
Title Conceptual designs of multi-degree of freedom compliant parallel
manipulators composed of wire-beam based compliant mechanisms

Author(s) Hao, Guangbo; Li, Haiyang

Publication date 2014-05-15

Original citation Hao, G. and Li, H. (2014) 'Conceptual designs of multi-degree of
freedom compliant parallel manipulators composed of wire-beam based
compliant mechanisms', Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering Science, 229(3),
pp. 538-555. doi: 10.1177/0954406214535925

Type of publication Article (peer-reviewed)

Link to publisher's
version

http://dx.doi.org/doi: 10.1177/0954406214535925
Access to the full text of the published version may require a
subscription.

Rights © 2014, Institution of Mechanical Engineers.

Item downloaded
from

http://hdl.handle.net/10468/2638

Downloaded on 2017-02-12T11:10:01Z

http://hdl.handle.net/10468/2638


1 

Conceptual Designs of Multi-DOF Compliant Parallel Manipulators Composed of 

Wire-Beam Based Compliant Mechanisms 
 

Guangbo Hao
*
 and Haiyang Li

 

 

School of Engineering, University College Cork, Cork, Ireland 

*Corresponding author. Email: G.Hao@ucc.ie 

 

Abstract 

This paper proposes conceptual designs of multi-DOF (degree(s) of freedom) compliant parallel manipulators (CPMs) 

including 3-DOF translational CPMs and 6-DOF CPMs using a building block based PRBM (pseudo-rigid-body-model) 

approach. The proposed multi-DOF CPMs are composed of wire-beam based compliant mechanisms (WBBCMs) as 

distributed-compliance compliant building blocks (CBBs). Firstly, a comprehensive literature review for the design 

approaches of compliant mechanisms is conducted, and a building block based PRBM is then presented, which replaces 

the traditional kinematic sub-chain with an appropriate multi-DOF CBB. In order to obtain the decoupled 3-DOF 

translational CPMs (XYZ CPMs), two classes of kinematically decoupled 3-PPPR (P: prismatic joint, R: revolute joint) 

TPMs (translational parallel mechanisms) and 3-PPPRR TPMs are identified based on the type synthesis of rigid-body 

parallel mechanisms, and WBBCMs as the associated CBBs are further designed. Via replacing the traditional actuated P 

joint and the traditional passive PPR/PPRR sub-chain in each leg of the 3-DOF TPM with the counterpart CBBs (i.e. 

WBBCMs), a number of decoupled XYZ CPMs are obtained by appropriate arrangements. In order to obtain the 

decoupled 6-DOF CPMs, an orthogonally-arranged decoupled 6-PSS (S: spherical joint) parallel mechanism is first 

identified, and then two example 6-DOF CPMs are proposed by the building block based PRBM method. It is shown that, 

among these designs, two types of monolithic XYZ CPM designs with extended life have been presented.  

 

Keywords: Conceptual designs; Compliant mechanisms; Parallel mechanisms; Wire-beam based mechanisms; Compliant 

building blocks; Multi-DOF manipulators 

 

1. Introduction 

 

Compliant mechanisms (aka flexure mechanisms) transmit motion/loads (at least one of them) by deformation of their 

compliant members [1] with positive stiffness usually or even zero stiffness [2] and negative stiffness [3]. They aim to 

utilize the material compliance/flexibility instead of only analysing/suppressing the negative flexibility effect like those 

initial works in the area of kinematics of mechanisms with elasticity [4]. This revolutionary change leads to many potential 

merits such as reduced part count (up to monolithic configuration), zero backlashes, no need for lubrication, reduced wear, 

increased reliability, high precision and compact configuration in comparison with the rigid-body counterparts [1]. 

Compliant mechanisms can be used in a variety of applications including micro and macro scales, especially where high-

precision motion is required, such as high-precision positioning stages [5-7], biomedical devices [8], metrology 

instruments [9], MEMS sensors [10, 11], amplifiers [12-14], relays [15] and actuators [16, 17], grippers [18-20], friction 

force microscopes [21], atomic force microscopes [22], adaptive mechanisms [23], human assistance systems, and design 

for no assembly [24]. 

This paper focuses on the design of multi-DOF (degree(s) of freedom) compliant parallel manipulators (CPMs) for the 

high-precision positioning stage applications [5-7] such as bio-cell injectors, adjusting mountings, and precision optical 

alignment devices. While typical dynamic ranges (the ratio of the motion range to the minimum motion resolution) of 10
5
 

are easily achievable in flexure/compliant stages, large specific range (the ratio of the motion range to the system 

size/footprint) is still the most desirable but challenging issue in high-precision (such as nanopositioning) compliant 

mechanisms with the specific range of 3×10
-3

 for a typical design [7]. Large range of motion is generally affected by the 

following factors: a) system size (beam length), b) beam thickness, c) material selection (high yield strength/Young’s 

Modulus ratio), d) linear actuator, and e) conceptual-level design. Improving the last factor is the most effective way to 

raise the motion range by using the distributed compliance for the given material and actuators. This is because enlarging 

the length of beams can make the configuration bulky and reducing the thickness of beams may result in the decrease of 

stiffness significantly and other issues such as manufacturability. 

Recently, wire-beam based compliant mechanisms (WBBCMs), composed of one or more wire beams with symmetrical 

cross sections, have drawn plenty of attentions. For example, a number of synthesis works for WBBCMs have been 

reported in [25-31], spatial 3-DOF translational compliant parallel manipulators only composed of identical WBBCMs 

have been proposed in [32, 33], and nonlinear analysis/modelling has been carried out for WBBCMs in [34, 35]. In 

comparison with the leaf-beam based distributed-compliance compliant mechanisms, the WBBCMs benefit from the 

following potential merits: 

    (a) A single wire beam is the simplest distributed-compliance compliant module that has the large motion range in the 

DOF directions but with very high stiffness along the wire axial direction, a DOC (degree of constraint) direction [25]. 

This will result in the high stiffness of resulting WBBCMs in the directions along the wire-beam axis. 

    (b) The 3D modelling of the wire beam is easier and better developed compared with the 3D modelling of the 

conventional lumped-compliance hinge/pivot and distributed-compliance leaf/blade/sheet [34-36]. 
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    (c) WBBCMs cannot result in very large primary stiffness. This enables the use of the electromagnetic actuator for 

large-range motion since a larger primary stiffness will require a bulkier electromagnetic actuator to produce a higher peak 

force and therefore a quadratic larger heat creation [32]. 

(d) WBBCMs may promote the fabrication using the carbon nanotubes (CNTs). This may lead to novel CNT-based 

compliant mechanisms used in the emerging nano-electro-mechanical-systems (NEMS) [37-39]. 

Based on the above advances, it is therefore that the objective of this paper is to: a) conceive a good design approach; 

and then b) propose new WBBCMs and large-range multi-DOF CPMs, composed of WBBCMs, including 3-DOF 

translational CPMs and 6-DOF CPMs. This paper is organised as follows. Section 2 implements a literature review for the 

design approaches of compliant mechanisms, and proposes a building block based PRBM method. In Sections 3 and 4, a 

number of multi-DOF CPMs composed of WBBCMs are generated using the proposed design method. Further discussions 

on the design criteria are detailed in Section 5.  Conclusions are finally drawn. 

 

2. Design Approaches of Compliant Mechanisms 

 

2.1 Review of emerging design approaches 

 

There are several emerging approaches to design compliant mechanisms: a) the pseudo-rigid-body-model (PRBM) 

approach  [41-46], b) the continuum structure optimization (CSO) approach [47-50], and c) the other innovative design 

approaches such as the constraint-based design (CBD) approach [6, 25, 51-53], the screw theory based (STB) approach 

[26-28, 54], the freedom and constraint topology (FACT) approach [29-31], and the building-block synthesis (BBS) 

approach [55, 56]. Compliant mechanisms obtained using different design approaches can be classified into three 

categories: lumped-compliance mechanisms such as that in Li’ work [43], distributed-compliance mechanisms such as that 

in Awtar’s work [6], and hybrid-compliance mechanisms such as that in Polit’s work [45].  

The PRBM approach is a kinematic substitution method based on the type synthesis of rigid-body mechanisms. It can be 

further broken down into a direct substitution based PRBM approach [41] and a building block based PRBM approach 

[32]. The former directly replaces the traditional kinematic joint with a suitable compliant joint with lumped or distributed 

compliance, and the latter replaces the traditional kinematic sub-chain with an appropriate multi-DOF compliant building 

block (CBB) with lumped or distributed compliance. Note that although the PRBM method is a lumped-parameter model, 

it does not mean that the resulting compliant mechanism is of lumped compliance. The performance of compliant 

mechanisms generated by the PRBM approach largely depends on the selected compliant joints/CBBs and their 

arrangements. If lumped compliance is adopted in the PRBM approach, a limited motion range is produced, but if 

distributed compliance is used, a relatively large motion range can be generated. 

The CSO approach is to re-consider the design problem as an optimal material distribution problem so that the resulting 

continuum structure can fulfil the motion requirements of a mechanism [50]. The CSO approach based design involves 

three aspects: (a) topology, i.e. the connectivity of material, (b) size, i.e. the cross-sectional area of each segment, and (c) 

geometry, i.e. the orientations of the connecting segments and locations of the junctions [8]. However, the CSO approach 

generates mechanisms with the point flexure, and the resulting compliant mechanisms involve many parameters, which are 

also highly sensitive to manufacture error. 

The CBD approach uses the fundamental prerequisite that the motion of a rigid-body is determined by the position and 

orientation of the constraints, which is well-suited for the conceptual design of compliant mechanisms [25, 26, 51]. This 

approach has obtained good outcomes in designing precision instruments [6, 52]. 

    Different from the CBD approach, the STB approach uses the mathematical expressions, screw theory, to represent the 

CBD approach and synthesize the constraints under given motion requirement based on reciprocity principle, while the 

FACT employs the geometric figures to visualize the CBD approach. Both the STB approach and FACT approach can also 

be used to synthesize the mechanisms capable of producing screw motion (also helical motion) that cannot be synthesized 

using the CBD approach.  

The BBS approach is the method of capturing kinematic behaviour using compliance ellipsoids, the mathematical model 

of which facilitates the characterization of the building blocks, transformation of problem specifications, decomposition 

into sub-problems, and the ability to search for alternate solutions [55]. This approach is also intuitive and provides key 

insight into how individual building blocks contribute to the overall function [55]. However, this approach is currently 

focusing on dealing with low order, planar, and linear problems. 

    In summary, the PRBM approach is the popular and easiest method that is well suitable for spatial CPM design with 

actuator isolation consideration. However, the other approaches mentioned above are mainly dedicated to designing the 

distributed-compliance modules/joints without considering the actuator isolation [54]. Here, actuator isolation means the 

minimal transverse motion of the actuator since the high-precision linear actuators (such as PZT and Voice Coil) and the 

input linear displacement sensors (such as optical linear encoder) cannot tolerate the transverse motion/load. In order to 

ensure maximal actuator isolation, the actuated compliant P joint is always designed to guide the linear actuator. 

   Note that one can also obtain compliant mechanisms with good performance characteristics such as eliminated parasitic 

motion, enlarged motion range and compact configuration by symmetrical, serial and stacked arrangements, respectively 

[57]. Moreover, stiffness center overlapping can also be used to minimise the parasitic rotations instead of the symmetrical 

design to reduce the system dimension/leg number [57]. 

    As an example, we demonstrate how to use the CBD approach [25] to identify the DOF of a spatial compliant 

mechanism composed of multiple wire beams following the procedure below. 
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    (a) Identify the independent ideal constraints, and draw a DOC line going through the central axis of each ideal 

constraint. Here, a wire beam is defined as an ideal constraint. 

In the case of the spatial three-beam module shown in Fig. 1, which has been proposed before [25], each wire beam is an 

ideal constraint that allows five DOF other than the axial motion. Therefore there are three independent constraints in this 

module, i.e. three independent parallel DOC lines. 

 (b) Calculate the number of the DOF using the equation:  

NF=6-NC 

where,  the number “6” is the total DOF number of a free rigid body in spatial motion, NF is the number of DOF, and NC is 

the number of DOC. In the case of Fig. 1, there are three DOF lines, which will be determined in the next step. 

    (c) Determine the orientation and position of each DOF line by making each DOF line intersect all DOC lines and 

produce independent motion. 

    In Fig. 1, each DOF line is parallel to all DOC lines to make each DOF line intersect three DOC lines at the infinity, and 

therefore one DOF line can go through the symmetrical centre of the spatial compliant mechanism, and the other two DOF 

lines are at the infinity where one DOF line is within the XZ-plane, and another DOF line is within the XY-plane. 

    (d) Determine the DOF of the spatial three-beam module by rotating the motion stage about each DOF line. 

In the case of Fig. 1, the DOF line passing through the symmetrical centre of the spatial three-beam module produces a 

purely rotational motion, and the two DOF lines at the infinity produce two independent translational motions. 

 
Fig. 1 A WBBCM composed of three independent wire beams: spatial three-beam module 

 

In addition, a blade/sheet/leaf flexure module can also be replaced equivalently with three ideal constraints [25]. 

Therefore, we can conclude that a blade/sheet/leaf is able to achieve two rotational displacements and one translational 

displacement using the CBD approach. 

 

2.2 Building block based PRBM method 

 

This section proposes a building block based PRBM method to design large-range multi-DOF CPMs, which is detailed in 

Fig. 2. This method is a straightforward way to design complex compliant manipulators considering actuator isolation for 

the engineers. The multi-DOF CPMs composed of WBBCMs as distributed-compliance CBBs will be obtained in the next 

two sections using the building block based PRBM method. 

The following two points should be emphasized for the building block based PRBM approach. 

a) Same as the direct substitution based PRBM approach, the building block based PRBM method is also the 

kinematic substitution method. It needs to appropriately arrange the CBBs for making the system configuration 

more compact and easier to fabricate, and requires the knowledge of the rigid-body mechanisms as the prerequisite. 

Although the other methods such as FACT and STB do not need any prerequisite in the rigid-body mechanisms to 

generate compliant mechanisms, but as mentioned earlier they are mainly dedicated to the relatively simple design 

without considering the actuator isolation. Unlike the direct substitution based PRBM approach in which the 

traditional kinematic joint is directly replaced with a suitable compliant joint, the presented approach replaces the 

traditional kinematic sub-chain with an appropriate multi-DOF CBB. Therefore, this building block based PRBM 

approach may produce more and better CPMs for large-range applications and is very efficient in designing multi-

DOF CPMs. 

b) When the CBB acts as the kinematic sub-chain, a purely parallel mechanism is always desired for making the 

configuration compact and reducing the number of the stages/mass (i.e., without secondary/intermediate stage). 

However, the CBB has to be a hybrid (parallel and serial) mechanism due to the characteristic improvement need or 

DOF line (dash dot) 

DOC line (dash) 

Motion stage 
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the design limitation instead of the purely parallel mechanism. Here, the hybrid mechanism can involve either non-

controllable secondary stage for improving the performance characteristics (in the case of the two parallel modules 

with same function/DOF arranged in series) or controllable intermediate stage for no purely parallel mechanism 

available (in the case of two parallel modules with different function/DOF arranged in series). The former case can 

make the mechanism more compact than the latter case. 

 
Fig. 2 Flow chart for the building block based PRBM method 

 

3. Decoupled 3-DOF Translational CPMs 

 

The works on 3-DOF rigid-body translational parallel mechanisms (TPMs) [59-61] provide a basis to construct the XYZ 

CPMs. Based on these works, we can obtain three classes of typical kinematically decoupled 3-DOF TPMs (Fig. 3) as 

follows:  

    (1) 3-PPP TPMs;  

    (2) 3-PPPR TPMs (equivalent to 3-PRRR, 3-PPRR, and 3-PRC TPMs in some cases); 

(3) 3-PPPRR TPMs (equivalent to 3-PRPPR, 3-PPCR, 3-PUU and 3-PP
s
 TPMs [46] in some cases).  

In the above, P, P, R, C, U and P
s
 denote actuated prismatic, prismatic, cylindrical, revolute, universal joints and spatial 

four-bar parallelogram with four spherical joints, respectively. 

    Note that the 3-PPP TPM and 3-PPPR TPM are both the over-constrained design, but the 3-PPPRR TPM is the exactly-

constrained design. The P joint directly connected to base is the actuated joint, and the PP/PPR/PPRR sub-chain connected 

to the motion stage is the passive one. Note that all the R joints in the 3-PPPR TPM and 3-PPPRR TPM are inactive [58] 

due to the inherent constraints of the XYZ TPMs, and the three motion planes associated with the three passive PP 

kinematic sub-chains in three legs are orthogonal to produce the kinematic decoupling. Each actuated P joint is arranged to 

Begin 

Input DOF requirement for the CPMs 

Identify proper rigid-body parallel mechanisms based 

on the work on type synthesis of parallel mechanisms 

[58] as the skeleton of CPMs 

Decompose each leg/chain of rigid-body parallel 

mechanism into a traditional actuated joint and a 

traditional passive sub-chain 

Design the suitable compliant building blocks (CBBs) with the 

same DOF/function as the traditional actuated joint and the 

traditional passive sub-chain, respectively, using the emerging 
approaches such as the CBD/FACT approach or identify the 

CBBs from the library of compliant mechanisms [3] 

a) Replace the traditional (rigid-body) passive sub-chain and 
the actuated joint with their counterpart CBBs (passive 

compliant sub-chain and actuated compliant P joint) in each 

leg of the rigid-body parallel mechanism based on the 
constraints of the skeleton, and b) make further appropriate 

arrangements for compact configuration and easy fabrication 

 

Check if the resulting 
CPMs meet the actual 

requirements?  

No 

Output the obtained CPMs  

End 

Yes 

Option 1 or 2? 
Option 1 

Decompose each leg/chain of rigid-body parallel mechanism 
into two traditional sub-chains: one is the passive sub-chain 

and the other is the sub-chain including the actuated P joint 

Design the suitable compliant building blocks (CBBs) with 

the same DOF/function as the two traditional sub-chains 

using the emerging approaches such as the CBD/FACT 
approach or identify the CBBs from the library of compliant 

mechanisms [3] 

a) Replace the two traditional sub-chains with their 
counterpart CBBs in each leg of the rigid-body parallel 

mechanism based on the constraints of the skeleton, and b) 

make further appropriate arrangements for compact 
configuration and easy fabrication 

 

Check if the resulting 

CPMs meet the actual 

requirements?  

No 

Output the obtained CPMs  

End 

Yes 

Option 2 
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be perpendicular to the passive PP motion plane in each leg so that the configuration of the resulting 3-DOF TPMs can be 

used to construct the following kinematostatically decoupled XYZ CPMs.  

Once the appropriate rigid-body TPMs are identified, the next step is to decompose each leg for each class of 3-DOF 

TPM as indicated in Fig. 3. It is noted that the 3-PPP TPM won’t be adopted in this paper since there is no a compact 

WBBCM as the passive CBB capable of producing only two independent translations [25, 54] to replace the traditional 

passive PP kinematic sub-chain. 

The suitable WBBCMs with orthogonal constraint arrangements as the CBBs for the 3-PPPR and 3-PPPRR TPMs can 

be designed based on CBD approach (as detailed in Section 2.1), which are shown in Table 1. In addition, equivalent 

representations of the two WBBCMs in Table 1 are illustrated in Table 2. The orthogonal constraint arrangements for the 

WBBCMs are preferred in this paper due to their good manufacturability. 

 
(a) 3-PPP TPM   

 
(b) 3-PPPR TPM 

 
(c) 3-PPPRR (3-PPCR) TPM 

 

Fig. 3 Three classes of kinematically decoupled 3-DOF TPMs 

Actuated 

P joint 

Base 

Passive 

C (PR) 
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Passive 

R joint 

X 

Y 

Z 

Passive PPRR 

sub-chain 

Base 

Passive PPR 

sub-chain 

Passive 

P joint 

X 

Y 

Z 

Passive R 

joint 

Actuated 

P joint 

Z 

X 
Y 

Actuated 

P joint 

Passive PP 

sub-chain 

Base 
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Y 

X 
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Table1 WBBCMs with orthogonal constraint arrangements 

 

WBBCMs (exactly-

constrained design) 

WBBCMs (under/over-constrained design considering 

better manufacturing and/or performance) 

DOC 
(blue 

double-

arrow 

solid 

line) 

DOF 
(green 

double-

arrow 

dash 

line) 

Comments 

 
       (WBBCM1) 

N/A 

1 5 1-SS (or 
2P3R/PPRRR) CBB 

[35], which acts as 

the passive 
kinematic sub-

chain. 

 
 

 
      (WBBCM2) 

N/A 

2 4 2-SS (or 

2P2R/PPRR) CBB, 

which acts as the 

passive kinematic 
sub-chain. 

 

 

 
     (WBBCM3) 

 
         (WBBCM3-1)               (WBBCM3-2) 

3 3 3-SS (or 
2P1R/PPR) CBB, 

which acts as the 

passive kinematic 
sub-chain. 

  

WBBCM3-1 is a 
purely parallel 

WBBCM with one 

redundant wire-
beam constraint. 

 

WBBCM3-2 is a 
hybrid (parallel and 

serial) WBBCM 

with the secondary 
stage non-

controllable but 

reduced parasitic 
translations. 

 
(WBBCM4) 

  
      (WBBCM4-1)                    (WBBCM4-2) 

5 1 1P CBB, which acts 

as the actuated P 
joint. 

 

WBBCM4-1 is a 
purely parallel 

WBBCM, 

composed of two 
identical 

WBBCM3-1s, with 

three redundant 
wire-beam 

constraints.  

 
WBBCM4-2 is a 

purely parallel 

WBBCM, 
composed of 

WBBCM3-1 and 

WBBCM2, with 
one redundant wire-

beam constraint. 

 

 

Motion 

stage 

 

Secondary 

stage 
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Table 1 WBBCMs with orthogonal constraint arrangements (continued) 

 
WBBCMs 

(exactly-

constrained 

design) 

WBBCMs (under/over-constrained design considering better 

manufacturing and/or performance) 

DOC  DOF  Comments 

 

WBBCM4 

 
         (WBBCM4-3)                        (WBBCM4-4) 

 

 
            (WBBCM4-5)                          (WBBCM4-6) 

5 1 1P CBB, which acts as the actuated P 

joint. 
 

WBBCM4-3 is a hybrid WBBCM 

with two non-controllable secondary 
stages but reduced parasitic 

translation. 

 
WBBCM4-4 is a fully symmetrical 

and hybrid WBBCM with four non-

controllable secondary stages but 
reduced parasitic translation and 

rotation. 

 
WBBCM4-5 is a symmetrical and 

hybrid WBBCM with two non-

controllable secondary stages but 
reduced parasitic translation and 

rotation. 

 
WBBCM4-6 is a symmetrical and 

purely parallel WBBCM with 

reduced parasitic translation and 
rotation. 

 

Table 2 Other equivalent representations 

 

Equivalent representation of 

WBBCM3-2 

Equivalent representations of WBBCM4-3 

 
     WBBCM3-2-1                               

 
     WBBCM4-3-1               WBBCM4-3-2 

 

3.1 Design of 3-PPPR XYZ CPMs 

 

Once the decomposition of each leg in the rigid-body 3-DOF TPM and the design of WBBCMs are completed, one can 

employ the building block based PRBM method option 1 (Fig. 2) to design the XYZ CPMs in a conceptual way. 

    Using the 3-PPPR TPM in Fig. 3b, a decoupled XYZ CPM (Fig. 4) composed of identical WBBCM3-1s is obtained [33] 

by replacing the traditional actuated P joint and the traditional passive PPR sub-chain in each leg with a WBBCM4-1 and a 

WBBCM3-1 (Table 1), respectively, and making appropriate arrangements.  

In order to avoid the negative effects such as assembly error, increased number of parts, reduced stiffness (by about 30% 

by bolted joints) and increased cost, the monolithic fabrication is always desired. Therefore, an improved design of the 

decoupled XYZ CPMs (Fig. 5) is adopted in terms of the proposed decoupled XYZ CPM (Fig. 4), which can be fabricated 

monolithically from a cubic material by three orthogonal directions’ cutting [33]. The improved design is composed of 

eight rigid cubic stages organically connected by twelve identical WBBCM3-1s to form a monolithic and compact cubic 

configuration (extra three WBBCM3-1s are added compared with Fig. 4d). When any four adjacent rigid stages are fixed 

in the non-deformed configuration (and therefore three WBBCM3-1s are inactive), the other four rigid stages act as the 

Motion 

stage 

 

Motion 

stage 

 

Motion 

stage 

 

Motion 

stage 

 

Motion stage 

 

Motion 

stage 

 

Motion 

stage 
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mobiles stages (X-, Y-, Z-, and XYZ-stages), displaced by the deformation of the nine WBBCM3-1s, to achieve the 

function of XYZ CPMs. The detailed linear analytical modelling and optimization results can be found in [33]. 

A major drawback of the monolithic design is that the failure (yield/fraction) of certain compliant wire beam(s) can 

cause the whole system’s permanent strike due to the fact that the failed wire beam is difficult to replace. However, the 

present monolithic decoupled XYZ CPM in this paper is a redundant design with extended life [33] through three 

redundant building blocks (inactive WBBCM3-1s), and therefore the three redundant building blocks can swap the 

functions with the three passive mobile building blocks to extend the system life. In our design (Fig. 5), each of three 

passive WBBCM3-1s connected to the XYZ-stage undergoes two translations, and is prone to fail compared to others that 

produce only one translation. If any one of the three passive WBBCM3-1s fails, the base frame originally connecting the 

four fixed cubic stages can be moved to connect with the four originally mobile cubic stages in their initially undeformed 

configuration. Such a way, the originally fixed cubic stage in the diagonal direction associated with the original XYZ-stage 

becomes the new XYZ-stage and the originally fixed cubic stages become the new X-, Y-, and Z-stages, and then the life 

of the XYZ CPM is retrieved.  

 

 
Fig. 4 The generating process of a decoupled 3-PPPR XYZ CPM: (a) A kinematically decoupled 3-PPPR TPM; (b) 

WBBCM3-1; (c) WBBCM4-1 composed two identical WBBCM3-1 in parallel; (d) A decoupled XYZ CPM composed of 

identical WBBCM3-1s 

 
Fig. 5 A monolithic decoupled 3-PPPR XYZ CPM with extended life composed of 12 identical WBBCM3-1s 
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The other diverse decoupled 3-PPPR XYZ CPMs (Fig. 6) can also be obtained using the design approach proposed in 

Section 2 as detailed below. 

The design in Fig. 6a is obtained by replacing the traditional actuated P joint with the WBBCM4-3 and replacing the 

traditional passive PPR sub-chain with the WBBCM3-1 in order to reduce the negative parasitic translation of the actuated 

compliant P joint for good actuator isolation. 

    The design in Fig. 6b is obtained by replacing the traditional actuated P joint with the WBBCM4-4 and replacing the 

traditional passive PPR sub-chain with the WBBCM3-1 in order to reduce the negative parasitic translation and parasitic 

rotation of the actuated compliant P joint for good actuator isolation. 

    The design in Fig. 6c is obtained by replacing the traditional actuated P joint with the WBBCM4-3 and replacing the 

traditional passive PPR sub-chain with the WBBCM3-2 in order to reduce the negative parasitic translation of the actuated 

compliant P joint and reduce the cross-axis coupling. 

The design in Fig. 6d is obtained by first replacing the traditional actuated P joint with the WBBCM4-3 and replacing 

the traditional passive PPR sub-chain with the WBBCM3-2 (in order to reduce the negative parasitic translation of the 

actuated compliant P joint and reduce the cross-axis coupling), and then adding extra three WBBCM3-2s to achieve 

redundant design with extended life. Note that the three actuation direction are skew in Fig. 6d. 

 

 
a)                                                                                                b)  

 
c)                                                                                                 d)  

Fig. 6 Other 3-PPPR XYZ CPMs  
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Fig. 6 Other 3-PPPR XYZ CPMs (continued) 

 

The design in Fig. 6e is obtained by replacing the traditional actuated P joint with the WBBCM4-5 and replacing the 

traditional passive PPR sub-chain with the WBBCM3-1 in order to reduce the negative parasitic translation and parasitic 

rotation of the actuated compliant P joint for good actuator isolation. 

The design in Fig. 6f is obtained by replacing the traditional actuated P joint with the WBBCM4-6 and replacing the 

traditional passive PPR sub-chain with the WBBCM3-1 in order to reduce the negative parasitic translation and parasitic 

rotation of the actuated compliant P joint for good actuator isolation. Note that the actuated compliant P joint has the load-

stiffening effect. 

 

3.2 Design of 3-PPPRR XYZ CPMs 

 

Using the 3-DOF TPM in Fig. 3c, a 3-PPPRR XYZ CPM (Fig. 7a) can be presented through replacing the traditional 

actuated P joint and the traditional passive PPRR chain in each leg with a WBBCM4-2 and a WBBCM2 (Table 1), 

respectively, and making appropriate arrangement for facilitating manufacture. Here, the three geometrical planes formed 

by the three passive WBBCM2s are orthogonal.  

Similar to the monolithic 3-PPPR XYZ CPM (Fig. 5), the monolithic 3-PPPRR XYZ CPM (Fig. 7b) with extended life 

can be produced via adding extra three WBBCM3-1s. The other various 3-PPPRR XYZ CPMs (Fig. 8) can also be 

generated as follows. It should be noted that when the originally fixed four stages in the monolithic 3-PPPRR XYZ CPM 

(Fig. 7b) become the new mobile stages for extending life, the new X- Y- or Z-stage in each leg is a PR joint (herein, P is 

the actuated joint) indirectly connected to the new XYZ-stage through a passive PPR joint. This can be well explained by 

the design approach option 2 in Fig. 2. 

 
Fig. 7 3-PPPRR XYZ CPMs 
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The design in Fig. 8a is proposed through replacing the traditional actuated P joint with the WBBCM4-3 and replacing 

the traditional passive PPRR sub-chain with the WBBCM2 in order to reduce the parasitic translation of the actuated 

compliant P joint for good actuator isolation. The design in Fig. 8b is obtained via replacing the traditional actuated P joint 

with the WBBCM4-4 and replacing the traditional passive PPRR sub-chain with the WBBCM2 in order to reduce the 

parasitic translation and parasitic rotation of the actuated compliant P joint for good actuator isolation. The design in Fig. 

8c is proposed by replacing the traditional actuated P joint with the WBBCM4-5 and replacing the traditional passive 

PPRR sub-chain with the WBBCM2 in order to reduce the negative parasitic translation of the actuated compliant P joint 

and reduce the cross-axis coupling effect. The design in Fig. 8d is presented by replacing the traditional actuated P joint 

with the WBBCM4-6 and replacing the traditional passive PPRR sub-chain with the WBBCM2 in order to reduce the 

parasitic translation and parasitic rotation of the actuated compliant P joint for good actuator isolation. Note that in Figs. 8c 

and 8d the passive WBBCM2s are made a special arrangment (i.e. the three geometrical planes formed by the three 

passive WBBCM2s are not orthogonal) via understanding constraint devices such as spheres in vees [25]. Moreover, the 

actuated compliant P joint in Fig. 8d has the negative load-stiffening effect. 

 
 

a)                                                                                  b) 

 
      c)                                                                                                     d) 

Fig. 8 Other 3-PPPRR XYZ CPMs 

 

3.3 Qualitative characteristic comparisons 

 

In summary, the qualitative characterisitc comparisons for the XYZ CPMs are detailed in Table 3 to consider several key 

performance characteristics. 
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Table 3 Qualitative performance characteristic comparisons 

 
 Monolithic 

manufacture 

Good  actuator 

isolation (due to 

reduced parasitic 

translation of the 

actuated P joint) 

[6] 

Good actuator 

isolation (due to 

reduced parasitic 

rotation of the 

actuated P joint) 

[6] 

Minimal 

cross-axis 

coupling 

[6]  

Redundant 

life 

No under-

constrained 

mass for good 

dynamics 

Good thermal 

stability (without 

over-constraint in 

the passive sub-

chain) 

Composed of the same 

type of WBBCMs for 

easy modelling and 

analysis etc 

Fig. 5 Yes    Yes Yes  Yes 
Fig. 6a  Yes      Yes 
Fig. 6b  Yes Yes     Yes 
Fig. 6c  Yes  Yes    Yes 
Fig. 6d  Yes  Yes Yes   Yes 
Fig. 6e  Yes Yes     Yes 
Fig. 6f  Yes Yes   Yes  Yes 
Fig. 7b Yes    Yes Yes Yes  
Fig. 8a  Yes     Yes  
Fig. 8b  Yes Yes    Yes  
Fig. 8c  Yes Yes    Yes  
Fig. 8d  Yes Yes   Yes Yes  

 

    It should be noted that the stiffness center overlapping approach [57, 62] can be further used to reduce the parasitic 

rotations of the XYZ motion stage instead of the use of the fully symmetrical design for the passive WBBCMs. It deserves 

mentioning again that the above XYZ CPMs should be chosen based on the actual application requirements. 

 

4. Decoupled 6-DOF CPMs 

 

Based on the orthogonally-arranged decoupled rigid-body 6-PSS parallel mechanism [58, 63] (Fig. 9), a decoupled 6-DOF 

CPM is therefore obtained in Fig. 10 via replacing the traditional actuated P joint and the traditional passive SS (or PPRRR) 

sub-chain with the WBBCM4-1 and the WBBCM1, respectively, in each leg and making compact arrangment for the two 

actuated compliant P joints. Compared to the design in Fig. 8d, the only difference is that the two actuated P joints are not 

rigidly connected together to act as two independent P joints. Here, the translation along the X/Y/Z-axis is controlled by 

actuating two actuated P joints along the X/Y/Z-direction for the same motion inputs, and the rotation about the X/Y/Z-

axis is controlled by actuation two actuated P joints along the X/Y/Z-direction for the same motion inputs in magnitude but 

with opposite directions. 

    Another type of 6-DOF CPM can be obtained (Fig . 11b) through the use of a WBBCM with non-orthogonal constraint 

arrangment as the 1-SS CBB using remote rotational center (Fig. 11a) to replace the traditional passive SS sub-chain. Here, 

the 1-SS CBB using remote rotational center is a hybrid (parallel and serial) mechanism with a controllable intermediate 

stage/mass. 

 
Fig. 9 A 6-PSS parallel mechanism 
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Fig. 10 A 6-DOF CPM 

 

  
Fig. 11 Another type of 6-DOF CPM 

 

In order to improve the performance characteristics of the 6-DOF CPM such as the maximal actuator isolation, better 

actuated compliant P joints with reduced parasitic motions as illustrated in Tables 1 and 2 can be adopted to obtain other 

types of 6-DOF CPMs. 

 

5.  Discussions 

 

In addition to the performance characteristics listed in Table 3, the following design criteria should be considered to obtain 

a high-performance CPM. 

 

1) Material and actuator selections 

AL6061-T6 and AL7075-T6 are recommended for precision instruments due to the material’s low internal stresses, 

good strength and phase stability [5]. AL6061-T6, with Young’s Modules of  69 Gpa, Yield stress of 276 Mpa and 
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Poisson’s ratio of  0.33, is commonly selected owing to its lower cost, but AL7075-T6 is adopted for larger motion range 

due to its high ratio of  Yield stress to Young’s Modules. 

It is noted that the millimetre-level motion range requires a large-range linear actuator, which cannot be a PZT actuator. 

Although amplifiers as actuated compliant P joints can be combined with the PZT actuator to enlarge the motion range [9], 

adversely, they lead to relatively low off-axis stiffness and augment the minimum incremental motion of the actuators. 

Thus, one needs to choose the linear Voice Coil actuator [64] for millimetre-level actuation range. This linear actuator has 

merits such as large-range nanopositioning (the large range of motion and high nanometric resolution), linear model, and 

force-control along with hysteresis-free, frictionless and cog-free motion. Due to the nature that heat dissipates from the 

coil in the actuator, thus the magnet along with the back iron is usually connected to the input stage of the CPM to improve 

the thermal stability [65].  

 

2) Monolithic fabrication 

The well-known CNC multi-axis milling machining is extensively used to fabricate precise parts in industry. However, 

there are three main issues for the compliant mechanism manufacture. One is that the thickness of the in-depth features 

must be not larger than the driller length. The second is that the in-plane small thickness of the features is limited by the 

nature of the contact machining producing loading to the thin features, which has to be verified by repeated experiments by 

an experienced technician. The third is that the gap size between two adjacent features is largely constrained by the 

diameter of the driller. In addition, the milling machining is also time-consuming for fabricating a deep feature due to the 

nature of the machining.  

However, the presented monolithic XYZ CPMs (Fig. 5 and Fig 7b) can be directly fabricated using wire electrical 

discharge machining (wire EDM). Dimensional tolerances better than 12 microns in plane are easily achievable due to the 

non-contact machining, parallelism and perpendicularity of the machined feature can be tightly controlled [5]. Also, with 

wire EDM, the in-depth feature thickness of the plate being machined is not a concern. But the EDM process requires a 

fairly significant amount of set-up works and is generally expensive. 

In addition, one can employ the lithography/DRIE for an MEMS version with same masks on three surfaces of the cubic 

material. 

 

3) Good dynamics  

From the dynamic equation, it is clear that one may reduce the mass or increase the stiffness to raise the modal 

frequencies for improving the dynamic performance of the proposed mutli-DOF CPMs. 

 If there are under-constrained secondary stages involved in multi-DOF CPMs (e.g. Fig. 6d), which can undergo free 

vibration along the unconstrained directions. Therfore, the resulting CPMs can behave well under quasi-statical/low speed 

motion mode, in which the secondary stages do not vibrate uncontrollably. However, if one intends to run the CPMs in an 

appreciable speed, a tradeoff has to be made between good characteristics such as good actuator isolation and the 

uncontrollable vibration mentioned above. The mounting strategy for the Voice Coil actuator mentioned earlier will add 

also large mass of the magnet and back iron to the CPM and result in the low natural frequency issue limiting the 

bandwidth of the motion system [65].  

In order to improve the dynamic performance, we can therefore further increase the wire beam number (elasticity 

average) in the actuated compliant P joints to raise the natural frequency with better actuator isolation performance but 

without affecting the maximal motion range and causing worse lost motion [33, 57]. In addition to the above measures, 

one may also improve the dynamic performance by using a high-order controller to achieve a high bandwidth greater than 

the first natural frequency [64]. 

It is apparent that the increase of geometrical size of the assumed rigid parts (including primary motion stage and the 

non-controllable secondary stage) can improve the system’s static performacne but worsen the dynamic performance due 

to the increase of mobile mass. Therefore, the optimization considering a balance between dynamic performance and the 

geometrical parameters of the assumed rigid parts should be implemented. 

 

6. Conclusions 

 

In this paper, a number of multi-DOF CPMs including XYZ CPMs and 6-DOF CPMs have been presented using the 

WBBCMs based on the building block based PRBM method. The proposed design approach is a straightforward method 

to design the multi-axis compliant manipulators by replaceing the traditional kinematic sub-chain with an appropriate 

multi-DOF CBB. 

Several  novel 1-DOF compliant P joints such as WBBCM4-5 and WBBCM4-6 have been designed for different 

application requirements, which may be good candidates for integrating with the Voice Coil actuators. Two types of 3-

PPPR and 3-PPPRR XYZ CPMs have also been conceived for monolithic manufacture through three-direction orthogonal 

cutting, which also show good characteristic of extended life.  

It is noted that the qualitative characteristic comparisons among the XYZ CPMs have been given in this paper, however, 

the detailed quantitative characteristic analysis and comparison should be further carried out via analytical modelling, FEA, 

and/or experiment testing. The proposed XYZ CPMs can be transferred to XY CPMs with enhanced out-of-plane stiffness 

via fixing the actuated compliant P joint in the Z-direction. 

It can be envisaged that the proposed WBBCMs and multi-DOF CPMs will complement the library of compliant 

mechanisms, and the building block based PRBM method will assist the other emerging design approaches to extend the 

design ranges of compliant mechanisms.  
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