2,410 research outputs found

    Polynomial Curve Slope Compensation for Peak-Current-Mode-Controlled Power Converters

    Get PDF
    Linear ramp slope compensation (LRC) and quadratic slope compensation (QSC) are commonly implemented in peak-current-mode-controlled dc-dc converters in order to minimize subharmonic and chaotic oscillations. Both compensating schemes rely on the linearized state-space averaged model (LSSA) of the converter. The LSSA ignores the impact that switching actions have on the stability of converters. In order to include switching events, the nonlinear analysis method based on the Monodromy matrix was introduced to describe a complete-cycle stability. Analyses on analog-controlled dc-dc converters applying this method show that system stability is strongly dependent on the change of the derivative of the slope at the time of switching instant. However, in a mixed-signal-controlled system, the digitalization effect contributes differently to system stability. This paper shows a full complete-cycle stability analysis using this nonlinear analysis method, which is applied to a mixed-signal-controlled converter. Through this analysis, a generalized equation is derived that reveals for the first time the real boundary stability limits for LRC and QSC. Furthermore, this generalized equation allows the design of a new compensating scheme, which is able to increase system stability. The proposed scheme is called polynomial curve slope compensation (PCSC) and it is demonstrated that PCSC increases the stable margin by 30% compared to LRC and 20% to QSC. This outcome is proved experimentally by using an interleaved dc-dc converter that is built for this work

    AN ENERGY BASED MINIMUM-TIME OPTIMAL CONTROL OF DC-DC CONVERTERS

    Get PDF
    Time-optimal response is an important and sometimes necessary characteristic of dynamic systems for specific applications. Power converters are widely used in different electrical systems and their dynamic response will affect the whole system. In many electrical systems like microgrids or voltage regulators which supplies sensitive loads fast dynamic response is a must. Minimum time is the fastest converter to compensate the step output reference or load change. Boost converters as one of the wildly used power converters in the electrical systems are aimed to be controlled in optimal time in this study. Linear controllers are not able to provide the optimal response for a boost converter however they are still useful and functional for other applications like reference tracking or stabilization. To obtain the fastest possible response from boost converters, a nonlinear control approach based on the total energy of the system is studied in this research. Total energy of the system considers as the basis for developing the presented method, since it is easy and accurate to measure besides that the total energy of the system represents the actual operating condition of the boost converter. The detailed model of a boost converter is simulated in MATLAB/Simulink to achieve the time optimal response of the boost converter by applying the developed method. The simulation results confirmed the ability of the presented method to secure the time optimal response of the boost converter under four different scenarios

    SINGLE-DEGREE-OF-FREEDOM EXPERIMENTS DEMONSTRATING ELECTROMAGNETIC FORMATION FLYING FOR SMALL SATELLITE SWARMS USING PIECEWISE-SINUSOIDAL CONTROLS

    Get PDF
    This thesis presents a decentralized electromagnetic formation flying (EMFF) control method using frequency-multiplexed sinusoidal control signals. We demonstrate the EMFF control approach in open-loop and closed-loop control experiments using a single-degree-of-freedom testbed with an electromagnetic actuation system (EAS). The EAS sense the relative position and velocity between satellites and implement a frequency-multiplexed sinusoidal control signal. We use a laser-rangefinder device to capture the relative position and an ARM-based microcontroller to implement the closed-loop control algorithm. We custom-design and build the EAS that implements the formation control in one dimension. The experimental results in this thesis demonstrate the feasibility of the decentralized formation control algorithm between two satellites

    Design of Digital Robust Controller for a Class-D Amplifier Using A2DOF

    Get PDF
    AbstractIn recent years, it is desired that the bandwidth of a class-D amplifier is widened using sampling frequencies as low as possible. For example, it is expected in the application of the power supply of a low frequency immunity test, or an audio power amplifier, or the power amplifier of vibration generator. In this paper, it is shown that the bandwidth of the class-D amplifier can be widened to 20[kHz] by an A2DOF (Approximate 2-Degree-Of-Freedom) digital controller with 500[kHz] sampling frequencies. The controller is implemented by a DSP (digital signal processor). It is shown from experiments that 20[kHz] bandwidth can be maintained even if load changes

    Analysis, Design and Control of a Modular Full-Si Converter Concept for Electric Vehicle Ultra-Fast Charging

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A Zero-Transient Dual-Frequency Control for Class-E Resonant DC-DC Converters

    Get PDF
    In this paper, a dual-frequency control method for regulating the output power in class-E resonant DC-DC converters has been introduced. As in the standard ON-OFF control or other recently proposed dual-frequency controls, the approach is based on the ability of the converter to alternately operate in a high- and a low-power state. The proposed solution has a twofold advantage: on the one hand, soft-switching capabilities (i.e., Zero-Voltage and Zero-Voltage-Derivative switching) are preserved in both operating states; on the other hand, it is possible to reduce to zero the transient time required to switch from one state to the other one. The most straightforward consequence is the possibility to increase to very large values the frequency at which the two operating states are switched, up to the same order of magnitude as the main switching frequency of the converter. In this way, the additional ripple introduced by the proposed dual-frequency control can be decreased to a negligible value. The approach has been validated by measurements on a prototype operating between 4 MHz and 8 MHz and in which it has been possible to increase the control frequency up to 500 kHz

    Design and analysis of current stress minimalisation controllers in multi-active bridge DC-DC converters.

    Get PDF
    Multi active bridge (MAB) DC-DC converters have attracted significant research attention in power conversion applications within DC microgrids, medium voltage DC and high voltage DC transmission systems. This is encouraged by MAB's several functionalities such as DC voltage stepping/matching, bidirectional power flow regulation and DC fault isolation. In that sense this family of DC-DC converters is similar to AC transformers in AC grids and are hence called DC transformers. However, DC transformers are generally less efficient compared to AC transformers, due to the introduction of power electronics. Moreover, the control scheme design is challenging in DC transformers, due to its nonlinear characteristics and multi degrees of freedom introduced by the phase shift control technique of the converter bridges. The main purpose of this research is to devise control techniques that enhance the conversion efficiency of DC transformers via the minimisation of current stresses. This is achieved by designing two generalised controllers that minimise current stresses in MAB DC transformers. The first controller is for a dual active bridge (DAB). This is the simplest form of MAB, where particle swarm optimisation (PSO) is implemented offline to obtain optimal triple phase shift (TPS) parameters, for minimising the RMS current. This is achieved by applying PSO on DAB steady-state model, with generic per unit expressions of converter AC RMS current and transferred power under all possible switching modes. Analysing the generic data pool generated by the offline PSO algorithm enabled the design of a generic real-time closed-loop PI-based controller. The proposed control scheme achieves bidirectional active power regulation in DAB over the 1 to -1 pu power range with minimum-RMS-current for buck/boost/unity modes, without the need for online optimisation or memory-consuming look-up tables. Extending the same controller design procedure for MAB was deemed not feasible, as it would involve a highly complex PSO exercise that is difficult to generalise for N number of bridges; it would therefore generate a massive data pool that would be quite cumbersome to analyse and generalise. For this reason, a second controller is developed for MAB converter without using a converter-based model, where current stress is minimised and active power is regulated. This is achieved through a new real-time minimum-current point-tracking (MCPT) algorithm, which realises iterative-based optimisation search using adaptive-step perturb and observe (P&O) method. Active power is regulated in each converter bridge using a new power decoupler algorithm. The proposed controller is generalised to MAB regardless of the number of ports, power level and values of DC voltage ratios between the different ports. Therefore, it does not require an extensive look-up table for implementation, the need for complex non-linear converter modelling and it is not circuit parameter-dependent. The main disadvantages of this proposed controller are the slightly slow transient response and the number of sensors it requires

    Design and Implementation of Internal Model Based Controllers for DC/ AC Power Converters

    No full text
    The aim of this thesis is to design and implement an advanced control system for a working three-phase DC to AC power converter. Compared to' the traditional PI controller used widely in industry, the new voltage controller can track the reference voltage with improved accuracy and efficiency in the presence of different kind of local loads, and also works well in the single phase voltage control. This voltage controller is combined with a power controller to yield a complete controller. An important aspect of this work is the hardware implementation of the whole system. Main parts ofthis thesis are: ???????? 1. Review ofH-infinity and repetitive control techniques and their applications in power converters. 2. Design of a new voltage controller to eliminate the DC component in the output voltages, and taking into account the practical issues such as the processing delay due to the digital signal processor (DSP) implementation. 3. Modelling and simulation of the converter system incorporating different control techniques and with different kinds of loads. 4. Hardware implementation and the two-processor controller. The parallel communication between the DSPs. 5. The main problems encountered in???????????????????? hardware implementation and programming. The software used to initialize DSPs, implement the discretetime voltage controller and other functions such ~ generations of space vector pulse width modulation (SVPWM) signals, circuit protections, analog to digital (AD) cOl)versions, data transmission, etc. 6. Experimental results the under circumstances of no load connected to the converter, pure three-phase resistive loads, three-phase unbalanced resistive' loads and the series resistor-inductor loads. /Imperial Users onl

    High-Performance Isolated Bidirectional DC-DC Converter

    Get PDF
    Conversores DC-DC bidireccionais têm vindo a ganhar atenção na área da eletrónica de potência devido ao aumento da necessidade de um fluxo de potência controlado entre dois barramentos DC. Aplicações típicas podem ser facilmente listadas, indo desde unidades de produção de energia renovável até veículos elétricos e híbridos. Estes conversores podem apresentar funcionalidades como elevada densidade energética e performance, assim como isolamento galvânico entre cada porto. Desta forma, a AddVolt requisitou que tal conversor fosse incluído na sua solução de travagem regenerativa. Com esta dissertação, um conversor DC-DC bidireccional e isolado é proposto, sendo que todos os aspetos desde revisão bibliográfica, modelação, design, simulação, implementação, teste e validação são abrangidos. Um conversor Dual-Active Bridge (DAB) de média potência e alta frequência é a topologia escolhida. Após validação de quer a topologia como a malha de controlo desenhada num ambiente computacional, um protótipo experimental é assemblado e testado com sucesso. O isolamento galvânico é garantido e atingido através de um transformador de alta frequência desenhado e enrolado pelo autor.Bidirectional DC-DC converters have been gaining attention in the field of power electronics due to the increasing need of a controlled power flow between two DC buses. Typical applications can be easily listed, ranging from renewable energy production units to electric and hybrid vehicles. Such converters can feature characteristics as high power density and performance as well as isolation between each port. As a result, AddVolt has commissioned that such a converter should be included in its regenerative breaking solution. Within this dissertation, a bidirectional isolated DC-DC converter is proposed, and all aspects from literature review, modelling, design, simulation, implementation, testing and validation are deeply covered. A medium-power high frequency Dual-Active Bridge (DAB) converter is the chosen topology. After validation of both the topology and control structure in a computational environment, an experimental prototype is assembled and successfully tested. Galvanic isolation is granted and achieved by a self-designed and in-house wound high frequency transformer
    corecore