1,649 research outputs found

    Design of passenger seat for bicycle

    Full text link
    [ES] Se trata de diseñar un sillín de pasajero para bicicleta que sea acoplable al mayor número de modelos de bicicleta. Se pretende diseñar un objeto que pueda utilizarse como sillín o como portaequipajes trasero. Se llevarán a cabo las fases de "Iniciación" y de "Diseño del producto y del proceso". En la fase de "Iniciación" se definirán los requisitos y restricciones de los diseños acordes al mercado, usos, usuario, procesos, materiales, normativa de seguridad y otros estudios específicos. Y en la fase de "diseño del producto y del proceso" se obtendrán soluciones viables especificando formas y dimensiones para albergar la mayor diversidad de bolsas dispensadoras de líquido existentes. Si el tiempo y la magnitud de trabajo lo permite, se podrán llevara a cabo las fases de "implementación" y de "operación". En la fase de implementación se pretenden construir los prototipos aplicando los métodos y procesos que se realizan en la industria manufacturera de este tipo de productos. Y, en la fase de operación se elaborará la documentación de soporte al producto como son el catálogo, vídeos de presentación y manual de instrucciones.[EN] It is about designing a bicycle passenger seat that can be coupled to the largest number of bicycle models. It is intended to design an object that can be used as a saddle or as a rear luggage rack. The "Initiation" and "Product and process design" phases will be carried out. In the "Initiation" phase, the requirements and restrictions of designs according to the market, uses, user, processes, materials, safety regulations and other specific studies will be defined. And in the "product design and process" phase, viable solutions will be obtained specifying shapes and dimensions to accommodate the greatest diversity of existing liquid dispensing bags. If the time and magnitude of the work allows it, the phases of "implementation" and "operation" can be carried out. In the "implementation" phase, the aim is to build the prototypes by applying the methods and processes that are carried out in the manufacturing industry of this type of products. And, in the "operation" phase, the product support documentation will be prepared, such as the catalog, the presentation videos and the instruction manual.Estornell Pérez, D. (2018). Diseño de sillín de pasajero para bicicleta. http://hdl.handle.net/10251/106075TFG

    해양구조물 체결을 위한 Al6061 합금 볼트의 통합 제조공정 설계

    Get PDF
    최근 수송 분야에서 경량화에 대한 관심이 증가하면서, 각종 수송 기계 부품에 비철금속을 적용하는 사례가 늘고 있다. 특히, 6xxx 계열의 알루미늄 합금은 낮은 비중량, 우수한 기계적 특성 및 높은 내식성으로 인해 소형 선박에서부터 해양 구조물에 이르기까지 다양한 해양 분야에 적용되고 있다. 패스너를 사용한 기계식 체결은 사용이 쉽고 적용이 용이하여 알루미늄 합금과 강재의 접합에 널리 사용되어왔다. 현재까지도 산업 현장에서는 알루미늄 합금과 강재의 체결을 위해 스테인리스강 볼트가 사용되고 있다. 그러나 알루미늄 합금의 모재에 기존의 스테인리스강 볼트를 사용하게 되면 중량의 증가뿐만 아니라 알루미늄 모재에서 갈바닉 부식이 발생하게 되고 이것은 특히 해양 환경에서 더욱 가속화된다. 따라서 스테인리스강 볼트를 알루미늄 합금 볼트로 대체하는 것은 추가적인 경량화를 도모할 수 있을 뿐만 아니라 해양 환경에서 이러한 갈바닉 부식의 생성을 미연에 방지할 수 있다. 현재까지 알루미늄 합금 볼트 성형에 대해 일부 연구들이 수행되어 왔다. 그러나 대부분의 연구들은 재료의 성형성 평가에 국한되어 있으므로 성형 공정에 대한 명확하고 체계적인 설계 기준이 없다. 또한, 볼트를 제조하기 위해 필수적인 트리밍 및 전조 공정의 설계가 누락되어있다. 따라서 본 연구에서는 해양구조물 체결을 위한 Al6061 합금 볼트의 통합 제조공정 설계를 수행하였다. 이를 위해 이론 설계 및 수치 해석을 진행하였다. 이론 설계에서는, 스크류 규격과 기하학적 관계를 고려하여 전조 공정의 초기 소재경과 압입 깊이를 계산하였다. 헤딩 공정을 위한 초기 소재 치수는 체적일정법칙으로 구하였다. 결함 예측에 사용되는 공정 한계를 고려하여, 공정 단수를 설정하고, 헤딩 공정의 설계 규칙에 의해 예비 형상을 결정하였다. 또한 설계된 헤딩 공정에 대해 슬래브법을 사용하여 성형 하중을 예측하였다. 이론 설계를 바탕으로 헤딩, 트리밍 및 전조 공정에 대한 유한요소해석을 수행하였다. 헤딩 및 트리밍 공정 중에 발생하는 결함을 예측하기 위해 연성파괴기준을 적용하였다. 또한 전조 공정에서 금형의 압입량, 이송 속도 및 분당 회전수, 트리밍 공정에서는 펀치의 곡률 반경, 하부 금형의 랜드 폭 및 펀치와 하부 금형간의 정지 거리를 각각 설계 변수로 선정하고 다구찌법을 통해 공정을 최적화하였다. 제안 된 설계 방법을 검증하기 위해 알루미늄 합금 볼트 성형 실험을 수행하였고 높은 치수 정확도를 갖는 건전한 형상의 Al6061 합금 볼트를 얻을 수 있었다.|In recent years, with the increasing interest in weight reduction in the transportation sector, the application of non-ferrous metals to various transportation machinery parts has been increased. In particular, the 6xxx series of aluminum alloys are commonly used in marine applications from small vessels to offshore structures due to its low specific weight, high quality mechanical properties, and high resistance to corrosion. In order to join aluminum alloy and steel, mechanical joint by fasteners has been widely used because it is easy-and-practical for the application. Until now, stainless steels bolts have been used for fastening aluminum alloys and steels to industrial sites. However, when the stainless steel bolt is used for the base material of aluminum alloy, weight increases and galvanic corrosion occurs in aluminum, which is accelerated in marine environment particularly. Therefore, substituting aluminum alloy bolts for stainless steel ones can prevent such corrosion promotion in marine environment as well as extra weight increase. To date, several studies have been conducted on aluminum alloy bolt forming. However, most studies are limited to the evaluation of formability of materials, so there is no clear and systematic design criterion for the forming process. Furthermore, the design of the trimming and thread-rolling process, essential for manufacturing bolts, was not considered. Therefore, the integrated manufacturing process design of Al6061 alloy bolts for fastening offshore platforms was performed in this study. To do this, we carried out theoretical design and numerical analysis. At theoretical design, the initial rod diameter and the penetration depth in thread-rolling process were calculated according to the screw standards and geometric relation. Thereafter, the dimensions of the initial workpiece for the heading process were obtained by volume constancy law. Considering process limitations to predict the defects, the number of the stage was set, and preform was determined by the design rule in the heading process. In addition, the forming load for the designed heading process was predicted by using the slab method. Based on theoretical design, FE-analysis for the heading, trimming and thread-rolling process was conducted. The ductile fracture criterion was applied to predict the defects during the heading and trimming process. In addition, the Taguchi method is used to optimize the trimming and thread-rolling process with the set of design parameters, such as the penetration depth, transfer velocity, and revolutions per minute of rolling dies in the thread-rolling process, and the blade radius of the punch, land width of the bottom die, and stop distance between the punch and bottom die in the trimming process, respectively. To verify the proposed design, the aluminum alloy bolt forming experiment was carried out and sound Al6061 alloy bolt with high dimensional accuracy was obtained.1. Introduction 1 1.1 Research background 1 1.2 Precedent research 4 1.3 Objective and scope of study 8 2. Theoretical design of Al6061 alloy bolts manufacturing process 9 2.1 Procedures for theoretical design 9 2.2 Process design for thread-rolling 12 2.2.1 Calculation of initial diameter in thread-rolling process 12 2.2.2 Determination of penetration depth 13 2.3 Process design for heading 16 2.3.1 Determination of initial height of head section 16 2.3.2 Theoretical prediction of defects and setting of the number of process stages 17 2.3.3 Preform design for heading process 20 2.3.4 Forming load prediction by slab method 23 3. FE-analysis of cold-former forging process 29 3.1 Conditions of FE-analysis in heading process 29 3.2 Results of FE-analysis in heading process 31 3.3 Design of experiment for trimming process 34 3.3.1 Taguchi method 34 3.3.2 Parameter design for the Taguchi method 36 3.4 Conditions of FE-analysis in trimming process 43 3.5 Results of FE-analysis in trimming process 45 4. FE-analysis of thread-rolling process 55 4.1 Design of experiment for thread-rolling process 55 4.2 Conditions of FE-analysis in thread-rolling process 58 4.3 Results of FE-analysis in thread-rolling process 60 5. Experiment for manufacturing Al6061 alloy bolts 71 5.1 Experimental procedure 71 5.2 Experimental results 72 6. Conclusions 75 References 77 감사의 글 82Maste

    A green product design framework based on quality function deployment process.

    Get PDF

    Aquaculture cages from decomissioned wind turbine blades: an upcycling study

    Get PDF
    Este trabalho aborda a prática inovadora de reutilizar as pás de aerogeradores no fim de sua vida útil para criar jaulas de aquacultura sustentáveis utilizando o processo de upcycling. O estudo apresenta quatro modelos de jaulas diferentes, cada um baseado na reutilização das pás de aerogeradores. Foram realizadas simulações usando o software SolidWorks, contribuindo para o desenvolvimento e aprimoramento dos modelos de gaiolas de aquacultura para avaliar o desempenho de alguns desses modelos. Além disso, o trabalho fornece uma visão geral da aquacultura para os próximos anos, destacando a crescente demanda por sistemas de cultivo de aquacultura. Um ponto importante é a análise da quantidade de pás de aerogeradores que serão descartadas nos próximos 20 anos, demonstrando assim a possibilidade de reutilizar esses recursos para atender de forma sustentável à demanda de aquacultura. A tese também inclui uma matriz SWOT que identifica os detalhes essenciais deste projeto, analisando suas forças, fraquezas, oportunidades e ameaças. Em resumo, esta tese enfatiza a importância da economia circular e da sustentabilidade na aquacultura, apresentando uma abordagem inovadora para reutilizar as pás dos aerogeradores descartadas e integrá-las estruturalmente aos sistemas de cultivo de aquacultura, contribuindo para o avanço da indústria neste setor.This work addresses the innovative practice of reusing wind turbine blades at the end of their lifespan to create sustainable aquaculture cag es using the upcycling process . The study presents four different cage models, each based on the repurposing of wind turbine blades. Simulations were conducted using SolidWorks software, contributing to the development and improvement of the aquaculture cage models to evaluate the performance o f s o m e o f t h e s e m o d e l s Addition ally, the work provides an overview of aquaculture for the upcoming years, highlighting the increasing demand for aquaculture cultivation systems. An important point is the analysis of the quantity of wind turbine blades that will be discarded in the next 20 years, thus demonstrating the possibility of reusing these resources to meet the aquaculture demand sustainably. The thesis also includes a SWOT matrix that identifies the essential details of this project, analyzing its strengths, weaknesses, opportuni ties, and threats. In summary, this thesis emphasizes the importance of the circular economy and sustainability in aquaculture, presenting an innovative approach to repurpose discarded wind turbine blades and structurally integrate them into aquaculture cu ltivation systems, contributing to the advancement of the aquaculture industry

    Project LAB

    Get PDF
    Treball desenvolupat dins el marc del programa 'European Project Semester'.In the North Sea, the construction of wind parks using pile driving forms a threat to porpoises, since they have a very sensitive auditory system. In order to protect this species, the construction work has to be stopped when they are nearby. The purpose of this project is to design a low-cost buoy which should be able to detect these animals in their natural environment and subsequently serve as a supportive device for offshore workers. Additionally, a proposal for a tracking device which can be directly attached to the animals was made. To achieve these objectives, research was conducted on requirements for buoys in North Sea conditions, the behaviour of porpoises, and technical components as well as the necessary software for detection. This report proposes a design for a buoy to meet these objectives

    A systematic design recovery framework for mechanical components.

    Get PDF

    Produktutvikling av ROV ramme, elektronikk hus og flyter

    Get PDF
    Denne bachelpor oppgaven har som mål å designe, produsere og konstruere en ROV-ramme, elektronikk hus og en vitenskapelig flyter ved hjelp av produktutviklingsprosessen. Oppgaven er en del av et større prosjektsamarbeid med åtte andre bacheloroppgaver fra tre fagområder knyttet sammen gjennom studentorganisasjonen UiS Subsea. De endelige produktene fra det overordnede prosjektet vil konkurrere i TAC- og MATE-challenge i juni 2023. UiS Subsea er en organisasjon med faste etiske retningslinjer og et begrenset budsjett. Derfor dreier oppgaven seg om å minimere kostnadene, miljøpåvirkningen og tidsskjemaet for hver beslutning som er involvert i produkt- og produktutviklingsprosessen, samtidig som de tar hensyn til de andre delproduktene i oppgavene. Produktutvikling er en metode som er konstruert for å designe og utvikle nye produkter på en tidseffektiv og kostnadseffektiv måte. I denne oppgaven blir de de viktigste fasene implementert: planlegging, konseptutvikling, systemdesign på overordnet nivå, detaljdesign og testing og forbedring, med alle fasene som inneholder mindre delfaser og trinn relevante for produktet. Ettersom UiS Subsea allerede hadde fullført deler av planleggingsfasen før prosjektstart, handlet denne fasen om å undersøke og forske på de ulike målene og begrensningene de ulike interessentene hadde for prosjektet, inkludert UiS Subsea selv og MATE ROV-konkurransen. Denne forskningen gjorde det enklere og mer tidseffektivt å utvikle konseptene, ettersom behovene og forventningene ble utforsket og etablert. Konsepter kunne dermed effektivt utvikles, forkastes og velges basert på målspecifikasjonen, beregninger og simuleringer. Systemdesignet kunne deretter fokusere på å koble sammen og montere alle delene som trengs til et fungerende endelig produkt. Etter å ha utviklet en fungerende montering på systemnivå, fokuserte detaljdesignet på endelige forbedringer, fastsettelse av endelige dimensjoner gjennom analyse og simuleringer, valg av materiale for hver komponent, og beregninger knyttet til oppdrift og stabilitet. Alle valg av materiale og endelige dimensjoner ble verifisert for å være sterke nok til å tåle alle forventede krefter og belastninger, samtidig som de oppfylte produktets krav til styrke, oppdrift, miljøpåvirkning og kostnader. Når det ble verifisert, ble de endelige delene produsert, montert og gjennomgikk ikke-destruktiv testing. Basert på resultatene fra testene, ble forbedringer og endringer gjort for å produsere best mulig produkt. Alt i alt hjalp produktutviklingsprosessen med planlegging, koordinering, kreativitet og den generelle strukturen i prosjektet, noe som var til nytte i et tverrfaglig prosjekt. Den standardiserte produktutviklingsprosessen hadde mange trinn som ikke var nødvendige for hvert prosjekt, så hver bedrift og hvert prosjekt bør velge trinnene som passer best for deres prosjekt for å utnytte metoden best mulig. For denne avhandlingen innebar det å utlede egne mål og målsettinger for hver fase basert på innholdet i den standardiserte prosessen og streve for å oppfylle disse målene. De endelige produktene var tilfredsstillende totalt sett, presterte godt under testing og fullførte nødvendige oppgaver for å kvalifisere seg for MATE-konkurransen. Produktene er designet og passer godt for neste års avgangsstudenter for å oppgradere og forbedre produktene.This thesis aspires to design, manufacture and construct a ROV frame, an electronic enclosure, and a scientific float by using the product development process. The thesis is part of a larger project collaboration with eight other bachelor theses from three disciplines connected through the student organization UiS Subsea. The final products of the overall project will compete in TAC and MATE challenge in June 2023. UiS Subsea is an organization with set moral guidelines and a limited budget. Therefore the thesis revolves around minimizing the cost, environmental impact, and timetable of every decision involved in the product and product development process while accommodating the other theses sub-products. Product development is a method constructed for designing and developing new products in a timely and cost-efficient way. This thesis includes its main phases: planning, concept development, system level design, detail level design, and testing and refinement, with all phases containing smaller sub-phases and steps relevant to the product. As UiS Subsea already had completed parts of the planning phase before the start of the project, this phase revolved around investigating and researching the different targets and limitations the different stakeholders had for the project, including UiS Subsea themselves and the MATE ROV competition. This research made the concept development phase easier and time efficient since the needs and expectations were explored and established. Concepts could therefore be effectively created, discarded, and selected based on the target specification, calculations, and simulations. The system level design could thereby focus on connecting and assembling all the parts needed together into a functioning final product. After developing a functioning assembly in system level design, the detail design focused on final improvements, setting final dimensions through analysis and simulations, material choice for each component, and calculations surrounding buoyancy and stability. All material choices and final dimensions were verified to be strong enough to withstand all expected forces and loads while fulfilling the product’s strength, buoyancy, environmental and cost requirements. When verified, the final parts were manufactured, assembled, and underwent non-destructive testing. Based on the results of the tests and improvements, altercations were made to the final products. Overall, the product development process helped with planning, coordination, creativity, and overall structure of the project, which were beneficial during an interdisciplinary project. The standard product development process had many steps that were not necessary for every project, so each company and project should select the steps best suited to their project for the best utilization of the method. For this thesis, that included deriving each phase’s own targets and goals based on the standard process’s contents and striving to fulfill these goals. The final products were satisfactory overall, did well during testing, and completed the necessary tasks to qualify for the MATE competition. However, improvements and altercations could always be made to enhance the products further. The products are designed and well-suited for next year’s graduates to upgrade and improve

    Life Cycle Impact of Different Joining Decisions on Vehicle Recycling

    Get PDF
    Stricter vehicle emission legislation has driven significant reduction in environmental impact of the vehicle use phase through increasing use of lightweight materials and multi-material concepts to reduce the vehicle mass. The joining techniques used for joining multi-material designs has led to reduction in efficiency of the current shredder-based recycling practices. This thesis quantifies this reduction in efficiency using data captured from industrial recycling trials. Life Cycle Assessment has been widely used to assess the environmental impact throughout the vehicle life cycle stages. Although there is significant research on material selection or substitution to improve the vehicle’s carbon footprint, the correlation between multi-material vehicle designs and the material separation through commonly used shredding process is not well captured in the current analysis. This thesis addresses this gap using data captured from industrial trials to measure the influence of different joining techniques on material recycling efficiencies. The effects of material degradation due to joining choices are examined using the life cycle analysis including exergy losses to account for a closed-loop system. The System Dynamics approach is then performed to demonstrate the dynamic life cycle impact of joining choices used for new multi-material vehicle designs. Observations from the case studies conducted in Australia and Europe showed that mechanical fasteners, particularly machine screws, are increasingly used to join different material types and are less likely to be perfectly liberated during the shredding process. The characteristics of joints, such as joint strength, material type, size, diameter, location, temperature resistance, protrusion level, and surface smoothness, have an influence on the material liberation in the current sorting practices. Additionally, the liberation of joints is also affected by the density and thickness of materials being joined. The life cycle analysis including exergy losses shows a significant environmental burden caused by the amount of impurities and valuable material losses due to unliberated joints. By measuring the influence of joints quantitatively, this work has looked at the potential of improving the quality of materials recycled from ELV to be reused in a closed-loop system. The dynamic behaviours between the joining choices and their delayed influence on material recycling efficiencies from the life cycle perspective are performed using the data from case studies. It shows that the short-term reduction in environmental impact through multi-material structures is offset over the long-term by the increasing impurities and valuable material losses due to unliberated joints. The different vehicle recycling systems can then be resembled using two widely known system archetypes: “Fixes that Fail” and “Shifting the Burden”. Despite the adoption of more rigorous recycling approaches, the life cycle impact of different joining techniques on vehicle recycling continue to exist. The enactment of strict regulations in current ELV recycling systems is unable to solve the underlying ELV waste problem, and only prolongs the delay in material degradation due to joining choices. This work shows that the choice of joining techniques used for multi-material vehicle designs has a significant impact on the environmental performance during the ELV recycling phase

    Produktutvikling av ROV ramme, elektronikkhus og float

    Get PDF
    Denne bachelpor oppgaven har som mål å designe, produsere og konstruere en ROV-ramme, elektronikk hus og en vitenskapelig flyter ved hjelp av produktutviklingsprosessen. Oppgaven er en del av et større prosjektsamarbeid med åtte andre bacheloroppgaver fra tre fagområder knyttet sammen gjennom studentorganisasjonen UiS Subsea. De endelige produktene fra det overordnede prosjektet vil konkurrere i TAC- og MATE-challenge i juni 2023. UiS Subsea er en organisasjon med faste etiske retningslinjer og et begrenset budsjett. Derfor dreier oppgaven seg om å minimere kostnadene, miljøpåvirkningen og tidsskjemaet for hver beslutning som er involvert i produkt- og produktutviklingsprosessen, samtidig som de tar hensyn til de andre delproduktene i oppgavene. Produktutvikling er en metode som er konstruert for å designe og utvikle nye produkter på en tidseffektiv og kostnadseffektiv måte. I denne oppgaven blir de de viktigste fasene implementert: planlegging, konseptutvikling, systemdesign på overordnet nivå, detaljdesign og testing og forbedring, med alle fasene som inneholder mindre delfaser og trinn relevante for produktet. Ettersom UiS Subsea allerede hadde fullført deler av planleggingsfasen før prosjektstart, handlet denne fasen om å undersøke og forske på de ulike målene og begrensningene de ulike interessentene hadde for prosjektet, inkludert UiS Subsea selv og MATE ROV-konkurransen. Denne forskningen gjorde det enklere og mer tidseffektivt å utvikle konseptene, ettersom behovene og forventningene ble utforsket og etablert. Konsepter kunne dermed effektivt utvikles, forkastes og velges basert på målspecifikasjonen, beregninger og simuleringer. Systemdesignet kunne deretter fokusere på å koble sammen og montere alle delene som trengs til et fungerende endelig produkt. Etter å ha utviklet en fungerende montering på systemnivå, fokuserte detaljdesignet på endelige forbedringer, fastsettelse av endelige dimensjoner gjennom analyse og simuleringer, valg av materiale for hver komponent, og beregninger knyttet til oppdrift og stabilitet. Alle valg av materiale og endelige dimensjoner ble verifisert for å være sterke nok til å tåle alle forventede krefter og belastninger, samtidig som de oppfylte produktets krav til styrke, oppdrift, miljøpåvirkning og kostnader. Når det ble verifisert, ble de endelige delene produsert, montert og gjennomgikk ikke-destruktiv testing. Basert på resultatene fra testene, ble forbedringer og endringer gjort for å produsere best mulig produkt. Alt i alt hjalp produktutviklingsprosessen med planlegging, koordinering, kreativitet og den generelle strukturen i prosjektet, noe som var til nytte i et tverrfaglig prosjekt. Den standardiserte produktutviklingsprosessen hadde mange trinn som ikke var nødvendige for hvert prosjekt, så hver bedrift og hvert prosjekt bør velge trinnene som passer best for deres prosjekt for å utnytte metoden best mulig. For denne avhandlingen innebar det å utlede egne mål og målsettinger for hver fase basert på innholdet i den standardiserte prosessen og streve for å oppfylle disse målene. De endelige produktene var tilfredsstillende totalt sett, presterte godt under testing og fullførte nødvendige oppgaver for å kvalifisere seg for MATE-konkurransen. Produktene er designet og passer godt for neste års avgangsstudenter for å oppgradere og forbedre produktene.This thesis aspires to design, manufacture and construct a ROV frame, an electronic enclosure, and a scientific float by using the product development process. The thesis is part of a larger project collaboration with eight other bachelor theses from three disciplines connected through the student organization UiS Subsea. The final products of the overall project will compete in TAC and MATE challenge in June 2023. UiS Subsea is an organization with set moral guidelines and a limited budget. Therefore the thesis revolves around minimizing the cost, environmental impact, and timetable of every decision involved in the product and product development process while accommodating the other theses sub-products. Product development is a method constructed for designing and developing new products in a timely and cost-efficient way. This thesis includes its main phases: planning, concept development, system level design, detail level design, and testing and refinement, with all phases containing smaller sub-phases and steps relevant to the product. As UiS Subsea already had completed parts of the planning phase before the start of the project, this phase revolved around investigating and researching the different targets and limitations the different stakeholders had for the project, including UiS Subsea themselves and the MATE ROV competition. This research made the concept development phase easier and time efficient since the needs and expectations were explored and established. Concepts could therefore be effectively created, discarded, and selected based on the target specification, calculations, and simulations. The system level design could thereby focus on connecting and assembling all the parts needed together into a functioning final product. After developing a functioning assembly in system level design, the detail design focused on final improvements, setting final dimensions through analysis and simulations, material choice for each component, and calculations surrounding buoyancy and stability. All material choices and final dimensions were verified to be strong enough to withstand all expected forces and loads while fulfilling the product’s strength, buoyancy, environmental and cost requirements. When verified, the final parts were manufactured, assembled, and underwent non-destructive testing. Based on the results of the tests and improvements, altercations were made to the final products. Overall, the product development process helped with planning, coordination, creativity, and overall structure of the project, which were beneficial during an interdisciplinary project. The standard product development process had many steps that were not necessary for every project, so each company and project should select the steps best suited to their project for the best utilization of the method. For this thesis, that included deriving each phase’s own targets and goals based on the standard process’s contents and striving to fulfill these goals. The final products were satisfactory overall, did well during testing, and completed the necessary tasks to qualify for the MATE competition. However, improvements and altercations could always be made to enhance the products further. The products are designed and well-suited for next year’s graduates to upgrade and improve
    corecore