687 research outputs found

    Passivity - Based Control and Stability Analysis for Hydro-Solar Power Systems

    Get PDF
    Los sistemas de energía modernos se están transformando debido a la inclusión de renovables no convencionales fuentes de energía como la generación eólica y fotovoltaica. A pesar de que estas fuentes de energía son buenas alternativas para el aprovechamiento sostenible de la energía, afectan el funcionamiento y la estabilidad del sistema de energía, debido a su naturaleza inherentemente estocástica y dependencia de las condiciones climáticas. Además, los parques solares y eólicos tienen una capacidad de inercia reducida que debe ser compensada por grandes generadores síncronos en sistemas hidro térmicos convencionales, o por almacenamiento de energía dispositivos. En este contexto, la interacción dinámica entre fuentes convencionales y renovables debe ser estudiado en detalle. Para 2030, el Gobierno de Colombia proyecta que el poder colombiano El sistema integrará en su matriz energética al menos 1,2 GW de generación solar fotovoltaica. Por esta razón, es necesario diseñar controladores robustos que mejoren la estabilidad en los sistemas de energía. Con alta penetración de generación fotovoltaica e hidroeléctrica. Esta disertación estudia nuevas alternativas para mejorar el sistema de potencia de respuesta dinámica durante y después de grandes perturbaciones usando pasividad control basado. Esto se debe a que los componentes del sistema de alimentación son inherentemente pasivos y permiten formulaciones hamiltonianas, explotando así las propiedades de pasividad de sistemas eléctricos. Las principales contribuciones de esta disertación son: una pasividad descentralizada basada control de los sistemas de control de turbinas hidráulicas para sistemas de energía de múltiples máquinas para estabilizar el rotor acelerar y regular el voltaje terminal de cada sistema de control de turbinas hidráulicas en el sistema como, así como un control basado en PI pasividad para las plantas solares fotovoltaicas

    Ofshore Wind Park Control Assessment Methodologies to Assure Robustness

    Get PDF

    Optimisation of VSC-HVDC Transmission for Wind Power Plants

    Get PDF

    Optimal Control Design for Multiterminal HVDC

    Get PDF
    This thesis proposes an optimal-control based design for distributed frequency control in multi-terminal high voltage direct current (MTDC) systems. The current power grid has become overstressed by rapid growth in the demand for electric power and penetration of renewable energy. To address these challenges, MTDC technology has been developed, which has the potential to increase the flexibility and reliability of power transmission in the grid. Several control strategies have been proposed to regulate the MTDC system and its interaction with connected AC systems. However, all the existing control strategies are based on proportional and integral (PI) control with predetermined controller structures. The objective of the thesis is to first determine if existing control structures are optimal, and if improved controller structures can be developed.The thesis proposes a general framework to determine the optimal structure for the control system in MTDC transmission through optimal feedback control. The proposed method is validated and demonstrated using an example of frequency control in a MTDC system connecting five AC areas

    Multiterminal HVDC transmissions systems for offshore wind

    Get PDF
    Offshore wind is emerging as one of the future energy vectors. Offshore wind power plants locations provide more strong and constant wind speed that allows to extract more power compared to onshore locations. In addition, as wind turbine components transportation is less restricted to terrestrial infrastructure, bigger and more powerful wind turbines can be installed offshore. In Europe, 1,567 MW of offshore wind power was installed in 2013. It represents the 14\% of the total wind power installed in Europe. Offshore wind power plants near the shore can be connected to the main grid by means of conventional AC technology. However, if these wind farms are installed further than 80-100 km, the use of AC equipment is economically infeasible due to reactive power issues. In these applications, HVDC system based on static converters can be used. The projects build and commissioned nowadays are based on point-to-point connections, where, each wind farm or wind farm clusters are connected to the terrestrial grid individually. Consequently, these lines might be understood as an extension of the AC system. If different offshore wind farms are interconnected between them and connected at the same time to different AC systems, for example, different countries, the DC grid is created. This scenario creates one of the most important challenges in the electrical power system since its creation, more than 100 years ago. The most relevant challenges to be addressed are the stability and operation of the DC grid and the integration and interaction with the AC grid. This thesis addresses various aspects related to the future Multiterminal-HVDC systems for transmission of offshore wind power. First, the voltage control and the system operations are discussed and verified by means of emulations using an HVDC scaled experimental platform built for this purpose. Voltage stability might be endangered during contingencies due to the different inertia time constant of the AC and the DC system. DC systems only have the inertia of the capacitors compared to synchronous machines rotating masses of the AC systems. Therefore, in faulty conditions the power transmitted through the DC system must be reduced quickly and efficiently. For this reason, in this thesis a coordinated power reduction algorithm taking advantage of Dynamic Braking Resistors (DBR) connected to onshore converter stations and the ability of the power plants to reduce the generated power is presented. From the AC and DC grids integration point of view, the connection point between the offshore grid and the AC grid might be located remotely leading to a connection with a reduced Short Circuit Ratio (SCR). In the literature, several issues regarding the connection of transistor-based power converters to weak AC grid have been reported. In this thesis am advanced control for Voltage Source Converters connected to weak grids is presented and tested by means of simulations. From the AC and DC grids interactions, the voltage stability is not enough to operate a DC grid. Transport System Operators (TSO) operates the power flow through the cables and the power exchanged between by the power converters. In this thesis, a novel hierarchical power flow control method is presented. The aim of the proposed power flow control is to obtain the desired power flows changing the voltage control set-points while the system stability is ensured. Finally, a control procedure for offshore wind farms based on Squirrel Cage Induction Generators connected to a single power converter is introduced.L'energia eòlica marina emergeix com un dels vectors energètics del futur. Les localitzacions eòliques marines proporcionen vens més forts i constants que les terrestres, cosa que permet extreure més potència. A més a més, els aerogeneradors marins poden ser més grans i més potents ja que es redueixen les limitacions de gàlib existent en les infraestructures terrestres. A tall d'exemple, l'any 2013 a Europa es van instal.lar 1.567 MW de potència eòlica marina, cosa que representa un 14\% de la potència eòlica instal.lada a Europa. Els parcs eòlics marins poden ser connectats a la xarxa elèctrica terrestre utilitzant emparamenta convencional de corrent alterna, però quan la distancia amb la costa excedeix els 80-100 km l'ús d'aquesta tecnologia es torna econòmicament inviable degut a l'energia reactiva generada en els conductors. Per solucionar aquest problema, s'emparen els sistemes en corrent continua basats en convertidors estàtics. Els projectes construïts o projectats a dia d'avui es basen en esquemes de connexió punt-a-punt, on, cada parc eòlic o agrupació de parcs eòlics es troba connectat a la xara terrestre individualment. En conseqüència, l'operació d'aquestes línies es pot considerar com una extensió de la xarxa d'alterna. Però, si s'interconnecten diferents parc eòlics amb diferents xarxes terrestres d'alterna (per exemple, diferents països) en corrent continua, s'obtenen xarxes en corrent continua. Aquest nou escenari crea un dels majors reptes des de la creació dels sistema elèctric de potencia, ara fa més de 100 anys. Entre aquests reptes hi ha l'estabilitat i l'operació dels sistemes en corrent contínua i la seva integració i coexistència amb les xarxes en corrent alterna. En la present tesis s'han estudiat diferents aspectes dels futurs sistemes multi terminal en alta tensió en corrent contínua (HVDC, en anglès) per la transmissió de potencia generada mitjançant parcs eòlics marins. Primerament, es descriu el control de tensió i els modes d'operació dels sistemes multi terminal i es verifiquen en una plataforma experimental construïda per aquest propòsit. L'estabilitat de tensió dels sistemes en corrent continua, es pot veure afectada durant una falta a la xarxa d'alterna degut a la reduïda inèrcia dels sistemes multi terminal, només formada pels condensadors dels convertidors i els cables. Així la potència que no pot injectar a la xarxa ha de ser reduïda de forma ràpida i eficient. Per això, en aquesta tesis es presenta un sistema coordinat de reducció de potència que utilitza la resistència de frenat dels convertidors de connexió a la xarxa i els mètodes de reducció de potència dels parcs eòlics. Des del punt de vista de la integració de les xarxes en continua i en alterna, el punt d'interconnexió pot estar localitzat llunys dels grans centres de generació, la qual cosa implica tenir una potència de curtcircuit molt reduïda. En la bibliografia científica s'han descrit diverses problemàtiques a l'hora de connectar un convertidor de commutació forçada a les xarxes dèbils. Per tal de pal.liar aquests inconvenients, en aquesta tesis es presenta un algorisme avançat de connexió de convertidors a xarxes dèbils basat en control vectorial. Des del punt de vista de les interaccions i interoperabilitat dels sistemes en corrent alterna i continua, no n'hi ha suficient en garantir l'estabilitat, ja que el propòsit finals dels operadors de xarxa és fer fluir una potencia a traves de la xarxa per tal de satisfer la demanda. Per aquest propòsit en aquesta tesis es presenta un control jeràrquic de control del flux de potència que fixa el flux de potència a traves d'una xarxa multi terminal canviant les consignes del control primari, tot assegurant l'estabilitat del sistema. Per tancar la tesis, es presenta un nou controlador per parcs eòlics basats en aerogeneradors de gàbia d'esquirol controlats per un sol convertidor
    corecore