2,348 research outputs found

    Improving on the network lifetime of clustered-based wireless sensor network using modified leach algorithm

    Get PDF
    Wireless sensor networks (WSNs) composed from a large number of sensor node with the ability to sense and process data in the physical world in a timely manner. The sensor nodes contain a battery constraint which limit the network lifetime. Due to energy constraints, the deployment of WSNs will required advance techniques to maintain the network lifetime. A clustering based routing algorithm called Low- Energy Adaptive Clustering Hierarchy (LEACH) was proposed as a solution for low power consumption. This document is a study about LEACH algorithm where the implementation was done using OMNeT++ network simulator to study the performance of this algorithm in term of network lifetime. OMNeT++ was selected as a simulator because it provides some important features for this project like very good scalability unlike other simulators do. During this study, LEACH algorithm shows some drawbacks that need an improvements to overcome it as to improve the performance. Then, the modified LEACH algorithm was proposed where the improvement was done in cluster head selection based on LEACH. In cluster head selection, modified LEACH taking into account the residual energy of each node for calculation of the threshold value for next round. Meanwhile in LEACH, the cluster head selection was based on distributed algorithm. Both of these protocols was implemented in network simulator to compare the performance. This study shows that there were a better performance achieved by modified LEACH depends on the results obtained

    An investigation into the merits of fuzzy logic control versus classical control.

    Get PDF
    A project report submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in Engineering.Up to now the benefits and problems with fuzzy control have not been fully identified and its role in the control domain needs investigation. The past trend has been to show that a fuzzy controller can provide better control than classical control, without examining what is actually being achieved. The aim in this project report is to give a fair comparison between classical and fuzzy control. Robustness, disturbance rejection, noise suppression" nonminimurn phase and dead time are examined for both controllers. The comparison is performed through computer simulation of classical and fuzzy controlled plant models. Fuzzy control has the advantage of non-linear performance and the ability to capture linguistic information. Translating quantitative information into the fuzzy domain is difficult; therefore when the system is easily mathematically modelled and linear, classical control is usually better. Which controller should be used depends on the application, control designer and information available.Andrew Chakane 201

    Self organizing fuzzy sliding mode controller for the position control of a permanent magnet synchronous motor drive

    Get PDF
    AbstractIn this paper, a self organizing fuzzy sliding mode controller (SOFSMC) which emulates the fuzzy controller with gain auto-tuning is proposed for a permanent magnet synchronous motor (PMSM) drive. The proposed controller is used for the position control of the PMSM drive. The performance and robustness of the control system is tested for nonlinear motor load torque disturbance and parameter variations. It has a novel gain self organizing strategy in response to the transient or tracking responses requirement. To illustrate the performance of the proposed controller, the simulation studies are presented separately for the SOFSMC and the fuzzy controller with gain auto-tuning. The results are compared with each other and discussed in detail. Simulation results showing the effectiveness of the proposed control system are confirmed under the different position changes

    Motion control and synchronisation of multi-axis drive systems

    Get PDF
    Motion control and synchronisation of multi-axis drive system

    Fuzzy anti-windup scheme for practical control of point-to-point (Ptp) positioning systems

    Get PDF
    The Positioning Systems Generally Need A Controller To Achieve High Accuracy, Fast Response And Robustness. In Addition, Ease Of Controller Design And Simplicity Of Controller Structure Are Very Important For Practical Application. For Satisfying These Requirements, Nominal Characteristic Trajectory Following (NCTF) Controller Has Been Proposed As A Practical PTP Positioning Control. However, The Effect Of Actuator Saturation Cannot Be Completely Compensated Due To Integrator Windup Because Of Plant Parameter Variations. This Paper Presents A Method To Improve The NCTF Controller For Overcoming The Problem Of Integrator Windup By Adopting A Fuzzy Anti-Windup Scheme. The Improved NCTF Controller Is Evaluated Through Simulation Using Dynamic Model Of A Rotary Positioning System. The Results Show That The Improved NCTF Controller Is Adequate To Compensate The Effect Of Integrator Windup

    Wavelet-fuzzy speed indirect field oriented controller for three-phase AC motor drive – Investigation and implementation

    Get PDF
    Three-phase voltage source inverter driven induction motor is used in many medium- and high-power applications. Precision in speed of the motor play vital role, i.e. popular methods of direct/indirect field-oriented control (FOC) are applied. FOC is employed with proportional–integral (P-I) or proportional–integral–derivative (P-I-D) controllers and they are not adaptive, since gains are fixed at all operating conditions. Therefore, it needs a robust speed controlling in precision for induction motor drive application. This research paper articulates a novel speed control for FOC induction motor drive based on wavelet-fuzzy logic interface system. In specific, the P-I-D controller of IFOC which is actually replaced by the wavelet-fuzzy controller. The speed feedback (error) signal is composed of multiple low and high frequency components. Further, these components are decomposed by the discrete wavelet transform and the fuzzy logic controller to generate the scaled gains for the indirect FOC induction motor. Complete model of the proposed ac motor drive is developed with numerical simulation Matlab/Simulink software and tested under different working conditions. For experimental verification, a hardware prototype was implemented and the control algorithm is framed using TMS320F2812 digital signal processor (dsp). Both simulation and hardware results presented in this paper are shown in close agreement and conformity about the suitability for industrial applications

    Energy management in biodiesel production

    Get PDF
    Biodiesel economics revolves around both private and public features. Success for an incentive for producers and consumers needs to be sufficient to take part in the marketing arena with the currently accessible alternatives in the private dimension. “Whereas in the civic aspect, success is described in terms of the community objectives that prompt government’s intercession (i. e. subsidies) and whether biodiesel will attain the public goals in a remunerative manner compared to other alternatives if the public assessment is highly preferred, but the market incentives are deficient, there will not be a possibility to produce the biodiesel. On the other hand, if market values generate strong dividends among producers and purchaser, but the social gains are very small, or the costs are extremely high compared to other alternatives, then the activity may not represent a better use of scarce public resources. Biodiesel has become more enticing to the world recently due to its environmental benefits and the fact that it is made from renewable resources. The production cost of biodiesel is the main barrier to commercialization of the product. In the absence of tax relief, there is an urgent need to explore alternative feedstocks for the production of biodiesel. Furthermore, Properties impact of biodiesel and its feedstock, Engine type and its operating conditions Additives are effected by the biodiesel type and production characteristics. Where Engine power is always affected by properties of biodiesel, especially in heating value, viscosity, and lubricity

    High performance position control of permanent magnet synchronous drives

    Get PDF
    In the design and test of electric drive control systems, computer simulations provide a useful way to verify the correctness and efficiency of various schemes and control algorithms before the final system is actually constructed, therefore, reducing development time and associated costs. Nevertheless, the transition from the simulation stage to the actual implementation has to be as straightforward as possible. This paper presents the design and implementation of a position control system for permanent magnet synchronous drives using the dsPIC33FJ32MC204 microcontroller as the target processor to implement the control algorithms. The overall system is simulated and tested in Proteus VSM software which is able to simulate the interaction between the firmware running on the microcontroller and the analogue circuits connected to it. The electric drive model is developed using elements present in the Proteus VSM library. As in any high-performance AC electric drive system, field oriented control is applied. The complete control system is distributed in three control loops, namely torque, speed and position. A standard PID control system, and a hybrid control system based on fuzzy logic, are implemented and tested. The natural variation of motor parameters, such as winding resistance and magnetic flux, are also simulated. Comparisons between the two control schemes are carried out for speed and position control using different error measurements, such as, integral square error, integral absolute error and root mean squared error. Comparison results show a superior performance of the fuzzy-logic-based controller when coping with parameter variations, and by reducing torque ripple, but the results are reversed when periodical torque disturbances are present.N/

    Study on control strategy of the rotary synchronous fixed-length cutting system

    Get PDF
    According to the characteristics of rotating synchronous fixed-length cutting system and the principle of vector coordinate transformation, it respectively analyzes the mathematical model of three loops which are the position loop, speed loop and current loop of the servo fixed-length cutting system in this paper. In view of the different working conditions of the system and its nonlinear problem, it puts forward that the function of the speed loop is realized by the parameter adaptive fuzzy algorithm; the function of the position loop using is realized by feed forward proportional control algorithm; the function of the current loop is realized by the conventional PI control algorithm. It uses MATLAB to make simulation and verification, the results show that the combined control algorithm can make that the fixed-length cutting system has characteristics of fast speed, high precision and strong robustness properties
    • …
    corecore