1,535 research outputs found

    A Rapidly Reconfigurable Robotics Workcell and Its Applictions for Tissue Engineering

    Get PDF
    This article describes the development of a component-based technology robot system that can be rapidly configured to perform a specific manufacturing task. The system is conceived with standard and inter-operable components including actuator modules, rigid link connectors and tools that can be assembled into robots with arbitrary geometry and degrees of freedom. The reconfigurable "plug-and-play" robot kinematic and dynamic modeling algorithms are developed. These algorithms are the basis for the control and simulation of reconfigurable robots. The concept of robot configuration optimization is introduced for the effective use of the rapidly reconfigurable robots. Control and communications of the workcell components are facilitated by a workcell-wide TCP/IP network and device level CAN-bus networks. An object-oriented simulation and visualization software for the reconfigurable robot is developed based on Windows NT. Prototypes of the robot systems configured to perform 3D contour following task and the positioning task are constructed and demonstrated. Applications of such systems for biomedical tissue scaffold fabrication are considered.Singapore-MIT Alliance (SMA

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    Design and construction of a novel reconfigurable micro manufacturing cell

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Demands for producing small components are increasing. Such components are usually produced using large-size conventional machining tools. This results in the inadequate usage of resources, including energy, space and time. In the 1990s, the concept of a microfactory was introduced in order to achieve better usage of these resources by scaling down the size of the machine tool itself. Several industries can benefit from implementing such a concept, such as the medical, automotive and electronics industries. A novel architecture for a reconfigurable micro-manufacturing cell (RMC) is presented in this research, aiming at delivering certain manufacturing strategies such as point of use (POU) and cellular manufacturing (CM) as well as several capabilities, including modularity, reconfigurability, mobility and upgradability. Unlike conventional machine tools, the proposed design is capable of providing several machining processes within a small footprint (500 mm2), yet processing parts within a volume up to 100 mm3. In addition, it delivers a rapid structure and process reconfiguration while achieving a micromachining level of accuracy. The approach followed in developing the system is highly iterative with several feedback loops. It was deemed necessary to adopt such an approach to ensure that not only was the design relevant, but also that it progresses the state-of-the-art and takes into account the many considerations in machine design. Following this approach, several design iterations have been developed before reaching a final design that is capable of delivering the required manufacturing qualities and operational performance. A prototype has been built based on the specifications of the selected design iteration, followed by providing a detailed material and components selection process and assembly method before running a performance assessment analysis of the prototype. At this stage, a correlation between the Finite Element Analysis (FEA) model and prototype has been considered, aiming at studying the level of performance of the RMC when optimising the design in the future. Then, based on the data collected during each stage of the design process, an optimisation process was suggested to improve the overall performance of the system, using computer aided design and modelling (CAD/CAM) tools to generate, analyse and optimise the design

    Development of Novel Task-Based Configuration Optimization Methodologies for Modular and Reconfigurable Robots Using Multi-Solution Inverse Kinematic Algorithms

    Get PDF
    Modular and Reconfigurable Robots (MRRs) are those designed to address the increasing demand for flexible and versatile manipulators in manufacturing facilities. The term, modularity, indicates that they are constructed by using a limited number of interchangeable standardized modules which can be assembled in different kinematic configurations. Thereby, a wide variety of specialized robots can be built from a set of standard components. The term, reconfigurability, implies that the robots can be disassembled and rearranged to accommodate different products or tasks rather than being replaced. A set of MRR modules may consist of joints, links, and end-effectors. Different kinematic configurations are achieved by using different joint, link, and end-effector modules and by changing their relative orientation. The number of distinct kinematic configurations, attainable by a set of modules, varies with respect to the size of the module set from several tens to several thousands. Although determining the most suitable configuration for a specific task from a predefined set of modules is a highly nonlinear optimization problem in a hybrid continuous and discrete search space, a solution to this problem is crucial to effectively utilize MRRs in manufacturing facilities. The objective of this thesis is to develop novel optimization methods that can effectively search the Kinematic Configuration (KC) space to identify the most suitable manipulator for any given task. In specific terms, the goal is to develop and synthesize fast and efficient algorithms for a Task-Based Configuration Optimization (TBCO) from a given set of constraints and optimization criteria. To achieve such efficiency, a TBCO solver, based on Memetic Algorithms (MA), is proposed. MAs are hybrids of Genetic Algorithms (GAs) and local search algorithms. MAs benefit from the exploration abilities of GAs and the exploitation abilities of local search methods simultaneously. Consequently, MAs can significantly enhance the search efficiency of a wide range of optimization problems, including the TBCO. To achieve more optimal solutions, the proposed TBCO utilizes all the solutions of the Inverse Kinematics(IK) problem. Another objective is to develop a method for incorporating the multiple solutions of the IK problem in a trajectory optimization framework. The output of the proposed trajectory optimization method consists of a sequence of desired tasks and a single IK solution to reach each task point. Moreover, the total cost of the optimized trajectory is utilized in the TBCO as a performance measure, providing a means to identify kinematic configurations with more efficient optimized trajectories. The final objective is to develop novel IK solvers which are both general and complete. Generality means that the solvers are applicable to all the kinematic configurations which can be assembled from the available module inventory. Completeness entails the algorithm can obtain all the possible IK solutions

    Conceptual designs of multi-degree of freedom compliant parallel manipulators composed of wire-beam based compliant mechanisms

    Get PDF
    This paper proposes conceptual designs of multi-degree(s) of freedom (DOF) compliant parallel manipulators (CPMs) including 3-DOF translational CPMs and 6-DOF CPMs using a building block based pseudo-rigid-body-model (PRBM) approach. The proposed multi-DOF CPMs are composed of wire-beam based compliant mechanisms (WBBCMs) as distributed-compliance compliant building blocks (CBBs). Firstly, a comprehensive literature review for the design approaches of compliant mechanisms is conducted, and a building block based PRBM is then presented, which replaces the traditional kinematic sub-chain with an appropriate multi-DOF CBB. In order to obtain the decoupled 3-DOF translational CPMs (XYZ CPMs), two classes of kinematically decoupled 3-PPPR (P: prismatic joint, R: revolute joint) translational parallel mechanisms (TPMs) and 3-PPPRR TPMs are identified based on the type synthesis of rigid-body parallel mechanisms, and WBBCMs as the associated CBBs are further designed. Via replacing the traditional actuated P joint and the traditional passive PPR/PPRR sub-chain in each leg of the 3-DOF TPM with the counterpart CBBs (i.e. WBBCMs), a number of decoupled XYZ CPMs are obtained by appropriate arrangements. In order to obtain the decoupled 6-DOF CPMs, an orthogonally-arranged decoupled 6-PSS (S: spherical joint) parallel mechanism is first identified, and then two example 6-DOF CPMs are proposed by the building block based PRBM method. It is shown that, among these designs, two types of monolithic XYZ CPM designs with extended life have been presented

    Micro and Desktop Factory Roadmap

    Get PDF
    Terms desktop and microfactory both refer to production equipment that is miniaturized down to the level where it can placed on desktop and manually moved without any lifting aids. In this context, micro does not necessarily refer to the size of parts produced or their features, or the actual size or resolution of the equipment. Instead, micro refers to a general objective of downscaling production equipment to the same scale with the products they are manufacturing. Academic research literature speculates with several advantages and benefits of using miniaturized production equipment. These range from reduced use of energy and other resources (such as raw material) to better operator ergonomics and from greater equipment flexibility and reconfigurability to ubiquitous manufacturing (manufacturing on-the-spot, i.e. manufacturing the end product where it is used). Academic research has also generated several pieces of equipment and application demonstrations, and many of those are described in this document. Despite of nearly two decades of academic research, wider industrial breakthrough has not yet taken place and, in fact, many of the speculated advantages have not been proven or are not (yet) practical. However, there are successful industrial examples including miniaturized machining units; robotic, assembly and process cells; as well as other pieces of desktop scale equipment. These are also presented in this document. Looking at and analysing the current state of micro and desktop production related academic and commercial research and development, there are notable gaps that should be addressed. Many of these are general to several fields, such as understanding the actual needs of industry, whereas some are specific to miniaturised production field. One such example is the size of the equipment: research equipment is often “too small” to be commercially viable alternative. However, it is important to seek the limits of miniaturisation and even though research results might not be directly adaptable to industrial use, companies get ideas and solution models from research. The field of desktop production is new and the future development directions are not clear. In general, there seems to be two main development directions for micro and desktop factory equipment: 1) Small size equipment assisting human operators at the corner of desk 2) Small size equipment forming fully automatic production lines (including line components, modules, and cells) These, and other aspects including visions of potential application areas and business models for system providers, are discussed in detail in this roadmap. To meet the visions presented, some actions are needed. Therefore, this document gives guidelines for various industrial user groups (end users of miniaturized production equipment, system providers/integrators and component providers) as well as academia for forming their strategies in order to exploit the benefits of miniaturized production. To summarise, the basic guidelines for different actors are: ‱ Everyone: Push the desktop ideology and awareness of the technology and its possibilities. Market and be present at events where potential new fields get together. Tell what is available and what is needed. ‱ Equipment end users: Specify and determine what is needed. Be brave to try out new ways of doing things. Think what is really needed – do not over specify. ‱ System providers / integrators: Organize own operations and product portfolios so that supplying equipment fulfilling the end user specifications can be done profitably. ‱ Component providers: Design and supply components which are cost-efficient and easy to integrate to and to take into use in desktop scale equipment. ‱ Academia: Look further into future, support industrial sector in their shorter term development work and act as a facilitator for cooperation between different actors

    Enabling New Functionally Embedded Mechanical Systems Via Cutting, Folding, and 3D Printing

    Get PDF
    Traditional design tools and fabrication methods implicitly prevent mechanical engineers from encapsulating full functionalities such as mobility, transformation, sensing and actuation in the early design concept prototyping stage. Therefore, designers are forced to design, fabricate and assemble individual parts similar to conventional manufacturing, and iteratively create additional functionalities. This results in relatively high design iteration times and complex assembly strategies

    Design and realization of a microassembly workstation

    Get PDF
    With the miniaturization of products to the levels of micrometers and the recent developments in microsystem fabrication technologies, there is a great need for an assembly process for the formation of complex hybrid microsystems. Integration of microcomponents made up of different materials and manufactured using different micro fabrication techniques is still a primary challenge since some of the fundamental problems originating from the small size of parts to be manipulated, high precision necessity and specific problems of the microworld in that field are still not fully investigated. In this thesis, design and development of an open-architecture and reconfigurable microassembly workstation for efficient and reliable assembly of micromachined parts is presented. The workstation is designed to be used as a research tool for investigation of the problems in microassembly. The development of such a workstation includes the design of: (i) a manipulation system consisting of motion stages providing necessary travel range and precision for the realization of assembly tasks, (ii) a vision system to visualize the microworld and the determination of the position and orientation of micro components to be assembled, (iii) a robust control system and necessary fixtures for the end effectors that allow easy change of manipulation tools and make the system ready for the desired task. In addition tele-operated and semi-automated assembly concepts are implemented. The design is verified by implementing tasks in various ranges for micro-parts manipulation. The versatility of the workstation is demonstrated and high accuracy of positioning is shown
    • 

    corecore