159 research outputs found

    GaN-Based High Efficiency Transmitter for Multiple-Receiver Wireless Power Transfer

    Get PDF
    Wireless power transfer (WPT) has attracted great attention from industry and academia due to high charging flexibility. However, the efficiency of WPT is lower and the cost is higher than the wired power transfer approaches. Efforts including converter optimization, power delivery architecture improvement, and coils have been made to increase system efficiency.In this thesis, new power delivery architectures in the WPT of consumer electronics have been proposed to improve the overall system efficiency and increase the power density.First, a two-stage transmitter architecture is designed for a 100 W WPT system. After comparing with other topologies, the front-end ac-dc power factor correction (PFC) rectifier employs a totem-pole rectifier. A full bridge 6.78 MHz resonant inverter is designed for the subsequent stage. An impedance matching network provides constant transmitter coil current. The experimental results verify the high efficiency, high PF, and low total harmonic distortion (THD).Then, a single-stage transmitter is derived based on the verified two-stage structure. By integration of the PFC rectifier and full bridge inverter, two GaN FETs are saved and high efficiency is maintained. The integrated DCM operated PFC rectifier provides high PF and low THD. By adopting a control scheme, the transmitter coil current and power are regulated. A simple auxiliary circuit is employed to improve the light load efficiency. The experimental results verify the achievement of high efficiency.A closed-loop control scheme is implemented in the single-stage transmitter to supply multiple receivers simultaneously. With a controlled constant transmitter current, the system provides a smooth transition during dynamically load change. ZVS detection circuit is proposed to protect the transmitter from continuous hard switching operation. The control scheme is verified in the experiments.The multiple-reciever WPT system with the single-stage transmitter is investigated. The system operating range is discussed. The method of tracking optimum system efficiency is studied. The system control scheme and control procedure, targeting at providing a wide system operating range, robust operation and capability of tracking the optimized system efficiency, are proposed. Experiment results demonstrate the WPT system operation

    Design of Power Receiving Units for 6.78MHz Wireless Power Transfer Systems

    Get PDF
    In the last decade, the wireless power transfer (WPT) technology has been a popular topic in power electronics research and increasingly adopted by consumers. The AirFuel WPT standard utilizes resonant coils to transfer energy at 6.78 MHz, introducing many benefits such as longer charging distance, multi-device charging, and high tolerance of the coil misalignment. However, variations in coil coupling due to the change in receiving coil positions alter the equivalent load reactance, degrading efficiency. In recent studies, active full-bridge rectifiers are employed on WPT receivers because of their superior efficiency, controllability, and ability to compensate for detuned WPT networks. In order to take advantage of those characteristics, the rectifier switching actions must be synchronized with the magnetic field. In the literature, existing solutions for synchronizing the active rectifier in WPT systems are mostly not reliable and bulky, which is not suitable for small receivers. Therefore, a frequency synchronous rectifier with compact on-board control is proposed in this thesis. The rectifier power stage is designed to deliver 40 W to the load while achieving full zero-voltage switching to minimize the loss. The inherent feedback from the power stage dynamics to the sensed signal is analyzed to design stable and robust synchronization control, even at a low power of 0.02 W. The control system is accomplished using commercial components, including a low-cost microcontroller, which eliminates the need for bulky control and external sensing hardware. This high power density design allows the receiver to be integrated into daily consumer electronics such as laptops and monitors. Finally, a wide-range and high v resolution control scheme of the rectifier input phase is proposed to enable the dynamic impedance matching capability, maintaining high system efficiency over wide loading conditions. In addition, to increase the WPT technology adoption to low-power consumer electronics, a small wireless receiver replacing conventional AA batteries is developed. This receiver can supply power to existing AA battery-powered devices while providing the benefit of WPT technologies to consumers

    Inductively Coupled CMOS Power Receiver For Embedded Microsensors

    Get PDF
    Inductively coupled power transfer can extend the lifetime of embedded microsensors that save costs, energy, and lives. To expand the microsensors' functionality, the transferred power needs to be maximized. Plus, the power receiver needs to handle wide coupling variations in real applications. Therefore, the objective of this research is to design a power receiver that outputs the highest power for the widest coupling range. This research proposes a switched resonant half-bridge power stage that adjusts both energy transfer frequency and duration so the output power is maximally high. A maximum power point (MPP) theory is also developed to predict the optimal settings of the power stage with 98.6% accuracy. Finally, this research addresses the system integration challenges such as synchronization and over-voltage protection. The fabricated self-synchronized prototype outputs up to 89% of the available power across 0.067%~7.9% coupling range. The output power (in percentage of available power) and coupling range are 1.3Ă— and 13Ă— higher than the comparable state of the arts.Ph.D

    A GaN-Based Synchronous Rectifier with Reduced Voltage Distortion for 6.78 MHz Wireless Power Applications

    Get PDF
    The call for a larger degree of engineering innovation grows as wireless power transfer increases in popularity. In this thesis, 6.78 MHz resonant wireless power transfer is explained. Challenges in WPT such as dynamic load variation and electromagnetic interference due to harmonic distortion are discussed, and a literature review is conducted to convey how the current state of the art is addressing these challenges.A GaN-based synchronous rectifier is proposed as a viable solution, and a model of the circuit is constructed. The precisely derived model is compared to a linearized model to illustrate the importance of exactness within the model derivation. The model is then used to quantify the design space of circuit parameters Lr and Cr with regard to harmonic distortion, input phase control, and efficiency. Practical design decisions concerning the 6.78 MHz system are explained. These include gate driver choice and mitigation of PCB parasitics. The model is verified with open loop experimentation using a linear power amplifier, FPGA, electronic load, and two function generators. Current zero-crossing sensing is then introduced in order to achieve self-regulation of both the switching frequency and input phase. The details of the FPGA code and sensing scheme used to obtain this closed loop functionality are described in detail. Finally, conclusions are drawn, and future work is identified

    Multi-Frequency Modulation and Control for DC/AC and AC/DC Resonant Converters

    Get PDF
    Harmonic content is inherent in switched-mode power supplies. Since the undesired harmonics interfere with the operation of other sensitive electronics, the reduction of harmonic content is essential for power electronics design. Conventional approaches to attenuate the harmonic content include passive/active filter and wave-shaping in modulation. However, those approaches are not suitable for resonant converters due to bulky passive volumes and excessive switching losses. This dissertation focuses on eliminating the undesired harmonics from generation by intelligently manipulating the spectrum of switching waveforms, considering practical needs for functionality.To generate multiple ac outputs while eliminating the low-order harmonics from a single inverter, a multi-frequency programmed pulse width modulation is investigated. The proposed modulation schemes enable multi-frequency generation and independent output regulation. In this method, the fundamental and certain harmonics are independently controlled for each of the outputs, allowing individual power regulations. Also, undesired harmonics in between output frequencies are easily eliminated from generation, which prevents potential hazards caused by the harmonic content and bulky filters. Finally, the proposed modulation schemes are applicable to a variety of DC/AC topologies.Two applications of dc/ac resonant inverters, i.e. an electrosurgical generator and a dual-mode WPT transmitter, are demonstrated using the proposed MFPWM schemes. From the experimental results of two hardware prototypes, the MFPWM alleviates the challenges of designing a complicated passive filter for the low-order harmonics. In addition, the MFPWM facilitates combines functionalities using less hardware compared to the state-of-the-art. The prototypes demonstrate a comparable efficiency while achieving multiple ac outputs using a single inverter.To overcome the low-efficiency, low power-density problems in conventional wireless fast charging, a multi-level switched-capacitor ac/dc rectifier is investigated. This new WPT receiver takes advantage of a high power-density switched-capacitor circuit, the low harmonic content of the multilevel MFPWMs, and output regulation ability to improve the system efficiency. A detailed topology evaluation regarding the regulation scheme, system efficiency, current THD and volume estimation is demonstrated, and experimental results from a 20 W prototype prove that the multi-level switched-capacitor rectifier is an excellent candidate for high-efficiency, high power density design of wireless fast charging receiver

    Wireless Power System Design for Maximum Efficiency

    Get PDF
    With the potential of cutting the last cord, wireless power transfer (WPT) using magnetic resonant coupling is gaining increasing popularity. Evolved from the inductive WPT techniques used in commercial products today, resonant WPT can transfer power over a longer distance with higher spatial freedom. Experimental prototypes have shown power transfer across a 2 m air gap [1], proving the viability of resonant WPT. Industrial consortia such as the AirFuel Alliance have standard specifications that enable wide application in consumer electronics.Despite the promises of high efficiency and long transfer distance, resonant WPT has significant challenges to overcome before the broad adoption will occur. One of the critical challenges is the how to design the complicated system. A WPT system consists of multiple parts: the transmitter coil and the compensation capacitor, the receiver coil and the compensation capacitor, and the power stages which consists of the inverter in the transmitter side and rectifier in the receiver side. This thesis investigates the WPT system design for maximum efficiency. It explores modeling and design of individual stages as well as the entire system design method. From the careful literature review, it is found that current design method of coils is insufficient for consumer electronics applications due to the strict sensitivity of size. The current power stage design method is insufficient or inaccurate for WPT applications where wide loading situations need to be considered. The system-level design method is based on assumptions that are not generally true due to the neglect of ZVS requirement and diode rectifier reactance. Instead, previously established techniques in coil design are applied to invent a new coil structure for reduced ESR while achieving a compact size. Previous ZVS inverter and diode rectifier topology are combined with waveform and circuit analysis to develop new accurate modeling and design method for a wide load range. From the resulting coil and converter models, an entire WPT system model and design methodology are proposed which highlights the design parameters selection and the design sequence. These techniques together contribute to a WPT system in terms of both high efficiency and compact size

    Innovative Wireless Power Receiver for Inductive Coupling and Magnetic Resonance Applications

    Get PDF
    This chapter presents a wireless power receiver for inductive coupling and magnetic resonance applications. The active rectifier with shared delay-locked loop (DLL) is proposed to achieve the high efficiency for different operation frequencies. In the DC–DC converter, the phase-locked loop is adopted for the constant switching frequency in the process, voltage, and temperature variation to solve the efficiency reduction problem, which results in the heat problem. An automatic mode switching between pulse width modulation and pulse frequency modulation is also adopted for the high efficiency over the wide output power. This chip is implemented using 0.18 μm BCD technology with an active area of 5.0 mm × 3.5 mm. The maximum efficiency of the active rectifier is 92%, and the maximum efficiency of the DC–DC converter is 92% when the load current is 700 mA

    Wireless Power Transfer

    Get PDF
    Wireless power transfer techniques have been gaining researchers' and industry attention due to the increasing number of battery-powered devices, such as mobile computers, mobile phones, smart devices, intelligent sensors, mainly as a way to replace the standard cable charging, but also for powering battery-less equipment. The storage capacity of batteries is an extremely important element of how a device can be used. If we talk about battery-powered electronic equipment, the autonomy is one factor that may be essential in choosing a device or another, making the solution of remote powering very attractive. A distinction has to be made between the two forms of wireless power transmission, as seen in terms of how the transmitted energy is used at the receiving point: - Transmission of information or data, when it is essential for an amount of energy to reach the receiver to restore the transmitted information; - Transmission of electric energy in the form of electromagnetic field, when the energy transfer efficiency is essential, the power being used to energize the receiving equipment. The second form of energy transfer is the subject of this book

    A High Frequency Wireless Power Transfer System for Electric Vehicle Charging Using Multi-layer Non-uniform Self-resonant Coil

    Get PDF
    Wireless EV (Electric Vehicle) charging is an emerging technology with rapid development in the past decade. Compared to wired EV chargers, wireless power transfer (WPT) enables safe and unobtrusive charging for EVs. This work proposes high frequency wireless charging using a self-resonant (SR) coil at several megahertz. A multi-layer self-resonant coil structure is proposed, allowing high quality factor coils to be fabricated from layers of inexpensive copper foil and dielectric film. Additionally, the self-resonant coil utilizes its interlayer capacitance for resonance, eliminating the external compensation capacitor and shrinking the overall volume of passive component to increase the power density. Comparing to other self-resonant coils in the literature, it exhibits the characteristics of achieving high quality factor and high inductance simultaneously. Prototype coils with 200 mm radius are fabricated and tested, achieving quality factor over 450 at 3 MHz. The fabricated air-core coil structure is low-cost and lightweight, with 200 mm radius, 3 mm thickness and only 2 oz copper traces. The power stages, including GaN (Gallium Nitride) transistor based inverter and SiC (Silicon Carbide) diode based rectifier, are designed with emphasis on reduction of PCB (Printed Circuit Board) layout parasitics. Experimental tests show 95.2% dc-dc efficiency with 6.6 kW power transferred across a 100 mm coil-to-coil distance. The power density is 52.5 kW/m2, without need for any external compensation components. This work validates the concept of high frequency compact WPT system for EV. Practical shielding design is proposed for the WPT system with self-resonant coils, considering the high frequency parallel resonance effect. Complete coil pads are fabricated and assembled, incorporating the ferrite cores, PTFE (Polytetrafluoroethylene) spacer, and aluminum plate. The system is validated with shielded SR coils, achieving 92.3% DC-DC efficiency and 7.1 kW/dm3 volumetric power density. This work demonstrates the first 6.6-kW WPT system using compact self-resonant coils with practical shielding implementation. The concept of proposed multi-layer self-resonant coil is extended to other possible structures. Different multi-layer self-resonant coil structures are compared and analyzed, giving design guidelines for their capabilities at different system operating frequencies

    Magnetic Resonance Wireless Power Transfer Systems Sensing and Applications

    Get PDF
    Magnetic Resonance (MR) Wireless Power Transfer (WPT) is a specific case for thewell known inductive coupling principle where energy is transmitted from a transmittingcoil to a receiving one without the need of any wires. This technology brings enhancedcapabilities and offers the possibility to create cutting edge wireless charging systems. Theobjective of this thesis is to understand and develop the elements needed to build a MR WPT system capable of charging multiple wearable devices placed over a large surface.The focus is put in current and voltage sensing at high frequency for system monitor-ing; power amplifier topology design to maintain good performance across a range of loadvalues; and the beamforming and energy hopping applications validation to deal withcharging area coverage and transmission distance issues. The results show how the pres-ence of a receiver can be detected from the current change measured at the transmitter, aswell as voltage measurements are used as redundant information for system failure detec-tion; a class E power amplifier has been successfully designed to operate with loads thatdiffer 1 order of magnitude from each other; beamforming and energy hopping simulationenvironments have been set, and experiments have shown a 50% improve in the receivedsignal strength with the use of beamforming, while the enrgy hopping phenomena hasbeen empirically demonstrated for up to four hops along a planar array of coils. A solidbasis has been set to allow further development of the aimed wireless charging surface
    • …
    corecore