line, for packet buffering in

the OPSquare and Data Vortex switches, hinders photonic integration. Unlike in

OPSquare, SPINet and Data Vortex, transmitting requests in electrical format does

not require additional optical components in the control path for request detection,

simplifying the architecture and reducing scheduling delay. Similar to OSMOSIS, a

central scheduler is used for the proposed optical ToR switch. Simple, non-iterative

round-robin allocation significantly reduces delay, at the cost of lower throughput,

compared to the FLPPR design in OSMOSIS. Using a highly parallel and modular

design, the central Clos scheduler has been shown to outperform the distributed

scheduling approaches used in OPSquare, LION, SPINet and Data Vortex, for a

significantly larger switch size, in terms of total scheduling delay.

A hardware network emulator has been developed to allow for cycle-accurate

performance evaluation of the proposed system concept, with accuracy down to the

packet level. The emulator fully captures the latency characteristic of the control

plane and adds delays for packet serialisation and propagation to model a rack-

scale WDM network. The emulator has been used to verify control design, which

includes scheduling, and to measure the packet latency and switch throughput. In

terms of traffic, a Bernoulli injection process was used with uniform random packet

destinations. The emulator can be used to evaluate networks of arbitrary size and

different traffic load.

A parallel crossbar scheduler design has been presented, for nanosecond

scheduling. Parallelism is implemented in space and in time. The latter is also

known as pipelining. The design has two pipeline stages; in the first stage, global

output-port allocation is performed and in the second, the new switch configuration

is generated. Global, as opposed to distributed allocation, refers to the scheduler

considering requests from all crossbar input ports. The scheduling delay is fixed

to two clock cycles, determined by the number of pipeline stages. The length of a

clock cycle, or simply the clock period, depends on the length of the critical path, in
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the digital design. Scheduler implementation on the Xilinx Virtex-7 XC7VX690T

FPGA, showed that the critical path lies in the first pipeline stage. The N-bit arbiter

used for an output port in an N×N crossbar, to globally allocate it to at most one of

N requesting input ports, forms the critical path. This gave a minimum clock period

is 5.0 ns, for a 32×32 crossbar. Hence, the total scheduling delay is only 10.0 ns,

for this switch size. Consequently, the minimum end-to-end packet latency, which

occurs under no path contention and therefore has no buffering delay included, is

44.6 ns. The calculation assumes an SOA-based switch, reconfigurable in 0.115 ns,

with a 2 m distance to connected nodes and wavelength-striped 64-byte packets,

serialised at 4×100 Gb/s. Also, two scheduler clock cycles (10 ns) are added, for

worst-case request synchronisation delay. In the network emulation of this system

concept, the average switch throughput is shown to saturate at 62.5% of capacity. At

a 62.5% traffic load, the scheduler enables sub-microsecond average packet latency.

An asynchronous control plane, for a 32×32 crossbar, in the proposed system

concept, has been implemented on FPGA boards and verified in an experimental

setup. This included server network interfaces, implemented on one FPGA board,

and the crossbar scheduler implemented on another. It was shown that for a server

network interface, the clock is constrained by the lane bit rate and the width of the

bus that drives the serialiser. For the scheduler, the critical path lies in the output-

port allocator, which determines the minimum clock period. To resolve scheduler

metastability, bit-level request synchronisation was necessary. This could add up to

two scheduler clock cycles delay, if a cascade of two flip-flops is used per request

bit. This is due to the uncertainty in the request arrival relative to the scheduler clock

edge. This also required that the switch configuration is held active for longer, to

avoid packet loss. These results highlighted the significance of the scheduler clock

period on the control latency and effective switch capacity. The control plane was

used to verify the proposed system and to demonstrate optical packet switching with

ultra-low end-to-end minimum packet latency. Implementing the pipeline crossbar

scheduler on the Xilinx Kintex-7 XC7K325T FPGA, gave a minimum clock period

of 5.5 ns, thus a total scheduling delay of 22.0 ns, including worse-case request
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synchronisation. Using this scheduler, the demonstrated control plane can achieve

a minimum end-to-end latency of 54.6 ns, for the given experimental setup. That

is, an SOA-based crossbar reconfigurable in 3.0 ns with 2 m distances to the servers

and 64-byte packets wavelength-striped across eight wavelengths at 10 Gb/s.

To improve control plane scalability, highly parallel schedulers were designed

for Clos network switches. In the first design, output ports are allocated globally,

considering all input port requests. In order to execute routing in a single clock

cycle, random paths are arbitrated for the inputs that were allocated the requested

output ports. A parallel allocator is used for every input module (IM) and output

module (OM) in the Clos network, for distributed path allocation. The scheduler is

designed as a three-stage pipeline and therefore the total scheduling delay is fixed to

three clock cycles. FPGA implementation of the scheduler, verified that the critical

path lies in the first pipeline stage, through an N-bit arbiter, used for the global

output port allocation in an N×N Clos switch, same as with an N×N crossbar. For

a 32-port Clos switch, implementation on the Xilinx Virtex-7 XC7VX690T FPGA

gave a minimum clock period of 5.4 ns, against 5.0 ns for an equal size crossbar.

The total delay for the Clos scheduler is therefore 3× 5.4 = 16.2 ns, compared

to 2× 5.0 = 10.0 ns for the two-stage pipeline crossbar scheduler, excluding any

request synchronisation delay. Random routing makes the architecture blocking and

therefore reduces the switch saturation throughput. To improve throughput, using

twice as many central modules (CMs) in the Clos configuration, for the same switch

size, was proposed so that random routing is more effective. Results showed only

a 15% routing algorithm penalty, compared to the strictly non-blocking crossbar,

with the same scheduling delay. Using twice as many CMs, however, makes the

architecture less attractive for photonic integration.

The second Clos scheduler design, addresses the two limitations of the first

one: (a) the scheduler can never run faster than a crossbar scheduler, due to the

global output port arbitration, and (b) at least twice as many CMs are needed to

improve throughput, hindering integration. Therefore, a scheduler was designed

for m = n = r =
√

N Clos switches, which have been shown practical for photonic
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integration. Fully distributed path allocation is implemented, to achieve a lower

minimum clock period compared to a crossbar scheduler. This is because the larger

arbiter required is only
√

N bits, as opposed to an N-bit arbiter, reducing the critical

path. A novel fixed routing algorithm was applied for single clock cycle execution

and to keep the design to three pipeline stages, by eliminating contention at the

CMs. However, assigning fixed paths makes the architecture blocking, same as

with random routing, which reduces saturation throughput. VOQ buffering at the

switch inputs, was proposed, to increase throughput at the cost of a more complex

scheduler design. The distributed path allocation allowed designing the scheduler

in a modular fashion, for parallel allocation per Clos IM and OM, and optimising

those scheduler modules for clock speed. Hardware implementation showed that

the critical path lies in the scheduler module for the Clos IMs, responsible for iSLIP

allocation due to the VOQ buffering. Implementing that scheduler module on the

Xilinx Virtex-7 XC7VX690T FPGA gave a minimum clock period of 7.0 ns, for

a 256× 256 Clos switch. For ASIC synthesis, in a 45 nm CMOS process, the

minimum clock period is just 2.0 ns, for this switch size. This is a record result,

outperforming state-of-the-art switch designs.

7.2 Future Work

A switch design includes the internal architecture, routing and flow control.

Scheduling is a critical flow control function. The scheduler design is strongly

dependent on the switch architecture and generates the switch configuration based

on the routing algorithm. Future work could investigate the scheduler design for

different switch architectures and routing schemes. Different flow control methods,

such as bufferless circuit switching may be explored, to remove switch transceivers

in the proposed system concept. Finally, switch performance could be evaluated

under different traffic patterns, including variable packet sizes, for a more complete

study representative of a realistic network.

A different switch architecture to design a scheduler for, is the binary butterfly

network topology. The destination-tag routing scheme, used for this architecture, is
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suitable for a parallel implementation in hardware. This would benefit the scheduler

design as routing could be executed in a single clock cycle. For an N×N switch,

the architecture requires log2(N) stages. For a high port-count switch, photonic-

integrated MZI-SOA dilated 2×2 switching modules, are attractive. The MZIs are

used for low power space switching and the SOAs for optical gain, to compensate

for losses, and crosstalk suppression. Dilation means that each MZI carries at most

one signal at a time, further improving crosstalk. Compared to SOA-based B&S

modules, the MZI-SOA dilated modules also offer lossless operation but the energy

consumption, crosstalk and ASE noise are significantly lower. This enables the

cascade of more stages to build a larger size switch.

In the proposed system concept, buffering is implemented at the switch inputs.

This enables the speculative packet transmission, necessary for packet switching,

without ACK signalling and avoids packet loss when contention occurs. Virtual

output queuing (VOQ), although beneficial for switch throughput, introduces an

N-fold increase in switch transceivers, compared to using a single longer queue,

per switch input. A potential solution is to use a different buffering policy, known

as first-in, parallel-out (FIPO). This maintains packet ordering and the throughput

advantage of the VOQ scheme, while a using a single transceiver per wavelength

per switch input. Recent advances in optical random-access memory (RAM), bring

all-optical packet switching closer to reality and avoid transceivers all together, in

the proposed concept. Otherwise, a completely different flow control method may

be applied, for bufferless operation; using circuit switching, packets are forwarded

to the switch upon receiving a scheduler grant, which avoids packets being dropped

and therefore the need for buffering. The trade-off is increased scheduling delay;

propagation delay is added to deliver the grant from the switch scheduler back to

the source. However, this delay would be short, for the rack-scale switching system

described in the thesis.

Another flow control change that could be explored is variable slot switching.

In the research work described, the switch reconfiguration, per scheduling round,

remains active for a fixed number of scheduler clock cycles, known as the switch
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slot. This accommodates a fixed-size packet, the technology reconfiguration time

and the uncertainty in the request arrival relative to the scheduler clock edge. Future

work could examine variable slot sizes, to support switching packets of different

size, and the implications on the switch performance. To implement this, the request

per packet could have a field, in its logic structure, to inform the scheduler on the

required slot size, depending on the packet size. For very large packets, the server

network interface could divide them into smaller fixed-size cells that can be treated

as independent packets.

The flow control efficiency, and therefore the switch performance, depends on

the traffic pattern. In the developed network emulator, the switch was evaluated

under a Bernoulli injection process. Although this served the purpose of verifying

the control plane design and measuring the minimum packet latency, it does not

fully reflect the traffic dynamics in a data centre network. Real traffic may be time-

varying or correlated and can be rapidly changing over a short time. Such traffic

is also referred to as bursty. In future work, the network emulation could use a

two-state Markov-modulated process (MPP), to model a bursty traffic source. The

current state of a Markov chain is used to modulate the rate of a Bernoulli injection

process. In the “on” state, the source injects packets at a rate set by the traffic

load parameter. In the “off” state, no packets are injected. In each clock cycle, the

probability to transition from the “off” to the “on” state is set by the parameter α ,

and from the “on” to the “off” by the parameter β . The average “on” period, or

burst length, is given by 1/β and the average time between bursts is given by 1/α .

By setting β = 0, the MPP is reduced to a Bernoulli process. As for the packet size,

a distribution based on an application-driven workload, may be used as opposed

to fixed-size packets. Variable-size packets would require a variable switch slot, as

described above. Larger packets increase the minimum packet latency, due to longer

packet serialisation delays, and would tie down a switch output port for longer,

affecting the switch throughput. Finally, instead of uniformly distributed random

destinations, a different subset of traffic sources may be set to request the same

output port, in different clock cycles, so that some output ports are more heavily
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loaded than others, at different times. Those output ports then become hot spots.

Hot-spot traffic will evaluate the flow control fairness.

The emulator may also be used for a network-wide performance analysis. That

is, to evaluate the packet latency and network throughput, as a result of employing

the proposed switch throughout the data centre architecture.
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