907 research outputs found

    FLAMINGO – Fulfilling enhanced location accuracy in the mass-market through initial GalileO services

    Get PDF
    This paper discusses FLAMINGO, an initiative that will provide a high accuracy positioning service to be used by mass market applications. The status and future for the initiative are discussed, the required accuracies and other location parameters are described, and the target applications are identified. Finally, the currently achieved accuracies from today’s Smartphones are assessed and presented. FLAMINGO (Fulfilling enhanced Location Accuracy in the Mass-market through Initial GalileO services), part funded through the European GNSS Agency, is a collaborative venture comprising NSL (as lead organization), Telespazio France, University of Nottingham, Rokubun, Thales Alenia Space France, VVA, BQ, ECLEXYS and Blue Dot Solutions. The initiative is developing the infrastructure, solutions and services to enable the use of accurate and precise GNSS within the mass-market, thereby operating predominantly in an urban environment. Whilst mass-market receivers are yet to achieve accuracies below one metre for standard positioning, the introduction of Android raw GNSS measurements and the Broadcom dual frequency chipset (BCM47755), has presented the devices such an opportunity. FLAMINGO will enable and demonstrate the future of high accuracy positioning and navigation information on mass-market devices such as smartphones and Internet of Things (IoT) devices by producing a service delivering accuracies of 50cm (at 95%) and better, employing multi-constellation, PPP and RTK mechanisms, power consumption optimisation techniques. Whereas the Galileo High Accuracy Service targets 10cm precision within professional markets, FLAMINGO targets 30-50cm precision in the mass-market consumer markets. By targeting accuracies of a few decimetres, a range of improved and new applications in diverse market sectors are introduced. These sectors include, but are not limited to, mapping and GIS, autonomous vehicles, AR environments, mobile-location based gaming and people tracking. To obtain such high accuracies with mass market devices, FLAMINGO must overcome several challenges which are technical, operational and environmental. This includes the hardware capabilities of most mass-market devices, where components such as antennas and processors are prioritised for other purposes. We demonstrate that, despite these challenges, FLAMINGO has the potential to meet the accuracy required. Tests with the current Smartphones that provide access to multi-constellation raw measurements (the dual frequency Xiaomi Mi 8 and single frequency Samsung S8 and Huawei P10) demonstrate significant improvements to the PVT solution when processing using both RTK and PPP techniques

    A Decentralized Processing Schema for Efficient and Robust Real-time Multi-GNSS Satellite Clock Estimation

    Get PDF
    Real-time multi-GNSS precise point positioning (PPP) requires the support of high-rate satellite clock corrections. Due to the large number of ambiguity parameters, it is difficult to update clocks at high frequency in real-time for a large reference network. With the increasing number of satellites of multi-GNSS constellations and the number of stations, real-time high-rate clock estimation becomes a big challenge. In this contribution, we propose a decentralized clock estimation (DECE) strategy, in which both undifferenced (UD) and epoch-differenced (ED) mode are implemented but run separately in different computers, and their output clocks are combined in another process to generate a unique product. While redundant UD and/or ED processing lines can be run in offsite computers to improve the robustness, processing lines for different networks can also be included to improve the clock quality. The new strategy is realized based on the Position and Navigation Data Analyst (PANDA) software package and is experimentally validated with about 110 real-time stations for clock estimation by comparison of the estimated clocks and the PPP performance applying estimated clocks. The results of the real-time PPP experiment using 12 global stations show that with the greatly improved computational efficiency, 3.14 cm in horizontal and 5.51 cm in vertical can be achieved using the estimated DECE clock

    Global Navigation Satellite System Performance in Cislunar Space for Cubesat Form Factors

    Get PDF
    An increased Cislunar traffic is expected by the end of this decade stemming from NASA’s Artermis program. Given the prioritization limitations of the Deep-Space Network (DSN) for ranging and tracking of increased deep- space assets, a more viable, and cost effective, independent navigation capability is needed. NASA’s 2015 Navigator Global Positioning System (GPS) deployed on the Magnetospheric Multi-Scale (MMS) spacecraft has validated the feasibility of acquiring weak GPS signals at distances up to 25 Earth Radii (~150,000km) or about 40% of the Cislunar trajectory. NASA plans to upgrade the flight proven MSS Navigator GPS for the future Lunar Gateway. Concurrently, the European Space Agency has confirmed the feasibility of an interoperable GPS and Galileo receiver at Lunar altitudes for a low acquisition and tracking threshold “Weak HEO” receiver for a Cubesat platform. This engineering analysis sets out to explore: (1) the smallest Global Navigation Satellite Systems (GNSS) receiver antenna that can ensure a positive carrier and code link for a Lunar bound Cubesat; (2) the position dilution of precision (PDOP) profile of this Lunar bound space vehicle; and (3) the expected improvement of the PDOP during the Moon Transfer Orbit (MTO) for an interoperable GNSS receiver, specifically Beidou. For the designed carrier-to-noise acquisition and tracking threshold of 15 dBHz, the Eb/N0 link was assured for a helix antenna with a minimum diameter of 130 mm and length of 200 mm for the GPS L1 frequency at a data rate of 50 bps. The Galileo E5a, E5b would require a larger diameter antenna at 760 mm at 448 bps data rate while Beidou requires a 350 mm diameter antenna for a 100 bps data rate to close their respectively. Utilizing the 130 mm diameter, 200 mm length helix antenna on a Lunar MTO, the preliminary assessment indicated that the GNSS PDOP calculated from valid carrier links increases from 20 when the vehicle is within the GNSS service volume to several 100th or 1000th at 60.3 Earth Radii. Due to their similar constellation altitude geometry, the Galileo E5b PDOP growth profile is similar to that of the GPS L1. The Beidou system however has a much lower PDOP growth. This difference is attributed to the set of Beidou Geosynchronous space vehicles (SV)s that have greater angular separation to the SV- receiver line-of-sight (LoS). For an interoperable GNSS receiver that can track the GPS, Galileo, and Beidou lower bound and upper bound frequencies simultaneously, the increased number of valid signals reduces the PDOP growth below 200. This engineering analysis re-affirms the potential of utilizing existing GNSS infrastructure for onboard navigation in Cislunar space, in particular, a helical antenna that can be accommodated on a Cubesat form factor

    Ambiguity resolution performance with GPS and BeiDou for LEO formation flying

    Get PDF
    The evolving BeiDou Navigation Satellite System constellation brings new opportunities for high-precision applications. In this contribution the focus will be on one such application, namely precise and instantaneous relative navigation of a formation of LEO satellites. The aim is to assess the ambiguity resolution performance with the future GPS and BeiDou constellations depending on system choice (GPS, BeiDou, or GPS+BeiDou), single- or dual-frequency observations, receiver noise, and uncertainties in ionosphere modelling. In addition, for the GPS+BeiDou constellation it will be shown how the growing BeiDou constellation in the years to come can already bring an important performance improvement compared to the GPS-only case. The performance will be assessed based on the percentage of time that the required precision can be obtained with a partial ambiguity resolution strategy

    Performance Assessment of PPP Surveys with Open Source Software Using the GNSS GPS\u2013GLONASS\u2013Galileo Constellations

    Get PDF
    In this work, the performance of the multi-GNSS (Global Navigation Satellite System) Precise Point Positioning (PPP) technique, in static mode, is analyzed. Specifically, GPS (Global Positioning System), GLONASS, and Galileo systems are considered, and quantifying the Galileo contribution is one of the main objectives. The open source software RTKLib is adopted to process the data, with precise satellite orbits and clocks from CNES (Centre National d\u2019Etudes Spatiales) and CLS (Collecte Localisation Satellites) analysis centers for International GNSS Service (IGS). The Iono-free model is used to correct ionospheric errors, the GOT-4.7 model is used to correct tidal effects, and Differential Code Biases (DCB) are taken from the Deutsche Forschungsanstalt f\ufcr Luftund Raumfahrt (DLR) center. Two different tropospheric models are tested: Saastamoinen and Estimate ZTD (Zenith Troposhperic Delay). For the proposed study, a dataset of 31 days from a permanent GNSS station, placed in Palermo (Italy), and a dataset of 10 days from a static geodetic receiver, placed nearby the station, have been collected and processed by the most used open source software in the geomatic community. The considered GNSS configurations are seven: GPS only, GLONASS only, Galileo only, GPS+GLONASS, GPS+Galileo, GLONASS+Galileo, and GPS+GLONASS+Galileo. The results show significant performance improvement of the GNSS combinations with respect to single GNSS cases

    Performance assessment of PPP surveys with open source software using the GNSS GPS-GLONASS-Galileo constellations

    Get PDF
    In this work, the performance of the multi-GNSS (Global Navigation Satellite System) Precise Point Positioning (PPP) technique, in static mode, is analyzed. Specifically, GPS (Global Positioning System), GLONASS, and Galileo systems are considered, and quantifying the Galileo contribution is one of the main objectives. The open source software RTKLib is adopted to process the data, with precise satellite orbits and clocks from CNES (Centre National d'Etudes Spatiales) and CLS (Collecte Localisation Satellites) analysis centers for International GNSS Service (IGS). The Iono-free model is used to correct ionospheric errors, the GOT-4.7 model is used to correct tidal effects, and Differential Code Biases (DCB) are taken from the Deutsche Forschungsanstalt fĂĽr Luftund Raumfahrt (DLR) center. Two different tropospheric models are tested: Saastamoinen and Estimate ZTD (Zenith Troposhperic Delay). For the proposed study, a dataset of 31 days from a permanent GNSS station, placed in Palermo (Italy), and a dataset of 10 days from a static geodetic receiver, placed nearby the station, have been collected and processed by the most used open source software in the geomatic community. The considered GNSS configurations are seven: GPS only, GLONASS only, Galileo only, GPS+GLONASS, GPS+Galileo, GLONASS+Galileo, and GPS+GLONASS+Galileo. The results show significant performance improvement of the GNSS combinations with respect to single GNSS cases

    Single-Baseline RTK Positioning Using Dual-Frequency GNSS Receivers Inside Smartphones

    Get PDF
    Global Navigation Satellite System (GNSS) positioning is currently a common practice thanks to the development of mobile devices such as smartphones and tablets. The possibility to obtain raw GNSS measurements, such as pseudoranges and carrier-phase, from these instruments has opened new windows towards precise positioning using smart devices. This work aims to demonstrate the positioning performances in the case of a typical single-base Real-Time Kinematic (RTK) positioning while considering two different kinds of multi-frequency and multi-constellation master stations: a typical geodetic receiver and a smartphone device. The results have shown impressive performances in terms of precision in both cases: with a geodetic receiver as the master station, the reachable precisions are several mm for all 3D components while if a smartphone is used as the master station, the best results can be obtained considering the GPS+Galileo constellations, with a precision of about 2 cm both for 2D and Up components in the case of L1+L5 frequencies, or 3 cm for 2D components and 2 cm for the Up, in the case of an L1 frequency. Moreover, it has been demonstrated that it is not feasible to reach the phase ambiguities fixing: despite this, the precisions are still good and also the obtained 3D accuracies of positioning solutions are less than 1 m. So, it is possible to affirm that these results are very promising in the direction of cooperative positioning using smartphone devices

    Precise Point Positioning Augmentation for Various Grades of Global Navigation Satellite System Hardware

    Get PDF
    The next generation of low-cost, dual-frequency, multi-constellation GNSS receivers, boards, chips and antennas are now quickly entering the market, offering to disrupt portions of the precise GNSS positioning industry with much lower cost hardware and promising to provide precise positioning to a wide range of consumers. The presented work provides a timely, novel and thorough investigation into the positioning performance promise. A systematic and rigorous set of experiments has been carried-out, collecting measurements from a wide array of low-cost, dual-frequency, multi-constellation GNSS boards, chips and antennas introduced in late 2018 and early 2019. These sensors range from dual-frequency, multi-constellation chips in smartphones to stand-alone chips and boards. In order to be comprehensive and realistic, these experiments were conducted in a number of static and kinematic benign, typical, suburban and urban environments. In terms of processing raw measurements from these sensors, the Precise Point Positioning (PPP) GNSS measurement processing mode was used. PPP has become the defacto GNSS positioning and navigation technique for scientific and engineering applications that require dm- to cm-level positioning in remote areas with few obstructions and provides for very efficient worldwide, wide-array augmentation corrections. To enhance solution accuracy, novel contributions were made through atmospheric constraints and the use of dual- and triple-frequency measurements to significantly reduce PPP convergence period. Applying PPP correction augmentations to smartphones and recently released low-cost equipment, novel analyses were made with significantly improved solution accuracy. Significant customization to the York-PPP GNSS measurement processing engine was necessary, especially in the quality control and residual analysis functions, in order to successfully process these datasets. Results for new smartphone sensors show positioning performance is typically at the few dm-level with a convergence period of approximately 40 minutes, which is 1 to 2 orders of magnitude better than standard point positioning. The GNSS chips and boards combined with higher-quality antennas produce positioning performance approaching geodetic quality. Under ideal conditions, carrier-phase ambiguities are resolvable. The results presented show a novel perspective and are very promising for the use of PPP (as well as RTK) in next-generation GNSS sensors for various application in smartphones, autonomous vehicles, Internet of things (IoT), etc

    Investigating multi-GNSS performance in the UK and China based on a zero-baseline measurement approach

    Get PDF
    GPS is the positioning tool of choice for a wide variety of applications where accurate (cm level or less) positions are required. However GPS is susceptible to a variety of errors that degrade both the quality of the position solution and the availability of these solutions. The contribution of additional observations from other GNSS systems may improve the quality of the positioning solution. This study investigates the contribution of the GLONASS and BeiDou systems and the potential improvement to the precision achieved compared to positioning using GPS only measurements. Furthermore, it is investigated whether the combination of the satellite systems can limit the noise level of the GPS-only solution. A series of zero-baseline measurements, of 1 Hz sampling rate, were recorded with different types of pairs of receivers over 12 consecutive days in the UK and in China simultaneously. The novel part in this study is comparing the simultaneous GNSS real measurements recorded in the UK and China. Moreover, the correlation between the geometry and positional precision was investigated. The results indicate an improvement in a multi-GNSS combined solution compared to the GPS-only solution, especially when the GPS-only solution derives from weak satellite geometry, or the GPS-only solution is not available. Furthermore, all the outliers due to poor satellite coverage with the individual solutions are limited and their precision is improved, agreeing also with the improvement in the mean of the GDOP, i.e. the mean GDOP was improved from 3.0 for the GPS only solution to 1.8 for the combined solution. However, the combined positioning did not show significant positional improvement when GPS has a good geometry and availability

    GPS/GLONASS carrier phase elevation-dependent stochastic modelling estimation and its application in bridge monitoring

    Get PDF
    The Global Positioning System (GPS) based monitoring technology has been recognised as an essential tool in the long-span bridge health monitoring throughout the world in recent years. However, the high observation noise is still a big problem that limits the high precision displacement extraction and vibration response detection. To solve this problem, GPS double-difference model and many other specific function models have been developed to eliminate systematic errors e.g. unmodeled atmospheric delays, multipath effect and hardware delays. However, relatively less attention has been given to the noise reduction in the deformation monitoring area. In this paper, we first proposed a new carrier phase elevation-dependent precision estimation method with Geometry-Free (GF) and Melbourne-Wü bbena (MW) linear combinations, which is appropriate to regardless of Code Division Multiple Access (CDMA) system (GPS) or Frequency Division Multiple Access (FDMA) system (GLONASS). Then, the method is used to estimate the receiver internal noise and the realistic GNSS stochastic model with a group of zero-baselines and short-baselines (served for the GNSS and Earth Observation for Structural Health Monitoring of Bridges (GeoSHM) project), and to demonstrate their impacts on the positioning. At last, the contribution of integration of GPS and GLONASS is introduced to see the performance of noise reduction with multi-GNSS. The results show that the higher level receiver internal noise in cost effective receivers has less influences on the short-baseline data processing. The high noise effects introduced by the low elevation satellite and the geometry variation caused by rising and dropping satellites, can be reduced by 10–20% with the refined carrier phase elevation-dependent stochastic model. Furthermore, based on observations from GPS and GLONASS with the refined stochastic model, the noise can be reduced by 30–40%, and the spurious signals in the real-life bridge displacements tend to be completely eliminated
    • …
    corecore