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Synopsis 

Contemporary digital motion control approaches can be used to radically simplify the 
design, improve the performance, and increase the flexibility of machinery. The three 
key components of this new motion control technology are highly dynamic 
servo-drives, software tools and computer hardware. By applying this new digital 
motion control technology, the traditional machine building blocks (such as mechanical 
gears, cams and linkages) can be simplified and some cases replaced by reprogrammable 
software. However, the tight control and flexibility typically required in modem 
multi-axis machines can be realised only if it can be ensured that the software controlled 
drives are properly coordinated and synchronised. This thesis reports on the concept and 
implementation of a new generic 'dual closed-loop' control scheme which offers the 
potential to improve the motion coordination and synchronisation capabilities of 
multi-axis motion control systems. 

Industrial automation spans a huge spectrum in terms of both the physical structure 
of machines and the tasks which they perform. Such systems vary enormously in respect 
to the process they address and the range and complexity of operations they undertake. 
A study of current control methodologies highlights that a single control method can not 
satisfactorily solve all the control issues encountered. A combination of control methods 
is often necessary to attain the desired levels of coordination and synchronisation of 
these systems. For each axis of motion, an appropriate motion controller is required 
which can give adequate performance for the particular element of the machine process. 
The motions involved in the multi-axis machine system are then tightly synchronised 
through a supplementary control among the axes. 

This supplementary control for multi-axis systems is introduced by inter-connecting 
the independent servo-drives. This control is used to coordinate the actions of the 
servo-drives, in order to reduce or eliminate the synchronisation error. An accurate 
mathematical coordination model for the coupled servo-drives is often difficult to attain 
due to uncertainness in the controlled processes and the different characteristics of the 
individual servo loops. Human intelligence (reasoning, knowledge and intuition) is 
good in tackling many coordination problems with little information and fuzzy logic 
provides a convenient way to represent human linguistic descriptions and make 
decisions. A fuzzy logic control strategy is presented which achieves synchronisation 
of the servo-drives through on-line corrective actions via compensation terms. 

By combining: a fuzzy logic software synchronisation mechanism; an 
inter-connected control structure; and the hierarchical decomposition of the tasks in 
multi-axis motion control systems, a design method for multi-axis motion control has 
been devised, termed Intelligent Motion Control (IMC). This facilitates the design and 
control of multi-axis motion control systems in an intelligent manner. The IMC control 
structure provides for effective motion synchronisation. 

A particular implementation of a control structure conforming to this method has 
been created. The implementation is based on the selective use of modem computer 
methods and motion controllers. A testbed has been established for verifying the motion 
synchronisation capability of various control schemes. The control method proposed 
can be used in manufacturing machines where tight motion synchronisation is required. 
KEY WORDS: Machine Motion Control, Multi-Axis Drive Systems, Motion 
Synchronisation, Fuzzy Logic Control, Coupling Control Structure. 
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Introduction 1 

CHAPTER ONE 

Introduction 

Highly competitive markets encourage manufacturing industry to realise improved 

perfon-nance through greater machine flexibility and productivity. Hence, many 

manufacturers are moving toward a newer category of specialized production 

equipment featuring "soft automation", which means numerical control of machines 

and processes[l]. Most of the machines and/or processes being automated involve 

motion; therefore, they will require motion control and, quite often, coordinated motion. 

A typical industrial robot has five or six axes of motion that must be coordinated. 

Camshaft grinding, gear hobbing, welding, packaging, material handing, and a host of 

other applications require two or more axes of coordinated motion. 

In this thesis an integrated approach is taken to create a multi-axis motion control and 

synchronisation scheme to provide the tight control and flexibility necessary to support 

modern manufacturing operations. In this context the research focuses on the design and 

implementation of a multi-axis motion control system. 

1.1 Motivations and Background -- Design Trends in Advanced 

Machines 

Until recently machine designers were restricted to the use of mechanical transmissions 

such as cams and linkages to build coordinated motion systems for machines. Although 

these mechanisms have been progressively improved in design, precision and material 

used, the underlying principles behind the majority of mechanisms used today can be 

traced back at least to the time of Leonardo da Vinci (around 1500 AD)[2][3][161. 

Nowadays, motion control increasingly involves the use of integrated circuits and 

microprocessors - basically, computer control[41, reducing the mechanical complexity 

of machines. 

Continued advances in controHers, drives, and feedback devices promise ever greater 
diversity. Consider: 
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9 Computational-intensive controllers allow smart algorithms with interpretive and 

expert systems to be integrated. 

Ongoing goals for manufacturers include: more power from smaller motors; 

reduced inertia for quicker response; and higher flux densities from smaller 

magnets. 

9 Position feedback can also be integrated into motor electronics. 

The following examples illustrate some of the ways today's motion control approaches 

can be used to simplify the design, and generally improve the speed and performance 

of manufacturing operations. 
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Figure 1.1 - Electronic Gearing for Synchronised Motion. Source: Crane. 
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The progress of numerically controlled automation systems has resulted in practical 

manufacturing systems, characterized by a high degree of flexibility and productivity. 

This in turn has resulted in the establishment of reliable, high quality factory automation 

systems. Looking into the future, industry will progress towards computerised 
'Intelligent Manufacturing Management System' MVIMS)[5]. One of driving forces of 

this progress is the improved motion control systems which provide one of the crucial 

building elements of today's automated industrial environments. 

1.2 Motion Control Technology, Machine Design & Control 

1.2.1 Motion Control Technology 

Modem motion control technology has moved a long way since the introduction of 

power semiconductor devices in the middle of the nineteen fifties [10]. In the course 

of its dynamic evolution during the last four decades, motion control has grown as a 
diverse interdisciplinary technology and embraces the areas of power semiconductor 
devices, converter circuits, electrical machines and fluid/air drives, control theory, and 

signal electronics. The frontier of this technology has been considerably expanded with 

the advent of modem powerful micro-computers, VLSI circuits, power integrated 

circuits, and advanced computer-aided design techniques (see Figure 1.2). Each of the 

component disciplines is undergoing an evolutionary process, and therefore is 

contributing to the total advancement of motion control technology. 

As a result of the radical evolution of the motion control technology, three essential 

components for multi-axis motion control, (highly dynamic servo-drivesl, software 

tools and computer hardware), have been improved considerably. 

With continuous improvements of magnetic materials, of cooling and detailed design, 

servo motors can be built today in AC and in DC versions[10]. To some extent, modem 
servo drives approach the dynamics of hydraulic/pneumatic servo valves[ 181-[241. 
These actuators equipped with advanced power converters and modem control 
techniques produce highly dynamic servo-drives which can achieve high precision 
motion control. 

IA servo-drive comprises a servomotor, amplifier and controller. 
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Figure 1.2 Motion control system - an interdisciplinary technology. 
Source: Bose. 

In multi-axis systems, the rules of motion governing the intimate coupling of axes 

require software tools which allow a fast transformation of mathematical functions. 

This applies to the design phase as well as to the subsequent operational phase. The 

necessary mathematics have to be executed frequently in real time, and this calls for 

controller responses of one millisecond or less. Until recently, experts were of the 

opinion that assembler programming was the only suitable way to achieve the required 

short response times. However, there have been important changes in this field: 

powerful advance language compilers for Pascal or C turn out an essentially more 

efficient code today, guaranteeing easy maintenance and reliability, although they do not 

quite come up to the possible efficiency of an expert assembler programmer[16]. 

Progress in computer hardware by far compensates the present minor disadvantage of 

advanced languages' lower speed. The processor frequency today ranges from 20 and 

30 MHz, math co-processors relieve the main processor during computation-intensive 

applications, such as for multi-drive systems. The speed of access to the memory chips 
has kept pace with the speed of the processors[161. Programmable logic elements and 

powerful bus systems contribute to actually transfer the modem processors' work 
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reliably and interference-free from the surrounding noise of highly dynamic drives. 

When using more advanced microcomputers such as RISC processors, signal processors 

to motion control, further important developments in the motion control technology may 

be expected[ I l]-[ 15]. 

1.2.2 A New Approach to Machine Design 

Machines with several motions have been designed traditionally according to a 

philosophy of using mechanisms (such as gears, camshafts, linkages, and belts) linked 

to a central prime mover to process and combine materials as they move through the 

machine to produce a finished product. Although there has been continuous 
development in machine design over the years, with improvements in materials and 

mechanisms, the underlying design philosophy has not changed. Drawbacks of these 

mechanical motion controls will limit the extent to which these traditional machine 
designs can be adapted to meet new requirements, aspects include: 

Extended part changeover time; 

Inaccuracy due to wear; 

- Physical time constants which are difficult to overcome; and 

* Rudimentary motion profiles. 

In recent years, the trends in machine development have been towards higher speed, and 

more flexible designs[26]. The concept of integrating actuators and sensors with 

microelectronics to form intelligent modules (or independent iv independent 

actuators[21]) also calls for new methods in the area of machine design. 

By replacing the central prime mover, cams and mechanical linkages, by a set of 
independent electro-mechanical drives which deliver power direct to the point of use, 
flexibility can be introduced. Each software-controlled drive can be programmed to 

provide tight control of the actuator function ( thus replacing the cams) and the drives 

can be coordinated and synchronised through software ( thus replacing the mechanical 
linkages ) [1]. In some instances the independent drives will be used with a mechanism 
to achieve a specialised motion[25]. 
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The machine built from computer controlled servo-motors can be reconfigured by 

means of software alone. This can greatly speed the reconfiguration process, and even 

means that a machine does not have to be stopped to carry out a reconfiguration. The 

new machine design approach also bring other advantages. The associated reduction in 

the number of moving parts can lead to an increase in reliability, a reduction in the overall 

size of the machine, and a reduction in the acoustic noise produced. The machine 
designer also has more freedom in choosing the layout of the machine, as mechanical 
links do not have to be accommodated[6]. 

1.23 Motion Control and Synchronisation in Machinery 

Motion control problems encountered in modem machinery and automation are often 

multidimensional: that is, they involve more than one aXiS2. Successful multi-axis 

machine control requires that the motions of its various parts should be synchronised. 
Selected examples of motion synchronisation in machines include[7]: 

-, an x-y table of a machining centre where x- and y- axis must be synchronised; 

o, tapping where the spindle rotation and the axial feedrate must be synchronised. 

In either of the examples listed above, poor synchronisation or coordination result in 

inferior dimensional accuracy or unusable product. Each of the examples introduces 

unique coordination problems. The synchronisation involved in x-y motion control 

problems represents perhaps the simplest case since the dynamics of the x-axis and the 

y-axis are not strongly coupled and are similar to each other. The synchronisation 

problem in tapping is more complicated. Reasons for this include: 1) there exists a 

significant difference between the dynamics of spindle rotational motion and that of 

spindle feed motion; 2) tapping requires synchronisation of transients such as the 

simultaneous reversal of spindle rotation and feed; 3) there exists a certain dynamic 

interaction between the sLindle rotational motion aridAedinotion. 

Other applications require motors to run interactively[ 17]. For example, in the glass 
industry multiple motors are used to roll sheet glass. Here the motor speeds have to be 

constant and equal to prevent stretching of the glass. In the textile industry fabrics are 

2 In the motion control lexicon. an "axis" is a single servo motion -- linear or rotary. 
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wound from one reel to another, requiring careful regulation of the fabric tension to 

prevent damage. Similarly many printing system drives have load sharing requirements. 

Generally, in manufacturing machinery, motion synchronisation can be specified as 

follows: 

" Velocity synchronisation -- preserves the velocity ratio between the axes. Used in 

metal forming, synthetic fibre manufacture, rubber processing and non-woren 
fabric production etc. 

" Position synchronisation (or phase synchronisation) -- preserves the position 

relationship between the axes. Used in machining, glass bottle production, and in 

the paper industry, etc. 

" Event synchronisation -- enables the slaves to start the motion or change their 

speeds when the master position equals any specified value. Applied to feed 

systems for packaging materials, etc. 

Web synchronisation -- is a special class of applications where several motions 

must be synchronised, however, the ratio between the various speeds vary 

continuously. Applied to high performance magnetic tape drives, wire-drawing 

machines, web tension control and more generally, in situations where drives have 

to be linked in a way which cannot be easily determined analytically, etc. 

1.2.4 Motion Coordination and Synchronisation by Software Mechanisms 

When mechanically linked systems are replaced by independent drives, the drives must 
be forced into coordination and synchronisation by an appropriate control regime. For 

example, in the case of software-based solutions, the synchronisation win be 

implemented by programming: hence the generic term of software mechanism. Specific 

applications may be termed software gearboxes, software cams [8] and so on. 

There are many different approaches that may be used in the design of a software 

mechanism[3][6][8][16][17]. However, they tend to share a number of common 
features, which can be grouped together within two hierarchic of levels [3]. 
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e Level 1- the lower or axis level 

For each axis of the mechanism, there is an actuator together with a controHer. Each 

axis/controller system within this level communicates with the higher level, level 2, and 

not with other axes within level 1. 

,, Level 2- the higher or co-ordination level 

The nature, or function of the mechanism is programmed in this level; for example 

whether a gearbox is to be emulated, or a cam and cam follower, or perhaps some 

arbitrary position relationship between the axes is to be satisfied. Given that reference 

commands are suitable for use with the proposed controllers, the controller gains are 

calculated (within level 1) according to the desired response of each closed-loop axis 

system. Level 2 generates the reference signal for each axis in order to meet the 

synchronisation requirements. 

it dent on the lower leyel servos. but also 

determined by ffie software mechanism. Due to the absence of solid mechanical 

elements to physically link motions, precise coordination and synchronisation of the 

interactive motions is one of the challenges which the new design philosophy raises. 

Much research work has focused on this problem[3][6][7][9][15][17]. The control 

requirements for such systems are becoming clearer. This thesis describes an alternative 

solution to these control problems which is believed to lead to improved machine 

control. 

1.3 Research Objectives 

The principal objective of this research is to create a multi-axis motion control and 
synchronisation scheme to provide fight control within a flexible structure for a 
machine control system with multiple drives. In order to meet this objective, the 
following secondary objectives were established. 
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1). To investigate building a multi-axis motion control system 

A multi-axis motion control system has been built based on the new machine design 

philosophy by using mechanical modules (containing electric motors, pneumatic 

actuators, sensors, power amplifiers), embedded controllers and a system controller. 

2). To develop a new control strategyfor achieving improved motion synchronisation. 

A fuzzy logic control algorithm was proposed to cross-couple independent servo-drives 

to make them act in a dependent manner to release improved motion synchronisation. 

3). To develop a methodfor multi-axis motion control system design 

A design method based on intelligent on-line coffection/coordination was developed, 

which provides tight motion synchronisation. 

4). To form real-time multi-axis executable modules within a hierarchical control 

model. 

A set of real-time execution modules which illustrate the design method has been 

defined and implemented. 

1.4 Thesis Organization 

This thesis is presented as a series of research tasks. Chapter 1 provides a general 
background to the need for motion synchronisation for multi-axis control systems, and 

outlines the research objective. The second task, presented in Chapter 2, appraises basic 

servo-control algorithms used in motion control. The appraisal of servo-controllers 
includes: (I) their abilities to eliminate different error sources, and (2) their limitations 

in motion control. It has been found that a combination of different algorithms are 

needed to eliminate all errors. 

Chapter 3 reviews conventional multi-axis drive system control structures and software 

mechanisms for achieving coordinated and synchronised motion. These 
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application-specific methods for motion synchronisation. are briefly described, and their 

advantages and limitations briefly summarised. 

A totally new control strategy for multi-axis motion synchronisation is proposed in 

Chapter 4. It based on a synthesis of the methods reviewed in the previous chapter. A 

generic 'dual closed-loop' control structure is introduced for machine control. A fuzzy 

logic coupling algorithm is used to coordinate the servo-drives. The fuzzy logic 

synchronisation methods are analysed with respect to their characteristics and stability. 

In Chapter 5, an Intelligent Motion Control (IMC) design method is developed which 

embodies intelligent motion synchronisation software mechanism for the multi-axis 

servo-drives. 

Chapter 6 shows the implementation of IMC elements including hardware and software. 
The simulations and experimental verification are carried out in a simplified IMC 

testbed and the results are given in Chapter 7. The results confirm the efficiency of the 

fuzzy logic coupling algorithm. 

Chapter 8 to Chapter 9 provide a conclusion to the research work. The evaluation of the 

IMC method and the possible future extensions to this method are presented In Chapter 

8. Chapter 9 briefly surnmarises the work undertaken and the contribution to new 
knowledge. 
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CHAMER TWO 

Appr. aisal of Servo-Controllers for Motion Control 

2.1 Introduction 

Using servo-drives to build a modem manufacturing machine system to achieve high 

performance (precision and speed) and flexible operation, accurate servo-controllers 

are needed. This chapter summarises existing servo-controllers for motion control 

applications and presents an appraisal of these controllers. The appraisal of 

servo-controllers includes: (1) their abilities to eliminate different error sources, and (2) 

their practical limitations in a multi-axis motion control scheme. 

2.1.1 Error Sources which Affect Motion Control and Synchronisation 

Industrial automation spans a huge spectrum of complexity in terms of both the physical 

structure of machines and the tasks which they perform. However, the performance of 
the computer controlled machine is mainly dependent upon: 

(1) mechanical hardware design (e. g. transmission types, bearings 

etc. )[2][6][12][241; 

(2) process effects (e. g. loading, tool wear, vibration etc.. )[16]; and 

(3) control system (controllers and drive dynamics) [3][9][341. 

Items one and two are outside the scope of this thesis. The research work focuses on the 

control system, with an emphasis on motion control and synchronisation. In order to 
deliver motions in a timely manner and coordinated with other machine functions 

synchronisation of the motions has to be maintained. However, error sources from the 

controller, drive dynamics and external disturbances will affect the motion 

synchronisation of the multiple axes. These error sources can be further classified into 

three categories [3] [7] [8] [34] and are illustrated in Appendix I. 

(i) Parameter Mismatch 

Parameter mismatch means different change in the respective transfer function, which 
can result in different changes of output of the respective closed-loop systems. 
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Therefore, the different output changes of the servo-loops will generate synchronisation 

effors. 

( ii ) Disturbances 

A disturbance is used here to mean an external action to the loop which changes or 

disturbs the operation of the controlled variable. Therefore, disturbances (such as 
frictions, load change etc. ) will influence the motion synchronisation. 

( iii ) Reference Commands 

A reference input may result in a steady-state error when it is fed into a particular type 

of control system[7]. The steady-state error is the error once the transient response has 

decayed leaving only the continuous response. 

In a multi-axis system, for each servo the reference input may be changed from one 

value to another value from time to time, and reference commands for different servo 

systems will be different at each update in order to keep a defined relationship. 

It is very Oficult to have the reference input always match the system type. Therefore, 

steady-state errors will exist , 
in each servo loop and for multi-axis system, the error 

value for each servo-loop is different as such synchronisation errors will exist. 

Such error sources can be reduced or eliminated by improved design of the 

servo-control algorithms, and this is the main concern of this chapter. In the following 

sections, different types of servo control systems for the motion control are briefly 

appraised. 

2.2 Feedback Controller 

The term "feedback controller" here means a controller that uses only basic feedback 

principles. In motion control these controllers may be classified into three basic classes: 
P, PID and state-feedback controHers. 
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2.2.1 P Controller 

Proportional (P) controller is the most conventional feedback controller in CNC[341. 

It sends correction signals proportional to the difference between the reference position 

and the actual position. The proportional gain, is usually designed so that the closed loop 

damping ratio (txjosed) is equal to 0.707. For this damping ratio, the following equation 

can be used for the selection of the proportional open-loop gain [18]. 

open T+ 2T (2-. 1) 

Where T is the sampling period. -r is the open-loop time constant and Kopen is the 

open-loop gain which is the product of the P-controller gain (Kp) and the other gains 
in the system such as motor's gain (Km), gear ratio (Kg), encoder gain (Ke), etc. 

2.2.2 PID Controller 

In a MID controller the correction signal is a combination of three components: a 

proportional, an integral and a derivative of the position error. PID controllers use 
feedback: 

9 Correct the controlled variable, in a manner proportional to the error; 

9 Eliminate steady state errors and reject the external disturbances, through operation 

of the integral tenn; 

* Anticipate major changes in the error and improve system damping using a 
derivative term. 

Implementing an I-controller by itself will cause instability, and it must be combined 
with a proportional action to enable a stable system. The derivative (D) controller aids 
in shaping the dynamic response of the system. The combination is known as a PID 

controller. Since a computer is utilized as the controller, a digital PID is implemented. 

There are different ways to design digital PID controllers. We can, for example, formu- 
late the digital PID controller law by approximating the continuous-time PID controller 
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with backward difference of Euler's or Tustin's methods [1]. In the following analyses, 

the PID controller law H(z) is formulated based on backward difference approximation, 

using z-transfonns. 

TZ z-1 
H(z) = Kp + KI -+ KD - 

z-1 TZ (2-2) 

Where Kp, KI, KD, are the proportional, integral, and derivative gains, respectively. The 

integral gain KI is chosen large enough for good disturbance rejection, and the derivative 

gain KD is designed to guarantee small overshoot. Usually, the controller gains can be 

designed based on root locus or frequency domain methods. 

The PID controHer is applied successfuRy to most control problems in process control, 

electrical drive systems and servo mechanisms. The reason for its success is that most 

of these processes hive a dynamic behaviour that can be adequately approximated by 

a second-order process. The PID controlIer is insufficient to control processes with 

additional complexities such as[81 

time delays; 

9 significant oscillatory behaviour (complex poles with small damping); 

* parameter variations; and 

9 multiple-input multiple-output systems. 

In addition to the basic PID shown in Figure 2.1a, some different PID-structures, shown 
in Figures 2.1b, 2.1c and 2.1d, were applied in practical servo-controllers[l][22][271 
[28][331. However, since Figure 2.1a represents the most common structure, it is used 
in the analyses in this chapter. 

2.2.3 State-Feedback Controller 

The most common measurable states in motion control are the position and the velocity. 
The axial position is commonly measured by an incremental encoder and-associate 

count", -and the velocity may be measured either by a tachometer [19][22], phase 
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(a) 

(c) 

(b) 

(d) 

TT 

Figure 2.1 Different ways to implement controllers with PID functions. 
Source: Lo. 

measurement of pulse trains[9], or by differentiating the measured position [28][331. 

If the feedback states are the position and the velocity, the state-feedback controller is 

in fact a PD-controller (shown in Figure 2.1 b without the integral action). 

The major drawback of the state-feedback controller is that it is relatively poor in 

eliminating the steady-state errors and rejecting external disturbances [34]. The 

state-feedback controller, however, is similar to PD controller. It will not be discussed 

further in this chapter. 

2.3 Feedforward Controllers 

Feedforward controllers have a feedforward term aimed at minimizing the position error 
during the move. The method is based on anticipating the required motion command 
signal and providing it as a bias signal. Some approaches to feedforward control are 
described. 

112 

vv 
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2.3.1 Basic Feedforward Controllers 

There are two principal types of feefforward controllers, that are shown in Figure 2.2. 

The principle of the design in Figure 2.2a[ 15][17][29][30] [3 1] is simple: Implement in 

the control computer a transfer function that is the exact inverse of the one of the real 

control loop, G(z), ie, GO-1(z)G(z) = 1, and then the actual position becomes equal to 

the required position. 

G(z) 

R Er, up 
Go7l(z) H(z) D(z) 

+ Feed gard 
c trýo ontroRer 

(a) 

Feedforward controller 

+ 
RE+U PP 

_I D(z) 
+ 

H(z) [D(z) 

H(z) = Controller 
D(z) = Drive Unit 

(b) 

Figure 2.2 Two principle types of feedforward controller. 
Source: Lo. 

The design in Figure 2.2b has the same objective[20][23][25][26]. If we implement an 
inverse transfer function of the drive unit in the feedforward. controller block, as shown 
in Figure 2.2b, we obtain the following closed-loop equation: 

p Do-l(z)D(z) + H(z)D(z) 
0- 

(Z) =- (2-3) R1+ H(z)D(z) 
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Where H(z) and D(z) represent the transfer functions of the software controller and the 

drive unit, respectively. If DO(z) = D(z), the overall relation between the required 

position and the actual position becomes 1: 1. Clearly, the ideal condition cannot be 

implemented for two reasons. First, it may be impossible to precisely implement the 

inverse of the function D(z). Secondly, the function D(z) varies with load conditions. 

Therefore, H(z) should be properly designed to provide good performance. 

There are some differences between these two types of feedforward controHers. 

(1) The first feedforward controller is the inverse of the feedback control loop, that 

consists of the controller and the drive and therefore it becomes more complicated if a 

more comprehensive controller (eg, MID controller) is utilized. Whereas, the later is the 

the inverse of the drive only, and therefore, the design of its corresponding feedforward 

controller is simple and independent of the design of the feedback controller. 

(2) If the feefforward controller (GO71(z) in Figure 2.2a or D071(z) in Figure 2.2b) 

includes poles located on or outside the unit circle, the design of the feefforward 

controller must be modified. The modification of the design in Figure 2.2a is easier than 

that in Figure 2.2b. 

Feedforward control minimizes following error and so reduces motion time. However, 

feedforward control is an open-loop design method which relies on knowledge of 

invariant system parameters. If the system parameters vary, it is better to use a 

closed-loop design method, such as robust control. 

2.3.2 Zero Phase Error Tracking Controller 

A feefforward controller entitled "Zero Phase Error Tracking Controller (ZPETC)" was 

proposed by Tomizuka[301. The concept of the ZPETC is based on pole/zero 

cancellation, ie G6-1 (z)G(z) = 1. However, if G6-1 (z) includes unstable poles, it cannot 
be implemented as a feedforward controller, and therefore must be modified. Let us 

assume that the closed-loop discrete-time transfer function, which includes the 

controlled plant and feedback controller, is expressed as: 

z-dB+(z-I)B-(z-1) Gclosed(Z-1) =- 
A(z-1) 

(2-4) 
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where Z-d represents a delay of d steps (sampling periods) non-nally caused by the 

control loop, A includes the closed-loop poles, B+ includes the acceptable closed-loop 

zeros, and B- includes the unacceptable closed-loop zeros. The "acceptable" zeros here 

mean the zeros that are located inside the unit circle, and can be taken as the poles in the 

feefforward controller. By contrast, unacceptable zeros are located on or outside the 

unit circle, and cannot be the poles of the feedforward controller since they will cause 
instability. In practical applications, a zero that is close to the unit circle and is located 

on or close to the negative real axis (eg, z= -0.97) may introduce an oscillatory mode 

and, therefore, is regarded as an unacceptable zero. 

In unacceptable zeros exist, Go7l(z) cannot be implemented in the feedforward 

controller because it will cause a significant oscillation in the control signals. Tomizuka 

modified the feedforward controller structure as shown in Figure 2.3. The modified 
feefforward controller GKz) has the following form: 

A(z-1) B-(z) 
Ggz)= - B+(z-1)[Bl(l)]2 (2-5) 

Multiplying Equations 2-4 and 2-5, yields the overall transfer function 

P(k) B-(z) B-(z-1) 

R(k + d) [B-(l)]2 (2-6) 

The frequency transfer function is given by 

P(k) B-(ej') B-(ej') 
=II [- I 

R(k + d) B-(I) B-(l) (2-7) 
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R Feedforward 
r c6o%oller 

r 

A(z-1) B -(z) 

B+(z-1)[B-(l)]2 

E 
Feedback 
controller 

U 

Z-dB-(z-I)B? +(z-1) I 
Bpi 

A(z-1) 

i Drive I 

Figure 2.3 Zero phase error tracking control system. 
Source: Tomizuka. 

P 

Suppose that B-(e-jw) = Re + jIm, where Re and Im represent the real and imaginary 

parts respectively, the frequency transfer function becomes: 

B-(e-j') 1 
jlm)] [(Re+ jlm)(Re 

B-(I) B-(l) B (1) 

Re2 + Im2 

[B-(l)]2 

= 
11 

B-(l) 
112 (2-8) 

As shown in Equation 2-8, the phase angle of the frequency transfer function is zero. 

Therefore, zero phase error tracking is provided by the ZPETC method. 

The major drawback of the ZPETC method is that it requires precise knowledge of the 

dynamic behaviour of the axial drive system. However, there might be a difference 

between the real drive system and the model used in the computer (ie, modeling error), 

and therefore an additional error source is introduced to the controlled system. Another 

drawback is that the inverse transfer function in the feedforward controller will cause 
large control signals. These signals, in practice, will be limited by the permissible 
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maximum output of the digital-to-analog converter and the maximum voltage of the 

motor, and therefore the performance of the controlled system is often degraded. 

2.4 Other Algorithms 

In addition to the two basic classes discussed above, there are other control algorithms 

that are discussed in this section. 

2.4.1 Robust Control 

The MID design method described previously is not very effective when the transfer 

function of the motor and the load includes pairs of complex poles with low damping, 

like the ones caused by torsional resonances. In that case, high gain causes instability 

while low gain produces a slow response. Robust control is a special design method 

aimed at achieving uniform system response in spite of such parameter changes[2]. 

Robust control addresses this situation by providing a compensation filter of a more 

general form. The compensation may be, for example, a notch filter, consisting of 

complex zeros which effectively cancel the complex poles of the motor and load, 

allowing higher gains in the system. 

Robust control is often implemented by several control loops, where the inner loop is 

aimed at modifying the behaviour of the system and the outer loop controls the position 

[391. 

2.4.2 Optimal Control 

The optimal control algorithm can be applied as an efficient control law for 

servo-controHers[2 11. The principle of optimal control is maximisation of a 

performance index subject to the system differential equations. Optimal control has a 

closed-form solution for a linear system and a quadratic performance index. In motion 

control applications if the performance index includes the axial position effors (and their 

incremental changes), the servo-controller becomes a feedback controller[l]. If the 

synchronisation error is used in the performance index, the servo controller then 

becomes an optimal cross-coupling controller[211. 
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2.43 Predictive Control 

The basic idea of Generalized Predictive Control (GPQ proposed by Boucher [111 is 

to make the plant's predicted output coincide with a setpoint or desired known trajectory. 

Three stages are performed to achieve this goal: (1) first the plant output is predicted; 
(2) then the future control values which minimize the errors between the predicted 

outputs and the setpoint values are calculated; and (3) finally the first optimal control 

value is applied. The process is iterative and normally repeated every sampling period. 

The GPC method, however, can be regarded as a particular case of optimal control, in 

which the performance index includes the errors between the predicted outputs and the 

desired values[11]. 

2.4.4 Adaptive Control 

Adaptive control adjusts the compensation filter in real time in order to correct for 

parameter variations. Two methods of adaptive control are the model reference adaptive 

control (MRAQ and the self-tuning regulator (STR) shown in the block diagrams of 
Figures 2.4 and 2.5[2]. 

Desired 
System 
Model 

R 

Adaptation 
Algorithm 

Controller Amplifier 
& Motor 

Y 

E+ 

Position 
Sensor 

Figure 2.4 Model Reference Adaptive Control 
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R 

Control 
Parameter 

ControHer 

Figure 2.5 Self-Tuning Regulator 

Parameter 
Identification 

Amplifier Position 
& Motor 

H 

Sensor 

The STR divides the adaptive control into two tasks, parameter identification and 

control modification. The identification algorithm estimates system parameters such as 

load inertia, friction, etc, in real time. 7be estimated results are used to modify the 

compensation parameters including the system gain, zero, etc. 

The MRAC aims is to produce the same overall transfer function regardless of the 

parameter variations. To achieve this, the desired servo model, H(s), is specified and 

its desired output Y is computed. The controller then compares the actual output, C, with 
Y to determine the error E. On the basis of the information available, the controller 

modifies the compensation so the estimation error E decreases, zero estimation error 

implies that the system response follows the desired model perfectly. 

Although the two design approaches produces similar results, the STR has several 

advantages over the MRAC, when applied to motion control systems. First, the 

adaptation algorithm of the MRAC is a nonlinear feedback system that is quite difficult 

to design. In contrast, the SIR divides the design into two smaller tasks of identification 

and modification that can be performed more readily[2]. 

The MRAC requirement to keep the system transfer function the same for aH parameter 

values is quite restrictive[2]. It is unreasonable and ill-advised to produce the sarne 
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transfer functionwhen the load inertiavaries over a 100: 1 range. The STR provides such 

flexibility, and therefore, may be viewed as more general than the MRAC. 

The feedforward controller is very sensitive to modeling errors and the variations in 

system parameters, and therefore, an adaptive algorithm is required if the feedforward 

control approach is applied to more complex motion control systems [29] [301. 

An adaptive control algorithm can be applied to a mismatched systems[35]. This 

adaptive algorithm makes all the individual axial control loops match artificially, and 

thereby eliminates the synchronisation error caused by mismatched loop parameters. 

In addition, the adaptive control algorithm can also be used as an assistant or parallel 

algorithm for the cross-coupling controller[ 14]. 

2.4.5 Sliding Mode or Variable Structure Control 

Basically, sliding mode control is an adaptive model-referencing control (MRAQ, but 

is easier to implement by microcomputer than the conventional MRAC system. The 

sliding mode control is ideally suitable for position servo, such as robot and machine tool 

drives, where problems related to mechanical inertia variation and load disturbance ef- 

fect can be eliminated. The control can be extended to multiple drives where close speed 

or position tracking is desired[37]. In sliding mode control, the "reference model" or 

a predefined trajectory in the phase plane is stored in microcomputer, and the drive sys- 

tem is forced to follow or "slide" along the trajectory by a switching control algorithm, 

irrespective of plant parameter variation and load torque disturbance. The microcom- 

puter detects the deviation of the actual trajectory from the reference trajectory and 

correspondingly changes the switching topology to restore tracking. 

The disadvantage of this method is the drastic changes of the manipulated variable. 
However, this can be avoided by a small modification: a boundary layer is introduced 

near the switching line which smooths out the control behaviour and ensures the states 

remaining within the layer. Given that the upper bounds of the model uncertainties etc. 

are known, stability and high performance of the controlled system are guaranteed[ 101. 



Appraisal ofServo-Systemsfor Motion Control 26 

2.4.6 Repetitive Control 

In addition to the general servo-controllers, a special purpose controller entitled the 
69 .. )P 

repetitive controller may be considered to handle the repetitive tasks with the presence 

of periodic references and periodic disturbance inputs. A repetitive controHer was 

proposed and applied on a disk-drive system and a tumingmachine[131[29][32]. When 

utilizing a repetitive controller, for example, the axial errors measured when cutting a 

part are used to compensate the errors in the next part. This algorithm must be applied 

together with a conventional P-controfler[131 or other servo-control algorithms (eg, 

adaptive ZPETC in[291). It cannot be applied independently, and can only be applied 
to repetitive tasks. 

2.5 Conclusions 

According to the previous analysis, a comparison of the two basic servo-controllers is 

surmised in Table 2.1. 

Table 2.1 The Evaluation of Servo-controllers[341 

P control PID control Feedforward 
(with P-controllers) 

Tracking 
nonlinear Fair Fair (low speed) Excellent (1) 
trajectories Poor (high speed) Fair (2) 
Axis Excellent (1) 
mismatch Fair Good Fair (2) 
Disturbances Poor Good Poor 

Special Overshoot Performance is sensi- 
problems at stopping tive to modeling error 

and saturation 

Notes: 

1. Assume no difference between theoretical model and real system. 

2. Assume 2% difference between theoretical model and real system. 

Grading: Exceflent, Good, Fair, Poor. 
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Based on the comparison, the selection of servo-controllers for different motion control 

applications suggests in the following: 

(1) The P controller works well only with low friction, small loading, small mismatch 
in axial parameters, and low speed operation. 

(2) The PID controller has a good disturbance rejection ability and is more robust to 

mismatched axial parameters. Its drawbacks are poor tracking ability for nonlinear 
trajectory, and in addition, it may result in overshoot. Therefore, the PII) controller 
is preferred on low-speed machines. Usually, a deceleration is needed at the end of 

every trajectory segment in order to avoid the problem of overshoot. This increases 

the total motion time. 

(3) The ZPETC is preferred for high-speed motion control when the system model 
is well known and no varying or nonlinear characteristics exist. High disturbance 

loads are not allowed with these methods unless the feedback loop already provides 

an algorithm for good disturbance rejection. 

In addition to the basic control approaches, some other modified methods may be also 
considered as algorithms for servo-controllers. They are summarised below: 

(1) An adaptive algorithm can be added to a ZPETC method to cope with the 

modelling eff ors and parameter variation. The adaptive algorithm may be limited by 

the richness of the input signals. Therefore, a careful design of the adaptive algorithm 
is required if the closed-loop system includes higher order structures. 

(2) A combined algorithm of the PID control and ZPETC may have the ability to reject 

all error sources (see Table 2.1), because of the ZPETC ability in trajectory tracking 

and the PID control in disturbance rejection. 

(3) A Kalman filter is an optimal stochastic linear adaptive controller. However it 

requires an explicit mathematical model of how control outputs depend on control 
inputs [3 6]. If the mathematical model can be developed, the Kalman filter can provide 

excellent performance for motion control. 



Appraisal ofServo-Systemsfor Motion Control 28 

Chapter Two: References 

[1] Astorm, K. J. and Wittenmark, B., "Adaptive Control", Addison-Wesley Pub- 
lishing Company, 1989. 

[21 Tal, J., "Motion Control Applications", 1989. 
[3] Jenkinson, M., "The Synchronization of Actuators Using Scalar Field Control", 

PhD Thesis, University of Bristol, 1992. 
[41 Dorf, R. C., "Modem Control System", Fifth Edition, Addison-Wesley, 1989. 

[51 Kusiak, A., "Intelligent Manufacturing Systems", Prentice Hall, 1990. 
[6] Dunne, E. J., "Look to Motion Control for Manufacturing Solutions", Design 

News /8-5-91/, pp45-48. 
[7] Phillips, C. L. and Harbor, R. D., "Feedback Control Systems", Prentice-Hall 

International Editions, 1991. 
[81 Olsson, G. and Piani, G., "Computer Systems for Automation and Control", 

Prentice Hall, 1992. 
[91 Bollinger, J. G. and Duffle, N. A., "Computer Control of Machines and Pro- 

cesses", Addison-Wesley Publishing Company, 1988. 
[101 Bose, B. K., "Sliding mode control of induction motor". IEEFJIAS Annu. 

Meet. Conf. Rec., 1985, pp479-486. 
[111 Boucher, P., Dumur, D. and Rahmani, K., "Generalized Predictive Cascade 

Control (GPCQ for Machine Tool Drives", Annals of the CIRP, Vol 39/1/90, 
August, pp357-360. 

[121 Chen, J. S., "Real-Tune Compensation for Time-Variant Volumetric Error on a 
Machining Centre"'. PhD Thesis, The University of Michigan, Ann Arbor 
Michigan, 1991. 

[131 Chew, K. K. and Ton-dzuka, M., "Steady-State and Stochastic Performance of 
a Modified Discrete-Time Prototype Repetitive Controller", ASME Transac- 
tion, Journal of Dynamic Systems, Measurement and Control, Vol. 112, March 
1990, pp35-41. 

[14] Chuang, H. Y. and Liu, C. H., "Cross-Coupled Adaptive Feedrate Control for 
Multiaxis Machine Tools", ASME Transaction, Journal of Dynamic Systems, 
Measurement and Control, Vol. 113, September 1991, pp451-457. 

[15] Haack, B. and Tomizuka, M., "The Effect of Adding Zeros to Feedforward 
Controllers", ASME Transaction, Journal of Dynamic Systems, Measurement 
and Control, Vol. 113, March 1991, pp6-10. 

[16] Janeczko, J., "Machine Tool Thermal Distortion Compensation", 4th Biennial 
International Machine Tool Technology conference, September 1988. 

[17] Jouaneh, M., Wang, Z. and Dornfield, D., "TYacking of Sharp Corners Using A 
Robot and A Table Manipulator", University of California, Berkely, Beitrag fur 
das USA-Japan Symposium on flexible Automation, July 1988. 

[181 Koren, Y., "Design of Computer Control for Manufacturing Systems", ASME 
Transaction, Journal of Engineering for Industry, Vol. 101, No. 3, August 1979, 
pp326-332. 

[19] Koren, Y., "Computer Control of Manufacturing systems", McGraw-Hill, New 
York, 1983. 



Appraisal ofServo-Systemsfor Motion Control 29 

[20] Koren, Y, "Robotics for Engineers", McGraw-Hill, New York, 1985. 

[21] Kulkarni, P, K. and Srinivasan, K., "Optimal Contouring Control of Multi- 
Axis Drive Servomechanisms", ASME Transaction, Journal of Engineering for 
Industry, Vol. 111, May 1989, pp140-148. 

[22] Makino, H. and Ohde, T., "Motion Control of the Direct Drive Actuator", An- 
nals of the CIRP, Vol. 40/l/1991, pp375-378. 

[23] Markiewicz, B. R., "Analysis of Computer Torque Drive Method and Compari- 
son with Conventional Position Servo for a Computer-Controlled Manipu- 
lator", NASA Tech, 1973, Memo pp33-601, J. P. L. 

[241 Ni, J., Zhang, B. L. and Wu, S. M., "On-Line Identification of Volumetric Er- 
rors of Multi-Axis Machines", Manufacturing International 1988, Atlanta, 
Georgia, 1988, pp77-83. 

[251 Ono, Y and Kuwahara, H., "The New Design of Motor, Position Sensor and 
Position Control System for Direct Drive Manipulators", ASME Proceedings, 
Robotics: Theory and Applications, Anaheim, California, December 1986, 
ppl23-128. 

[261 Paul, R. P., "Robot Manipulators: Mathematics, Programming, and Control", 
MIT press, Cambridge, Mass, 198 1. 

[271 Pritschow, G. and Philipp, W., "Direct Drives for High-Dynamic Machine Tool 
Axes", Annals of the CIRP, Vol. 39/1/1990, pp413-416. 

[28] Schepper, F and Yamazaki, K., "Application of ASIC-Technology to Mecha- 
tronics Control: Development of the Flexible Servo Peripheral Chip", Annal of 
the CIRP, Vol. 37/1/1988, pp389-392. 

[29] Taso, T. C and Ton-dzuka, M., "Adaptive and Repetitive Control Algorithms for 
Noncircular Machining", Proceedings of the 1988 American Control Confer- 
ence, June 1988, ppll5-120. 

[301 Tomizuka, M., "Zero Phase Error Tracking Algorithm for Digital Control", 
ASME Transactions, Journal of Dynamic Systems, Measurement, and Control, 
Vol. 109, March 1990, ppl-8. 

[311 Torfs, D., Swevers, J. and De Schutter, J., "Quasi-Perfect Tracking Control of 
Non-Minimal Phase Systems", Proceedings of the 30th IEEE Conference on 
Decision and Control, Brighton, UK, 1991. 

[321 Tung, E., Anwar, G. and Tomizuka, M., ", Low Velocity Friction Compensation 
and Feedforward Solution Based on Repetitive Control", Proceedings of the 
1991 American Control Conference, June 1991, pp2615-2620. 

[331 Yamazaki, K., "Development of Flexible Actuator Controller for Advanced 
Machine Tool and Robot Control", Annals of the CIRP, Vol. 36/l/1987/, 
pp285-288. 

[34] Lo, C. C. "Cross-Coupling Control of Multi-axis Manufacturing Systems", 
PhD Thesis, The University of Michigan, 1992. 

[35] 
4, 

Park, H. A. p " Adaptive Matching and Preview Controllers for Feed Drive Sys- 
tems", ASME Transaction, Journal of Dynamic Systems, Measurement and 
Control, Vol. 113, June 1991, pp316-320. 

[36] Kosko, B., "Neural Networks and Fuzzy Systems", Prentice-Hall Inc, 1992. 



Appraisal ofServo-Systemsfor Motion Control 30 

[371 Benito, F. R. and Hedrick, J. K., "Control of Multivariable Non-linear Systems 
by the sliding Mode", Int, J. Control, 1987, Vol. 46, No. 3, pplO19-1040. 

[381 Palm, R., "Sliding Mode Fuzzy Control", IEEE Conference on Fuzzy Systems, 
1992, San Diego, pp519-526. 

[39] Munro, N., et al, "Robust control system analysis and synthesis", IEE Intema- 
tional Conference on Control'94, March 1994, Vol. 1, pp583-587. 



Conventional Multi-Axis Servo-Drive System Control Structures and 
Software Mechanismsfor Achieving Coordinated and Synchronised Motion 31 

CHAPTER THREE 

Conventional Multi-Axis Servo-Drive System 
Control Structures and Software Mechanisms for 
Achieving Coordinated and Synchronised Motion 

3.1 Introduction 

Motion control problems encountered in modem manufacturing and automation are 

often multidimensional: that is, they involve more than one axis. The previous chapter 

evaluates the servo-controllers which form the foundation of multi-axis control. The 

coordinated and synchronised control of the multiple axes is another challenging 

problem, since the performance of a single axis control system implemented with a 

conventional controller will be influenced and possibly degraded by long system-time 

delay, dead zone and/or saturation of actuator mechanisms, model and/or parameter 

uncertainties, process noise and/or external disturbances. When such a system is 

operating, ineffective coordination may produce unqualified products, or damage to the 

products and/or the machine. With the progress in motion control technology, the 

control structures used in the multi-axis system have been continuously modifying and 

more comprehensive software mechanisms have been developed. This chapter gives a 

comprehensive review of these methods. 

3.1.1 Master-Slave Approach 

Multi-axis motion synchronisation can be achieved by either the master-slave approach 

or the equal-sWus approach. 

The master-slave technique is designed to reduce the synchronisation error under the 

assumption that slaves can follow the master instantly[6][17]. Figure 3.1 shows that the 

system can attain very good synchronisation performance despite a variable following 

error of the master. However, in a discrete-time implementation, there is an inherent 

time delay introduced by using the present output of the master as the future reference 

to the slaves. Figure 3.2 shows the time delay effect. When the slave has been disturbed 

and the master is running rapidly, this time delay will produce large synchronisation 
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errors[20]. In addition, if the slaves have a slow response (or say, big dynarnic response 

lag), then the synchronisation performance of the master-slave will be worse. 

3.1.2 Equal Status Approach 

In the equal-status approach, the synchronising controller treats individual axes in 

similar manner without favouring one axis over another[7][13][22]. When the 

dynamics are significantly different among multiple axes, the equal-status approach 

may not be the best because the synchronisation speed of the overall system is set by the 

slowest axis. In this case, it would be more sensible to take the master-slave approach. 
The slow axis is under conventional servo control and acts as the master for the faster 

axes[7]. 

3.2 Independent Drives Control 

Independent drives control is the simplest multi-axis control structure, because it only 

needs to simply combine all the servo-loops. As can be seen in Figure 3.3, a multi-axis 

servo control system can be configured around a single microprocessor that generates 

the motion commands for all the axes as well as tend to the 1/0, communications and 

operator interface. This single microprocessor strategy is somewhat limited when 

managing high speed applications because the microprocessor has to handle a wide 

variety of tasks at simultaneously. 

For example, if two of the motors are moving, the microprocessor is generating two 

motion commands. While generating these commands, a host computer may send over 

a request via the communications port and the operator may be requesting a change to 

start up the third motor. It is easy to see that as the number of requested activities goes 

up, the microprocessor has less time to spend with each individual task. This type of 

microprocessor, time-mana&Sment bottle-neck is one of the most challenging 

engineering software problems for the motion control design engineer. 

The block diagram in Figure 3.4 is expanded again to reconfigure the pieces of a 
multi-axis motion control system. Here a master processor has been added and each 
motion control axis has its own microprocessor for command generation. 
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This configuration allows higher speed and increasingly complex applications to be 

handled without running into the time-management bottle-neck. The master processor 

tends to the 1/0, communications and operator interface. The difficult task of command 

generation has been delegated to the individual axis microprocessors. This 

configuration is better suited to handle multiple axes. 

With this open-loop structure, all axes in the system receive their demand position from 

some high level entity as shown in Figure 3.3, or generate it on their own processors. 
None of the axis positions are used to generate the demand position of another axis. The 

position relationship is defined by the user, according to which the demanded position 
for each axis is generated. When a move command is signalled by a supervisory entity, 
each axis controller runs independently. The motion synchronisation is attained by a 
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time switch, at each time tick all axes send out their reference conunands. Malfunction 

of one axis will not directly affect the behaviour of other axes. The resulting motion 

synchronisation. among the axes is determined by the performance of individual 

servo-drives as shown in Figure 3.5. 

3.3 Encoder Tracking Technique 

E ncoder tracking is a technique that monitors a reference motor with an encoder and 

controls a secondary motor[171. The method provides for programmable 

motor-to-encoder ratios that determine relative speed between the axes. A dynamic 

change in ratio produces acceleration or deceleration. Applications for encoder tracking 
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include electronic gearboxes, conveyor belts, electronic cams and web control 

processes[6][18]. In principle, the encoder tracking method is a type of master-slave 

approach. 

Many control applications require the coordination or synchronisation of two or more 

axes of motion in a specific pattern. The most familiar example is found in X-Y plotters, 
but simultaneous motion in two axes need not always describe a plane figure. Control 

of a constant speed ratio between two pumps or the motion of a welding head with 

respect to a moving conveyor belt are other examples. However, these applications all 

require that the motion profile of a second axis be based on the position, speed, or 

acceleration of a reference axis. A basic indexer or follower is directly coupled to the 

drive shaft of the primary motion system with an incremental encoder. The secondary 

servomotor either follows the primary position and velocity exactly or it follows a 

complex profile constructed by programming several move segments end to end. Figure 

3.6 gives a basic encoder tracking system configuration[6]. 

Before the introduction of tightly coupled indexers, primary and secondary motion 

X=KY 

jm k+2 

profiles were specified individually, with some form of master clock being used to 
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ostensibly synchronise the activity[17]. As a result, small deviations or errors from the 

ideal profile described for either axis often resulted in a gradual drift between primary 

and secondary motion as shown in Figure 3.5. Over a period of time, this accumulated 

error could cause process malfunction, or worse still, physical damage to the machinery 

that was being controlled. And the problem obviously becomes more acute at higher 

operating speeds, where even a small error can equate to a large displacement. In 

programming an indexer, the absolute motion profile of the secondary axis is not 

specified. Instead, the indexer is programmed in terms of ratio, offset, or more complex 

relationships between the measured (reference) motion and the controlled (secondary 

axis) motion. This eliminates the need for precise absolute motion specifications for 

both the reference and secondary motion profiles[6]. 

Choosing an encoder is very important in the encoder tracking method. The precision 

required in the position of primary motion determines the minimum encoder resolution. 
For example, if the motion of a primary system must be measured to 0.0254 mm 

accuracy, and the encoder rotates one turn/0.106 m, a post-quadrature resolution of 
4,000 steps (or 1,000 lines) per revolution is needed. The choice of encoder resolution 

affects the following-motion smoothness. In general, the higher the encoder resolution, 
the smoother and more accurate the secondary motion. 

A very short sample time for secondary motion is also required for this method. Some 

control systems can provide sample rates at 2 kHz, allowing the torque demand for the 

secondary motor to be recalculated every 500 [Ls or less[17]. This fast servo loop update 
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rate minimises, following errors by enabling the secondary motor to react very quickly 

to any change in primary axis position or velocity, which is especially important for 

relatively short moves, and also significantly reduces jitter when the motors are 

stationary. 

Clearly the following errors of the slaves (following axes) must be significantly better 

than those of the master (primary axis) and with no disturbances in the slave loops in 

order to make this method worthwhile[19] (as also shown in Figure 3.1). In addition, 
in a discrete-time implementation, there is an inherent time delay introduced when using 

the present output of the master as the future reference to the slaves. This is illustrated 

in Figure 3.2. Furthermore the encoder-tracking method also introduces the dynamics 

of the primary axis into the following axes. This dynamic influence will affect the 

performance of following axes. In such cases, sending the demand position of the master 
(primary axis), instead of the real position, to the slaves (following axes) can give better 

results[ 141. If implemented in this way, the encoder-tracking method is very similar to 

the previous independent drives control. 

3.4 Dual-Loop Control Technique 

Dual-Loop control is a technique which includes two control loops as shown in Figure 

3.7. The inner loop is a normal control loop; the outer loop is condition loop which is 

used for synchronising the motions. The condition check sensor may be the motor 

sensor, or may be a remote sensor. Where an auxiliary sensor is used, data can be used 

as supplementary feedback to adjust the motor speed. 

Dual-loop design was firstly introduced to solve the problem of non-ideal mechanical 

coupling through the use of two sensors, one on each side of the coupler. Nowadays, 

this method is not only used in backlash compensation and slip couplers, it is also applied 
to feed systems for packaging materials, high performance magnetic tape drives, web 
tension control and more generally, in situations where drives have to be linked in a way 

which cannot be easily determined analytically[ 17][241. 

However, designing a dual-loop control system is not an easy task, since control actions 
among the axes need to be well coordinated to avoid control action conflicts leading to 

some axis saturation, degradation of system performance or damage to the product or 
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machine[l][17]. Improper design may also introduce resonance modes to the system 

and limits its gain and bandwidth when using it for web synchronisation, if the relatively 

flexible material is coupled by a sensor[ 1][171. 

In tension control applications, conventionally the PID control law has been employed 

to maintain even tension[ 141, but the PID method presents the following problems [231. 

First, the running speed cannot be very fast, or the tension becomes unstable. Moreover, 

fine adjustments according to the thickness or the material of the film used must be 

performed by an experienced worker familiar with the traits of the machine. This 

situation can easily be corrected and stabilized by applying fuzzy control. 

When fuzzy control is applied to maintain consistent tension in the process of 
discharging and rolling film, a fuzzy inference adjusts the motors on the discharge and 

roll sides to the proper speed based on its conditions. The conditions of the fuzzy 

inference are rotation speed variations and their differentials, tensions and their 

differentials. A set of inference rule is used to calculate the outputs (motor speeds) of 

the fuzzy inference. Table 3.1 shows the original problems and the improved results and 

effects achieved by applying fuzzy control[23]. 
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Table 3.1 The Original Tension Control Problems And The 

Improvements Achieved By Employing Fuzzy Operation 

Problem Improved Result Effect 
Tension is not stable when Tension is stable running Uniform quality achieved. 
the film is running at high at any speed. 
speed. 
Adjustments made by ex- No fine adjustments are Improved productivity. 
perienced workers are required, system can be 
necessary to maintain con- operated by anyone. 
sistent tension. 
Setting up the operation Setup is quick because Time and labour saved. 
takes a long time. fine adjustment is unnec- 

essary. 

For some applications, conventional dual-loop control would not work. For example, 

moving advertisement hoardings, where the pictures are unwound from a roll on one side 

and fed to a roll on the other side. It becomes difficult to engineer when they carry a 

large number of advertisements [24]. 

Where many different images have to be shown, the rolls will differ considerably in di- 

ameter as they unroll and roll up. The material on which the pictures are mounted is also 

likely to stretch, and change in length, according to temperature and humidity. In this 

case, a master and intelligent slave method has to be used[241. Figure 3.8 describes a 

system which communicates with the roller drives to provide variable feed rate. 

Metallised 
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I 
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Figure 3.8 Roller Drive System 
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The master drive (controller 1) powers the take up roller which regulates belt speed and 

position. Correct positioning is monitored by means of an inductive proximity sensor 

detecting metallised marks on the side of the belt, and this information is used to correct 

the position control loop as the system runs. The feed roller drive (controller 2) is used 

to regulate belt tension, to avoid wrinkles or tearing, and works by monitoring motor 

current and using this information to determine the appropriate torque. Both axes con- 

stantly exchange digital information as they are working. 

3.5 Cross-Coupling Technique 

The cross-coupling control architecture was first proposed by Koren [251. Most of the 

work in cross coupling control concentrates on machine tool control[261. Some work 

in cross coupling control can be found in the field of robotics, particularly in the domain 

of mobile robot control[27]. In machine tool servo control, the main idea of the 

cross-coupling control is to build in real time a contour error model based on the 

feedback information from all the axes as well as the interpolator, to find an optimal 

compensation law, and then to feed correction signals to the individual axes, whereby 

an error in any axis affects the control loops of all axes. The cross-coupling controllers 

consist of two parts: (1) the contour-error model, and (2) a control law. Consequently, 

the differences between the various cross-coupling control systems that were proposed 

by many other researchers who followed the original work are in the contour error model 

or in the control law[28] [29] [30] [31][32] [33] [34], but all of them are based on the same 

original concept in [25]. The block diagram of the cross-coupled system is shown as 

Figure 3.9. 

The type of cross coupling tends to vary dependant upon application. Conventional 

cross coupling algorithms can be developed by formulating the transfer function of the 

coupled system. However, in practice it is not always easy to describe the coupling by 

means of a discrete transfer function so as to realise ideal compensation. Thus, cross- 

coupling is normally obtained by the addition of a proportional-integral-derivative 
(P]ID) algorithm or a variation thereof[26]. However, such an approach is not ideal when 

subject to a variable control environment and system nonlinearities. 
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Cross-coupling methods consider the whole system as a single unit, rather than in terms 

of its individual loops. The control structure involves cross coupling between the axes. 

For a two axes system, the coupling controller responds to the synchronization error, ie, 

the difference between the two motion errors, to generate a coordination signal for the 

two motion control axes. The cross-coupled structure is suitable for systems where the 

time response of each individual controlled variable takes on a smaller role relative to 

the intervariable dependence y= f(x). 

The cross-coupling controller has to combine other control algorithms which control the 

individual axes. These control algorithms for each axes could be normal PID con- 

trollers, or adaptive feed-forward controBers[36]. 'Me cross-coupling technique is an 
"equal-status" control approach. It couples axes in a more symmetrical manner than 

master-slave synchronisation, and provides useful insight into the more general coupl- 
ing strategy that we seek[131. 

3.6 MIMO Techniques 

The synchronising control problem involves a multiple number of motion control axes. 
Therefore, any multivariable control technique is naturally a good candidate to provide 
the basis for synchronised control. Synchronising control is a special type of MIMO 

(Multiple Input, Multiple Output) control problems. A fundamental question from the 

viewpoint of control system design is then how a multivariable control theory can be 
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customized or extended to achieve the objective of synchronisation. The use of robust 

control and linear quadratic (LQ) optimal control in synchronising control from the 
6'equal-status" viewpoint was explored by some researchers [7]. 

In the robust control approach, a system is considered as consisting of several 
independent single-input, single-output (SISO) subsystems with relative degree one. 
To minimize the difference between these outputs, two synchronising control methods 

are developed. In the first method, the lagging axis is accelerated to "catch" the leading 

axis while in the second method, the leading axis is slowed down. To implement the two 

methods, some new switching functions which depend on the synchronisation error are 
introduced into the control law. When tracking performance of each axis is not as 
important as synchronisation, it is reasonable to take the latter method. 

The attractive point in utilizing the LQ framework for synchronising control is the rich 
body of knowledge about its theory. A term expressing the synchronising objective can 
be explicitly introduced in the performance index. Synchronising performance can be 

improved by increasing the weighting factor on this term. However, NUMO systems are 

not always favoured because of their increased complexity. 

3.7 System Interconnection Technique 

In some industrial applications, eg steel rolling mills, paper plants, and hydraulic press 

systems[38], a number of identical motors are employed with identical inputs, and 
identical outputs are expected. The problem of output equalization is also relevant if the 
individual systems (motors) are not at all identical. For example, due to different loading 

conditions, some parameters in principally identical motors may vary, eg segmented 

conveyor belts with different loads [39]. Sometimes among a number of non-identical 

systems there is one 'master', and the outputs of the other 'slave' should be identical to 

the output of the master during a transient time[401. 

The system interconnection method introduces a special control structure for the MIMO 

motion control system with the same inputs and outputs requirements [37]. Figure 3.10 
describes an interconnection strategy with built-in adaptive controllers, which achieves 
synchronisation, of the scalar linear MIMO systems. The closed-loop network forces 

all outputs to follow the same signal asymptotically while maintaining the open-loop 
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Figure 3.10 An Inter-connection Structure for Multiple Axes. 
Source: Schmid. 

characteristics. In the design of the output feedback controllers, no knowledge of system 

parameters are assumed, but each axis system must have the same poles and be 

high-gain-stable. 

3.8 Scalar Field Control Technique 

Scalar field control is another kind of axis coupling strategy created through a more 

physical appreciation of requirements [4] [13]. A physical surface (D can provide a 

potential energy field which acts on a ball. Due to the influence of gravity, the ball seeks 

out an equilibrium position on a path. The forces on the ball acting to take it to the 

required path may be resolved in the coordinate axis directions. These resolved forces 

are related to the slopes of the surface resolved in these directions. Mathematically, the 

respective resolved slopes may be expressed using partial derivatives. It is possible to 

use a similar idea to make a position control system achieve a desired position 

relationship. The partial derivative expressions may then be used as a form of error upon 

which the controllers act. Figure 3.11 shows the approach, a 2-axis mechanism. The 

error signal for axis 1 now becomes -a(D/ayl , and for axis 2 becomes 40142 - 



Conventional Multi-Axis Servo-Drive System Control Structures and 
Software Mechanismsfor Achieving Coordinated and Synchronised Motion 45 

ao ý, j controller plant Y1 
ayi 

1 
-1 1111 

ao e, controller plant 
Y2 

- 5Y2 

122 

Figure3.11 A 2-axis System with a Scalar Field Control Mechanism. 

Source: Jenkinson. 

The mechanism of Figure 3.11 lacks the reference signals of the normal software 

mechanisms. This is because (D only tends to propel the output position statel of the 

system towards the mechanism path2, in order to achieve the desired position 

relationship. 

A scalar field (D could represent a potential energy field, the vector field F3 ( F=grad (D) 

may be regarded as a conservative force field. The partial derivative terms proposed for 

this controller are the components of grad (D as, for example, in the case of a field (D(x, y), 

grad (D may be expressed as 

grad O(x, y) ao a4p 
7X + -7v y 

I- In a N-dimension coordinate system consisted by axis position output yi (i= 1, ... n), the point p(y 

I,... , yn ) represents the output position state of the system. 

2. The position relationship of a mechanism can be conveniently represented by a mechanism 

path[131. 

3. At a point in space within the vector field F. there exists a vector whose magnitude is the gradient 

of 0 (the scalar field). and which points in the directica in which the maximum change of the derivative 

of 4) occurs [101. 
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the proposed controller thus behaves rather like the force field F; the controller tends to 

propel the output position state of the system towards the desired mechanism path, which 
is arranged to coincide with the set of global nadirs of the surface, or scalar field. The 

aim of the mechanism controlled by the method is to reduce relative following-errors; 

in all conditions - whether reference or disturbance related. This technique introduces 

a form of coupling between the ( physically uncoupled ) servomotors which closely 

emulates the type of coupling found in a real mechanism. Building a precise scalar field 

in real-time is crucial to the synchronisation accuracy, particularly when nonlinearities 

exist in the system. It does, however, couple axes with reference to a logical analogy, 

and provides a very useful insight into the multi-axis synchronisation issues. 

3.9 Conclusions 

Industrial automation spans a huge spectrum of complexity in terms of both physical 

structure of machines and the tasks which they perform. A study of current control 

methodologies highlights that a single control method can not satisfactorily solve all the 

multi-axis control issues. A combination of these control methods is necessary to attain 

tight coordination and synchronisation control. The basic nature of motion 

synchronisation control is through coupling or interconnecting the individual axes. The 

software mechanisms or algorithms tend to require more intenigence[41] in order to 

solve the nonlinearities and uncertainness of the controlled processes, and the different 

characteristic of the individual servo drive loops. In the next chapter, a new control 

strategy for multi-axis motion control and synchronisation is proposed to tackle these 

problems. 



Conventional Multi-Axis Servo-Drive System Control Structures and 
Software Mechanismsfor Achieving Coordinated and Synchronised Motion 47 

Chapter Three: References 

[1] Baron, W. and Tal, J., "Motion Synchronisation with Intelligent Controllers", 
Motor-Con. October 1986 Proceedings, pp351-359. 

[21 Bullock, T. B. v "A Programmable Industrial Computer Coordinates Axis Mo- 
tions. " Official Proc of the First International IMS 1985 Conf (Intelligent Manuf 
Syst) 1985, pp 204-211. 

[3] Crane, J., "Electronic Gearing for Synchronised Motion", Drives & Controls, 
July/August 1993, pp30-31. 

[4] Danbury, R., Jenkinson, M., "Synchronised servornechanisms - the scalar-field 
approach", IEE Proc. -Control Theory Appl., Vol. 141, No. 4, July 1994, 
pp261-273. 

[51 "Software Cam Controls 40 Axes Simultaneously", Drives and Controls Maga- 
zine, November 1990, p 13 1. 

[6] Rathkey, J., "How to synchronize servomotors", Machine Design February 
1989, pp 109-111. 

[7] Hu, J., Chiu, T. and Tomizuka, M., "On Motion Synchronization of Two Axes 
Systems", Monitoring and Control for Manufacturing Processes, ASME Conf, 
1990, pp267-282. 

[81 Clarkson, J. C., "New Strategy Improves Multi-Motor Control", Drives and 
Controls Magazine, December 1989/January 1990. 

[9] Seaward, D. R., Johnson, R. C., "Technology transfer from academia to industry 
of a phase synchronised drives project", IMechE conference on High Speed Ma- 
chinery, pp 11-18, November 1988. 

[10] Jeffrey, A., "Mathematics for Engineers and Scientists", 4th edition, Van Nos- 
trand Reinhold, 1989. 

[111 Koren, Y, "Cross-Coupled Biaxial Computer Control for Manufacturing Sys- 
tem! % Journal of Dynamic Systems,, measurement,, and Control December 1980, 
V 102t pp 265-272. 

[12] Kulkarni, P. K., Srinivasan, K.,, "Cross Coupled Compensators for Contouring 
Control of Multi-axial Machine Tools",, NAMRC XIII Proc,, 1985,, p558-566. 

[131 Jenkinson, M., "The synchronization of Actuators Using Scalar Field Control". 
PhD Thesis, University of Bristol, 1992. 

[141 Digital Motor Control System, Programmer's Reference Manual, Quin Systems 
Ltd, December 1992. 

[15] Meshkat, S., "Parallel DSPs Excel in CAM and Gearing Applications", PCIM, 
February 1994, pp6973. 

[161 "Motion Control Primer", Industrial Indexing Systems Ltd, 1987. 

[171 Scott, R., "Axis Synchronization by Encoder Following", Drives and Controls 
Magazine, pp 70-72, September, 1991. 

[181 Manfred Binder, "Electronic Couplings-Replacement of Mechanical Gears? ", 
PCIM Europe, Marcb/April 1992, pp6O-63. 

[19] Seaward, D. R., "Continuous Phase Synchronised Drives (For a Rod-making 
Machine)", PhD Thesis, University of Aston in Birmingham, August 1989. 



Conventional Multi-Axis Servo-Drive System Control Structures and 
Software MechanLunsfor Achieving Coordinated and Synchronised Motion 48 

[201 Moore, P. R., Chen, C., "The Synchronisation of Servo Drives Using Fuzzy 
Logic Control". IEE Colloquiurn on Configurable Servo Control Systems, 
October 1994, UK, Digest No: 1994/176. 

[21] Tal, J., "Motion Control Applications", 1989. 

[221 Tomizuka, M., Hu, J. S., Chin, T. C., "Synchronization of Two Motion Control 
Axes Under Adaptive Feedforward Control", Transactions of the ASME, Vol 
114, June 1992, pp 196-203. 

[23] "Fuzzy Guide Book", Cat. No. P30-El-2,1992. 
[241 "Communicating roller drivs provide variable feed rate", Eureka on Campus, 

Spring 1992, p9. 
[25] Koren, Y., "Cross-Coupled Biaxial Computer Control for Manufacturing 

System", Journal of Dynamic Systems, measurement, and Control December 
1980, V 102, pp 265-272. 

[261 Lo, C. C. "Cross-Coupling Control of Multi-axis Manufacturing Systems", 
PhD Thesis, The University of Michigan, 1992. 

[271 Feng, F., Koren, Y., and Borenstein, J., "Cross-Coupling Motion Controller for 
Mobile Robots", IEEE Control systems, December 1993, PP 35-43. 

[28] Borenstein, J. and Koren, Y., "Motion Control Analysis of a Mobile Robot", 
ASME Transaction, Journal of Dynamic Systems, Measurement and Control, 
Vol. 109, June 1987, pp73-79. 

[29) Burhoe, J. C., and Nwokah, 0. D., "Multivariable Control of a Biaxial 
Machine Tool", Proceedings of the Symposium on Dynamic Systems, 
Measurement, and Control, ASME Winter Annual Meeting, LSan Francisco, 
California, December 1989, ppl-6. 

[301 Chuang, H. Y. and Liu, C. H., "Cross-Coupled Adaptive Feedrate Control for 
Multiaxis Machine Tools", ASME Transaction, Journal of Dynamic Systems, 
Measurement and Control, Vol. 113, September 1991, pp451-457. 

[311 Koren, Y. and Lo, C. C., "Variable-Gain Cross-Coupling Controller for 
Contouring", Annals of the CIRP, Vol. 104, August 1991,371-374. 

[321 Kulkarni, P. K. and Srinivasan, K., "Cross-Coupled Control of Biaxial Feed 
Drive Servomechanisms", ASME Transactions, Journal of Engineering for In- 
dustry, Vol. 111, May 1989, pp225-232 

[33] Liu, C. H. and Chan, W. M., "Microprocessor-Based Cross-Coupled Biaxial 
Controller for A Two-Axis Positioning System", IEEE Transactions, Journal of 
Industrial Electronics and Control Instrumentation, 1985, pp327-332. 

[341 Masory, 0. and Wang, J., "Improving Contouring System Accuracy by Two- 
stage Actuation", NAMRC Proceedings, 199 1. 

[35] Tomizuka, M., "Design of Digital Tracking Controllers for Manufacturing Ap- 
plications", Manufacturing Review 1989 Vol. 2, Part 2, ppl34-141 

[36] Tornizuka, M., Hu, J. S., Chin, T. C., "Synchronization of Two Motion Control 
Axes Under Adaptive Feedforward Control", Transactions of the ASME, Vol 
114, June 1992, pp 196-203. 

[371 Schmid, S., and Pratzel-Wolters, D., "Synchronization Through System Inter- 
connections", IMA Journal of Mathematical Control & Information (1992) 9, 
pp 161-178. 



Conventional Multi-Axis Servo-Drive System Control Structures and 
Software Mechanismsfor Achieving Coordinated and Synchronised Motion 49 

[38] D'Azzo, J. J. and Houpis, C. H., "Feedback Control system analysis and Syn- 
chesis", New York: McGraw-Hill, 1966. 

[391 Pratzel-Wolters, D. and Schmid, S., "Adaptive Speed Synchronisation of Seg- 
mented Conveyor Belts", Proceedings of the ECMI 1990 Conference, Lahti, 
1991. 

[401 Vakilzadeh, I. and Mansour, M., "Synchronisation of W integral-plus-double 
time constant plants with non-identical gain and time constants", J. Franklin 
Inst. 327,579-593,1990. 

[411 Moore, P. R., and Chen, C., "Fuzzy Logic Coupling and Synchronised Control 
of Multiple Independent Drives", Control Engineering Practice, to be 
published. 



A New Control Strategyfor Multi-Axis Motion Control and Synchronisation 50 

CHAPTER FOUR 

A New Control Strategy for Multi-Axis 
Motion Control and Synchronisation 

4.1 Introduction 

A new control strategy for multi-axis motion synchronisation is proposed in this 

chapter, based on a synthesis of the methods reviewed in Chapter 3. This control strategy- 
has a new control structure and uses a new control law. After analysing the principle of 

the motion synchronisation using servo-drives, a generic 'dual closed-loop' control 

structure is introduced for modem manufacturing machine motion control. The 

requirements for intelligent integration of motion control mechanism in this control 

structure leads to develop a fuzzy logic coupling algorithm to coordinate the 

servo-drives. 

4.2 An Intelligent Integrated Approach to Motion Control and 
Synchronisation 

4.2.1 Limitations of Some Traditional Views When Designing Modern Motion 
Control and Synchronisation Systems 

In principle, the function and performance which a machine can attain is highly 

dependent upon the proper coordination and synchronisation of the axes'motions within 

the machine, regardless of the design philosophy used. However, this principle is 

frequently overlooked by many modern machine system designers, or assume that 

acceptable performance can be automatically obtained as long as each individual axis 
is 'well' designed and the coordination and synchronisation logic of the axes of motion 
is correct. 

Normally, people who work on computer based machine design assume that low level 

motion control system is perfectly designed and the design task of the motion control 

systems is a control engineer's job. The control engineers usually design the motion 

control system without modifying the process, and they try to design the controller be 

as robust and adaptable as possible. 
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Practically, all axes'motions are linked within a manufacturing process. In order to cope 

with environmental variation and system nonlinearities, adaptive control is often 
introduced. The function of adaptive control is to sense manufacturing conditions and 

adjust the motions accordingly. The types of adaptive control and how they are used will 

vary, of course, among machines and control manufacturers, as described in Chapter 2. 

Motion coordination and synchronisation control problems arise because the individual 

motion axes can not easily attain the desired output on time. Control parameter 

adjustment may not result in the desired performance[l], if the controller is incorrectly 

designed. It may be necessary to introduce a new control block within the system that 

will compensate for the original system's limitations. Such as a tracking control which 

utilises desired signals in variety of ways to recover delays caused by dynamics of 

servo-drives[3]. In addition, one or more control functions to deal with synchronisation 

should also be included in the control system design[2]. 

However, some uncertainness of the manufacturing process and inaccuracies of the 

system modelling will reduce the tracking and/or adaptive method's efficiency. Ideal 

tracking requires precise knowledge of the dynamic behaviour of the axial drive system 
[3]. While feedforward, adaptive and learning based control applied to each motion axis 

can enhance the performance of individual axes of a machine, this in turn improves the 

system coordination and synchronisation. The resulting control system, however, has 

high order dynamics, and requires large amounts of computation time. This restricts the 

application when a fast response is desirable[4]. Also, the common difficulty with these 

approaches lie in the attempt to formulate the input-output relationship by means of 

mathematical models, which may be difficult in many cases. 

Another drawback of these methods is that reducing the axial errors does not necessarily 

reduce the synchronisation effor[5]. Consider, (for example, a machine tool), the case 
in Figure 4.1. Improvements in the axial control strategy shift the actual cutter location 
from point P to point P. Although the axial errors Ex' and Ey' at point P are smaller 
than Ex and Ey at point P, the contour error at P is larger than that at P. (Further 
improvements will shift the cutter location to point P" and remedy the situation. 
However, this requires case-by-case analysis, and might cause instabilities. ). Figure4.2 

shows another general case with a linear motion relationship for two axes. This figure 

shows some probable steps to reduce each axis' following error for approaching the 
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reference point r. Although the axial errors (x I- xr) and (y I-y,, ) at point ml are smaller 

than (x - x, ) and (y - y, ) at point m, the synchronisation error el at ml is larger than 

that e at m. 

4.2.2 Synthesis of the Currently Developed Multi-axis Motion Control and 

Synchronisation Methods 
----------- 
The study of current control methodologies for multi-axis motion control and 

synchronisation, described in Chapter 3, highlights that the basic nature of motion 

synchronisation control is through coupling or interconnecting the individual axes. 

Through the coupling, the dynamic information of the motions can be used to apply 

relevant actions back to the individual motion loops to achieve tight control, whereby 

an error in any axis affects the control loops of all axes. The major differences among 

the methods are the different connection types and the synchronisation control laws. 

4.2.2.1 The Connections Between Motion Axes 

The connections between the motion axes can be grouped as: 

9 Direct reference command coupling; 

a Compensation coupling; 

e Combination coupling. 

1) Direct Reference Command Coupling 

'Independent drives control' and 'encoder tracking' approaches belong to this group. 
The 'independent drives control' has no feedback information coupling. The link 

among the axes are the mathematical expressions governing the motion relationships. 
It is the weakest coupling mechanism. Any error sources will separate the coupling. 
Actually, there is no real coupling in 'independent drives control'. 
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'Encoder tracking' has partial feedback, where the master's actual position is used as the 

slave's reference. This is a real direct reference command coupling. The feedback 

inforrnation is used in a forward chain linking of the axes. 

(2) Compensation Coupling 

'Cross-coupling control' and 'dual-loop control' can be included in this category. The 

compensation coupling uses compensation terms to couple the axes. The coupling 

controller is a compensator or coordinator, which is designed independently of the 

individual axes and dedicates the synchronisation control. The 'cross-coupling' 

methods provide compensation terms for each axis, but the 'dual-loop control' method 

usually only applies the compensation term to the 'slave' axes to maintain a specified 

synchronisation requirement. 

(3) Combination Coupling 

The 'MIMO method', 'system interconnection' method and 'scalar field control' are 

examples in this group. Combination coupling considers the whole system as a single 

entity, rather than in terms of its individual loops. In these methods, the couplings are 

introduced in different ways. The 'MIMO' method uses synchronisation control laws 

to 'couple' the axes. The 'system interconnection' uses the interconnected structure to 

link the axes. The 'scalar field control' uses scalar fields to couple the axes. 

4.2.2.2 Control Laws for Motion Synchronisation 

(a) Conventional cross-coupling algorithms can be developed by formulating the 

transfer function of tjie coupled system. However, in practice it is not always easy to 

describe the coupling by means of a discrete transfer function so as to realise ideal 

compensation. Thus, cross-coupling is normally obtained by the addition of a 

proportional-integral-derivative (PID) algorithm or a variation thereof[5]. However, 

such an approach is not ideal when subject to variable control environments and system 

nonlinearities. 
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(b) Commonly available NIIMO system design methods will not introduce coupling 

into already decoupled systems (independent drives) that we wish to couple 

together[16]. Conventional multivariable control methods have to be extended to 

achieve the objective of synchronisation. A switching function or term expressing the 

synchronising objective has to be introduced into the system control law[6]. However, 

MIMO control approaches often tend to be discarded because of their increased 

complexity. 

(c) The synchronisation control law in 'scalar field control, is hidden in the defined 

scalar fields. Building a precise scalar field in real-time is crucial to the synchronisation 

accuracy, particularly when the non-linearity and some uncertainness of the controlled 

processes exists in the system. 

4.23 The Philosophy Behind Motion Coordination and Synchronisation Control 

From the motion control viewpoint, coordination and synchronisation of any motions 

can only be obtained through some constraint. Mechanical systems achieve motion 

coordination and synchronisation over a wide range of normal and abnormal operating 

condition using cams, gears and linkages etc. [7]. The mechanical coupling is introduced 

by solid members, structure and parts configuration. Any disturbance on one axis win 

transmit to all axes and the relative reactions will also reflect back to all axes. As long 

as the transmission parts are robust to withstand the disturbance and reactions, the 

synchronisation of the motions can be maintained. When the mechanically linked 

systems are replaced by independent servo drives, the servo drives must be forced into 

coordination and synchronisation by an appropriate control system[8]. Hence the need 

for methodologies and tools to structure the control among the motions. Coupling or 

interconnecting the individual axes is the basic structure for motion synchronisation 

control. 

The principle behind a coupling architecture is that independent intelligent drives 

perform in a dependent manner. This structure introduces reciprocal actions which 

provide the constraint. 
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In the mechanical systems, the constraint is the direct restriction force, because of the 

rigid structure. In software mechanisms, the constraint which regulates the motions are 

control actions which are based on the feedback information of the states of the whole 

system. These real-time reciprocal actions between the servo-drives can be provided 
by a closed-loop control. 

4.2.4 Dual Closed-Loop Control in a Manufacturing Machine t. 

High accuracies or compliant motion may be achieved when real-time closed-loop 

compensation is introduced in a manufacturing machine control system[91. Figure 4.3 

presents a conceptual view of a machine[10]. Such a machine employs servo-drives 
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with which motions can be generated. The motions perform actions on the production 

process. The machine also possesses sensors to monitor the current states of the 

coordinated motions and the process. A closed-loop motion control system is formed 

in the machine by inputting sensory data to Motion State Assessment (MSA) modulel, 

passing the processed information to the Motion Control Mechanisms (MCM) module, 

which provides the control of the coordination and synchronis ation of the motions, and 
finally closing the loop through the Axis Control (AC) module which plans motions to 

be performed through the machine's servo-drives using continuous control algorithms. 

In this machine each axis itself is under closed-loop control, an another supervisory 

closed-loop control for the all axes implies a 'dual closed-loop' control structure for the 

machine motion control system. This structure represents the motion synchronisation 

control philosophy described in previous section. It can be used as a general structure 
for a machine motion control system which requires a tight motion synchronisation 

control, therefore, this control structure is generic. 

4.2.5 The Requirements for Intelligent Integration of Motion Control Mechanisms 

The crucial part of a 'dual closed-loop' structure is the 'motion control mechanism' 

which determines the system's performance. In the 'dual closed-loop' structure, the 

closed-loop of each axis is designed to cope with the assigned task. Since different tasks 

aregiven to different axes, each axis' servo loop has a unique characteristic. Another 

challenging issue is the uncertainty of the controlled processes. This mechanism has to 

provide smooth and rapid action in order to react to the change of system state, whilst 

not causing system oscillation. 

Conventional control based on modern analytical methods determines the control action 
in relation to a number of data inputs using a single set of equations to express the entire 
control process. Expressing these complex multi-axis motion synchronisation issues in 

the form of an explicit mathematical expression is very difficult, perhaps 
impossible[ 111 [12]. Asa general rule, a good engineering approach should be capable 

I- When we use the term moduk, we will be describing a software component capable of performing 
one or more fimcdons. 
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of making effective use of all the available information. If the mathematical model of 

a system is too Oficult to obtain, then the most important information comes from two 

sources: 1) sensors which provide numerical measurements of key variables and 2) 

human experts who provide linguistic descriptions about the system and control 
instructions[22]. In the control of motion synchronisation between independent 

servo-drives, the sensor information and human intelligence (which is good in tackling 

many coordination problems) are available. The relationship states between the 

independent axes are easily described linguistically. Correction of deviations between 

the actual and preplanned trajectory, human intelligence can define appropriate actions 
based on a linguistical description. Because fuzzy inference control has proved ideal for 

expressing sophisticated knowledge of experts and incorporating valuable 
intuition[ 11] [ 13] [221, fuzzy logic is used as a tool to represent human linguistic 

descriptions as a basis for decision making. 

4.3 A Fuzzy Logic Motion Synchronisation Algorithm 

The basic principle of enforcing independent axes into coordination and synchronisation 
is that the lagging axis is accelerated to "catch" the leading axis and the leading axis is 

slowed down to "wait" for the lagging axis. These reciprocal actions have to take place 
in such a way that ensures undefined deviations from the preprogrammed reference path 

are avoided. 

A fuzzy system consists of a bank of fuzzy associative memory (FAM "rules" operating 
in parallel, and operating to different degrees[13]. Each rule represents ambiguous 

expert knowledge or learnt input-output transformations. An FAM rule can also 

represent the behaviour of a specific mathematical model. The system nonlinearly 

transforms exact or fuzzy state inputs to fuzzy-set outputs. These output fuzzy sets are 

usually "defuzzified" with a centriod operation to generate exact numerical outputs. 

Expression for motion synchronisation are straight forward as it is only necessary to 
derive a set of FAM rules which produce the coupling between the axes. With execution 
of these 'rules', it is possible to obtain accurate synchronised motion control. In this 

section, a method using fuzzy logic to establish coupling between decoupled. 
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independent drives in a multi-axis configuration is described. This fuzzy logic coupling 

algorithm is implemented within the Motion Control Mechanisms module. 

4.3.1 Basic Structure of the Fuzzy Logic Synchronisation Algorithm 

The desired relationship between N synchronised axes can be geometrically described 

as a hyperline or hyperpath in N-dimensional coordinates. Figure 4.4 shows a two-axis 

system with a linear relationship. For the reasons previously discussed the actual point 

m(x, y) may not lie on the path M. 

ky ) sinO 

sinO yl Fy2 -+(ky)2 

1/11 +k2 
ex- ky Fl -+k2 

bk 

ae sinO 

a= (X-ky) /(I +k2) 

b= (x-ky) k1 (I +k2) 

Figure 4.4 A Two Axis System with Linear Relationship, X=KY 

In order to meet synchronisation requirements, the actual point m should be 'forced' 

back to the path M( ie. to eliminate e. ). For each axis, the modified value will depend 

on the other axis'. For example, if axis X reduces by a, then axis Y should increase by 
b. If axis X reduces by less than a, then, axis Y must increase by more than b. In an 
extreme case, when one axis has already reached saturation, the other axis has to take 

complete responsibility to maintain synchronisation. For a two-axis control system as 
described in Figure 4.5, the compensations can be added to the local controllers' output 
ui or their input r, - The direct modification of the controllers' reference command is a 
straightforward method which does not involve changing the system configuration. It 
is, however, very difficult to design a high level mechanism which can map the inputs 
(synchronisation error e and references rl) to the outputs (modified values rwq, for each 
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Figure 4.5 A Two-axis Motion Control System 

axis' reference). Here, we use a set of fuzzy logic rules to couple the servo axes. Figure 

4.6 shows the basic control structure with a fuzzy rule-based coupling mechanism. 

Figure 4.6 The Basic Dual Closed-Loop Control Structure 
with a Fuzzy Rule-Based Coupling Mechanism 
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The block diagram of the proposed coupling algorithm, as shown in Figure 4.6, has an 

architecture where axis position feedback is provided to the supervisory level. The 

design issue here is how to map the measured synchronisation error vector to the demand 

position compensation vector so that synchronisation can be controlled as accurately as 

possible. The procedure involves the following elements: 

- The synchronisation error and the rate of change of error are described by fuzzy 

membership functions which have trapezoidal or triangle profiles. 

- The demand position compensation for each axis is also represented by a fuzzy 

membership function. 

* The mapping rules between synchronisation error and corrective actions are 
heuristicaRy constructed from the input-output data with the objective to reduce or 

eliminate the synchronisation error. 

The conventional method to accomplish these procedures involves establishing: (1) 

fuzzification; (2) a rule base; (3) an inference mechanism; and (4) defuzzification 

modules. 

(1) Fuzzirication 

Fuzzification is the process of assigning or calculating a value to represent an input's 

degree of membership in one or more qualitative groupings, called "fuzzy sets". For the 

fuzzy coupling, the input variables are chosen as 

e: the synchronisation error 
6e: the rate of change of synchronisation. error, 

while the output variables (assuming a two axis system) are selected to be 

r1m: the demand position compensation to axis one 

r2m: the demand position compensation to axis two. 

The fuzzy variables are distinguished from their finite variables by putting a sign (-) 

above the variable. Therefore, the fuzzified variables of e, 6e, r1m and j7m are i, 3-e, _rIm 

and r2m, respectively. These fuzzy variables are defined by the universes of discourse 
(E, 6E, RIm and R2m respectively) which have the ranges shown in Figure 4.7. Each 
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universe is a set of elements 
E=(}, 
6E= fbie), 

Rim = fri. ), (i =1,2). 

(4-1) 

The fuzzy subsets, Eý Mý Rkim and Rým, are defted by a set of ordered pairs, ie 

Ek= I (-e, REkCe)) ICE 

6Ek=j(d-e, V, mý87e)), C 6E (4-2) 
Al =I (r-im, Ni. Vrim) )IC Rim. Im 

where -e, Fe, -. and -r2, 
n are the elements of the universes and kVe), p. ý87e) and ri 

are the corresponding membership values which give the degree to which the 

element is a member of the subset. 
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As shown in Figure 4.7, we have chosen seven fuzzy subsets for -e, 3-e and thirteen fuzzy 

subsets for the output 71m and -r2m. The primary fuzzy sets defined are abbreviated as 

follows: 

PML: positive medium large 

PMM: positive medium medium 
PSL: positive small large 

PL: positive large 

PSM: positive small medium 
PS: positive small 
PVS: positive very small 
ZR: zero. 

NUL: negative medium large 

NMM: negative medium medium 
NSL: negative small large 

NL- negative large 

NSM: negative small medium 
NS: negative small 
NVS: negative very small 

(2) Rule Base Construction and Derivation 

The fuzzy algorithm requires that we articulate or estimate the FAM rules which 

construct the coupling among the servo-drives. With the help of the previous linguistic 

variables, the coupling algorithm is developed using production rules of the type "if A 

then B". The fuzzy control rules provide a natural framework for the characterisation 

of human behaviour and decisions analysis. 

The kth fuzzy rule is constructed as 
Rk : IF i is Ek Ne is 6Ek ; THEN rim is Rým and r2m is Rým. 

Here, we use one example to show the rule derivation procedure for motion 

synchronisation control. Consider two motors under position control mode with a 1: 1 

ratio relationship. 

For example, IF e is ZR, Ne is NL; 

In this case, when 7 is ZR, the actual positions of these two motors are very close, ie the 

synchronisation error e is very small. However, at this time 3-e is NL, and 
6e = cuffent (e)- past interval synchronisation effor ( ep ), 

Since the synchronisation error e is very small, one case which may have Ne at NL is that 

e is negative (<0), and ep is positive (>0). 

If e<0, ie. y, < y2. 

If ep > 0, ie. y1p > y2p. ( in past interval ) 
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Therefore, from the past interval to current time, the speed of motor 1 is reducing, and 

the speed of motor 2 is rising. 

Another case which can make Ne at NL is that e is positive (>0), and ep is also positive 
(0) but with a large value. 

If e>0, with a small value, ie. yj is slight big than y2- 

If ep > 0, with a large value, ie. y1p is much big than y2p. ( in past interval ) 

Tberefore, we have the same conclusion as the previous case: during the last interval, 

the speed of motor 1 is reducing, and the speed of motor 2 is rising. 

Based on the above analysis, we can derive one rule which is used to control the motion 

synchronisation (slowing axis has a positive compensation value, rising axis has a 

negetive compensation value. ): 

IF e is ZR, Ne is NL; THEN -rlm is PML and -r2m is NML. 

Appropriate rules are readily derived using such an analogy. 

Therefore, the overall rule base has the fonn 

R= IRI, R2 I..., Rk2..., R491. (4-3) 

Figure 4.8 shows a rule base which is composed of a set of sub-rule-bases. This property 

can be used to implement the proposed algorithm. 

NL NM NS ZR PS PM PL 

NL 
'%sý PML "*ý pmm PSL 

4 
ýý PSM Psm PSM PS PS' 

NM NM L***-ý NS NSrýý' NS S NJ S N 

NM 
- .� PMN1 --ý PSM 

-ý ' 
ý-ý PSM PS 

"' % 
PS "*ý PS ý p PVN ' PVS v', i» %P , pv výi S 

. 
N>X., ý NS NSe*--ý ý N S NZ >ý NS V 

ýý 

NS PSM psm PSM --,. ýPS N�� PVS PVS vs P -, -, ýPVS ZR ZR ZR 

e 

1 '**ýR 
N 

[ 
NSYI*-... ý Ny V%ý N NVS"s-, 

- 
ZR ZR M-� 

ZR Psm Psm PSM 

e 

-""ý S PVS 
4 > 

ZR ZR '4�, NVS N NS S SM ['-, ý, esm 
Nsph, " NS 

. 
NS NS NV S 'ý 7, R ZR Pvýýsý PS PS PsNt, PS 

PS ZR , 44", ZK ZR VR- R '-, NVS ̀ , ý NVS '*--ýNVS NS NS Sm Sm 
ZR ZR 

Zý 
PVý PV Pvýý PS PS S S 

Pm S S NVS NV r N >N '--�, NS '**-ýSM SL `sýSL ! MM MM 

P 

Pv PV& PV S S P . S PS PS s L .� -- mm MM 
PL NS 

PSý PS S S S SM 
- 

'--, eSM '*-ý NSL 4, - ' MM ý **--ý-eMLI 

L- 
PS PS PS ý� 1 PSM 

, Psg", j Pk--"., P Pm 
.m 
PM P 

Figure 4.8 The FAM Bank for the Fuzzy Logic Coupling Mechanism 
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(3) Evaluation of Rules 

To govern the system's behaviour, a set of rules that have the form of if-then statements 
have been developed, as shown in Figure 4.8. The if side of a rule contains one or more 

conditions, called "antecedents"; the then side contains one or more actions, called 
"consequences". 

Each antecedent has a degree-of-truth (membership) value assigned to it as a result of 
fuzzification. During rule evaluation, strengths are computed based on antecedent va- 
lues and then assigned to the rules' fuzzy outputs. Generally, a minimum function is 

used so that the strength arule is assigned the value of its weakest or leasttrue antecedent. 
Often, more than one rule applies to the same specific action, in which case the common 

practice is to use the strongest or most true rule, ie use a maximum function[ 14] [15]. 

For the result of the kth fuzzy rule, the membership grade function [4j. Vrim) can be 

obtained by 

IlRimVrim) = MIN Vmýbie), p*imkCrim)]. (4-4) 

From the results of the 49 rules, the final membership grade function Ni. (Tim) is obtained 

using the MAX operator: 

NI. Crim) =MAX [VRm I (r-im ), N,. 2(r-, 
m pR,. k(rim 49(-rim (4-5) 

(4) Defuzzification of Outputs 

Even though the rule-evaluation process assigns strengths to each specific action, 
further processing, or "defuzzification", is required for two reasons. The first is to 

decipher the meaning of vague (fuzzy) actions using membership functions. The second 
is to resolve conflicts between competing actions which may have been triggered by 

certain conditions during rule evaluation. Defuzzification employs compromising 
techniques to resolve both the vagueness and conflict issues. 

One common defuzzification technique, the "centre-of-gravity method"[ 141, consists 

of several steps. Initially, a centroid point ri,,, j is determined for each output membership 
function. Then, the membership functions are limited in height by the applied rule 
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strength ( pRj (Timb ), and the area S([41. (Fimb) of the membership function -i is rim 

computed. Finally, the defuzzified output rsm is derived by a weighted average of the 

centroid points and the computed areas, with the areas serving as the weights. The 

centre-of-gravity method is illustrated in the following equation. 

rim = 

p 

L S(PRi,. (-rimb) - rimi j=l 
p 

L 

j=l 

where p is the number of fuzzy subsets of the output. 

(5) System Outputs 

(4-6) 

The actual compensation for each axis depends on the ratio of the relationship between 

the axes. For the two axes with a relationship X=KY, the compensation terms for the 

axis commands are 

p 

L S(PRI-CrIA - rlmj 
rinj 

j=l 
cx 

p 
LS(PRI. (FIA 
j=l 

ryn2m ý 

where 

p 

S(P*2m(r-2mh) - r2mi 
j=l 

p 
S(VR2m(r-2A 

j=l 

Cx = 

. 
CY 

(4-7) 

Cy =kI (I +k 2) 
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43.2 A Fuzzy Rule Base for Closed Loop Master-Slave Linked Motion 

Synchronisation 

In the previous section, we assume both two axes' commands can be adjusted to achieve 

tight synchronisation control, which can be considered as an "Equal-Status" approach. 

In the "Master-S lave" approach, the slaves' commands can be changed, since the 

master's actual position is used as a reference for an slaves axes, therefore, some 

modifications is needed to the general fuzzy logic synchronisation algorithm described 

in the previous section. 

(a) The Synchronisation Error 

In master-slave configurations, the slave has to take complete responsibility in 

preserving synchronisation. In this case, error b (rather than e) is reduced or eliminated 

to control the synchronisation. Figure 4.9 illustrates the relationships. 

The input variables are chosen as 
b: the synchronisation error 
6b: the rate of change of the synchronisation error, 

while the output variable is selected to be 

v: the slave demand position compensation term for the next interval. 

(b) Predictive Action ror Slaves 

in order to reduce synchronisation, error, a compensation term has to provide a corrective 

action towards the desired synchronisation path. A control scheme is described here 

where the slave command consists of the reference command plus a compensation term. 

The synchronisation error can be reduced by providing such a compensation term to the 

slave command. This predictive action must be designed to ensure the error is always 

reduced. 

(c) Closed-Loop Master-Slave Structure 

Because one axis follows the output of another axis, the method is still classed as 

master-slave. However, the addition of the compensation term implies a closed-loop 
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Figure 4.9 A Two Axis Master-Slave System with a Linear Relationship, X=KY 

master-slave method. Figure 4.10 shows the basic structure of the close-loop 

master-slave strategy. 

(d)A Fuzzy Logic Rule Base for Closed-Loop Master-Slave Systems 

For the closed-loop master-slave problem, the target of reducing the synchronisation 

error is achieved by the slave drives dynamically matching the master drive by 

modifying the input command to the slave's. This predictive action is based on the 

synchronisation error b, the rate of change of the synchronisation error 6b and knowing 

the relationship between the master and slave axes. 

The synchronisation error b from the previous interval can not be removed. However, 

it is a goal to be corrected during the next interval to prevent accumulated errors. The 
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Figure 4.10 Fuzzy Logic Based Closed-Loop Master-Slave Structure 

rate of change of the synchronisation error 6b represents the trend in the error change. 

It is important to use this information in a preemptive action. B ased on an understanding 

of these input variables, the derivation of the fuzzy logic rules is not difficult. Here, 

heuristic rules are used to generate the required slave command for minimum 

synchronisation error. If the state point is to the left side of the path, then slave axis has 

to slow down requiring a negative compensation in the next interval. If the state point 
is to the right side of the path, then slave axis has to speed up requiring a positive 

compensation term. 

Figure 4.11 shows a typical rule base. This property can be used to implement the 

proposed closed-loop master-slave algorithm. 
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Figure 4.11 A Fuzzy Rule Base for Closed-Loop Master-Slave Mechanism 

With the exception of the modifications outlined above, the procedure to produce the 

fuzzy algorithm is the same as described in the previous section. 

4.3.3 Fuzzy Logic Coupling Mechanisms for Nonlinear Motion Synchronisation. 

For general nonlinear motion synchronisation, the most important task is to identify 

accurately the synchronisation error in a sufficiently short time. We may choose an 

iterative method (eg Newton-Raphson) to find the synchronisation error[5][16][17]. 

However, an iterative approach generally needs a large amount of computation and is 

normally only suitable for off-line calculations, in non real-time systems. Several other 

methods are suggested in [ 161 with more general discussions. Here, a method proposed 

in [5] was chosen to calculate the synchronisation error. In this method, the nonlinear 

path is locally approximated by a circle as shown in Figure 4.12. The reasons for 

selecting this method are 

* reasonable accuracy in calculation of the synchronisation error, 

simplicity in real-time computation, and 

* suitable for the proposed fuzzy logic coupling algorithm. 
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For nonlinear motion synchronisation, the proposed fuzzy logic synchronisation 

algorithm is used with an "Equal-Status" viewpoint. The fuzzy logic synchronisation 

algorithm described in section 4.3.1 has to be generalised to provide for nonlinear 

relationship. 

Y Desired Paih 

Instantaneous 
tangent 

y 

x x 
Figure 4.12 The Synchronisation Error Model 

(a) The Synchronisation Error 

In Figure 4.12, the synchronisation error is approximated by the distance between the 

actual position and the circle, and can be calculated by the following equation: 

XO)2 + (y - yo)2 -R (4-8) 

where R is the instantaneous radius of curvature; (xo. yo) is the corresponding centre of 
the circle; and the actual position is m(x, y). 
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(b) The Coefficients for Compensation Terms 

The fuzzy algorithm described in section 4.3.1 is for a linear relationship between the 

axes. When it is used for nonlinear relationships, the coefficients for the system outputs 

change due to the nonlinear path. These coefficients are directly related with Om and 

expresses as 

C. = COSOM, 
Cy = -sin0m; (4-9) 

In Appendix H, a very detailed derivation of the above equations (4-9) is given. 

With the exception of these modifications, the procedure to produce the fuzzy algorithm 
is unaltered. 

4.4 Analysis of the Fuzzy Logic Synchronisation Algorithm 

4.4.1 Characteristic Analysis of the Fuzzy Logic Synchronisation. 

Basically, each control system maps inputs to outputs, these input-output 

transformations are then used geometrically to define control surfaces. The fuzzy 

control surface characterises the system's fuzzy-set value definitions and its bank of 
FAM rules. In this section, we study the control surfaces and contrast them with the 

scalar field control approach to analyse the coupling characteristics. 

4.4.1.1 Fuzzy Control Surfaces 

Different sets of FAM rules yield different fuzzy controllers, and hence different control 

surfaces [ 131. Figure 4.13 shows a FAM bank which is configured using common sense 

and engineering judgment and experience (ie speed up the slow axis and slow down the 
fast axis to maintain synchronisation between the axes). Each entry in this linguistic 

matrix represents one FAM rule. 

The entire FAM bank determines how the system maps input fuzzy sets to output fuzzy 

sets. The fuzzy-set membership functions shown in Figure 4.14 determines how each 
finite input value translates to each fuzzy-set value. So both the fuzzy-set value 
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Figure 4.13 The FAM Bank of a Fuzzy Logic Coupling Mechanism 
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definitions and the FAM bank detemiine the defuzzified outputs for any finite set of 

input values. 

The set of all possible inputs and outputs defines &, FAM surface in the input-output 

product space. Figure 4.15 shows the control surfaces of the fuzzy logic coupling 

mechanism. The control outputs are plotted against the inputs e and 8e. If the deviation 
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Figure 4.15 Control Surface of the Fuzzy Logic Coupling Mechanism 

change be = 0, we obtain a control line instead of control surface. Figure 4.16 shows 

the control lines of the fuzzy logic coupling mechanism for be = 0. 
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If we consider the control lines in Figure 4.16 as the basic profile, one may find that due 

to be the control lines need to vary from the basic line. The control surface is the 

collection of these control lines as shown in Figure 4.15. From the maps, we can also 

see that for a synchronisation error on an axis which is slow receives a positive 

compensation, whereby an axis which is fast receives a negative compensation. The 

fuzzy logic coupling mechanism acts in this way to reduce the synchronisation error 

through the linguistic representation of the coupling rules. 

4.4.1.2 Scalar Field Control 

From the Gradient of Scalar Function mathematical definition, if the scalar function 

(D(x, y) is a continuously differentiable function with respect to the independent vari- 

ables x and y, the gradient of 4) is defined by the vector[ 18] 

grad O(x, y) a45 ao 

ax + a- y 
(4-10) 

A scalar field (D could represent a potential energy field, the vector field F( F=grad (D) 

may be regarded as a conservative force field. Scalar field control is one kind of axis 

coupling strategy created through a physical appreciation of requirements. A physical 

surface (D can provide a potential energy field which acts on a 'ball' which is on the 

surface. Due to the influence of gravity, the ball seeks out an equilibrium position on 

a path. The forces on the 'ball' acting to take it to the required path may be resolved in 

the coordinate axes directions. These forces are related to the slopes of the surface 

resolved in these directions. Mathematically, the respective resolved slopes may be 

expressed using partial derivatives. A similar idea is used to make a position control 

system achieve a desired position relationship[ 161. The partial derivative expressions 
( Max, aOlay ) may then be used as a form of error upon which the controllers act. 

From the total differential theorem, the total differential dO of the function (D(x, y) in 

the region Yf is given by 

dO ao ao 
Tx- dx + -ay- dy 
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When applied the differential de for the above equation, then becomes 

do a0 dx 80 dy 
(4-12) 

exe+ ay de d' -7- -7- 

From Figure 4.4, de = dxi + dyj, and 

1) when de<O, (ie. the state point is to the left side of the path), then 

dx dy 
-We- =sin 0 de --Fva 0 (4-13) 

2) when de>O, (ie. the state point is to the right side of the path), then 

dx dy 
-ye- = -sin 0 de 0 (4-14) 

From the above equations, we can see that if the control actions for the axes 

(rmjm=kj801ax, rm2m=k2aOlay) have been defined, then the control action directly to 

the synchronisation error e %Mae) can be calculated based on them using equation 

(4-12), where ki (i=1,2,3) are proportional gains. By integrating of Mae, an 

approximate surface (D against e can be generated using the data in Figure 4.15. For the 

condition 8e = 0, Figure 4.17 shows the approximate curve derived with respect to the 

synchronisation error, where kl=l, k2=1, and k3=1. The slopes of the curve are 

anti-proportional to the synchronisation error, which means that the resulting control 

action tries to reduce the synchronisation error. 

If we use a real scalar function 0=1/2(ke2) with a proportional gain k to compare with 

the fuzzy approximated curve, in Figure 4.18 (in this case k=3.6445) we can see that the 

two curves are very similar, which illustrates that linguistic rules can be used to achieve 

'the same control action as that achieved with a scalar field. 

in the ball analogy of scalar field control[16], positive damping was necessary to bring 

the ball to rest on the path. Consequently a derivative term is often introduced into a 

conventional controller; frequently resulting in a controller of the form (kp + kDs), where 
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kp represents a proportional gain, and kD denotes a derivative gain. This conventional 

controller therefore acts upon the absolute error signal ea and its time derivative de&/dt. 

In the scalar field control, the error signal is represented by -aýlax, and its time 

derivative is d(-aý/ax)/dt. The proposed fuzzy logic coupling algorithm naturally 
includes the error signal e and its time derivative 6e. If the control rules and fuzzy 

reasoning are treated as a nonlinear mapping from e and 8e to the control action rmim, 

then rnkm can be represented as 

rmi.. = f(e, 6e). 

approximate curve 
(1)=1/2(ke2) 
le! =, A Ký,; 

(4-15) 

The above equation implies that rnqm is the output of a nonlinear P. D. controUer[4]. 
Therefore, the developed fuzzy logic coupling algorithm is a cross-coupling controller 

with a nonlinear RD. control law. 

Here, we may say that scalar field control can mimic the'potential energy' effect, but 

the fuzzy logic coupling also includes the 'kinetic energy' effect (assuming 8e :A 0), as 

shown in Figure 4.15. The 8e term which represents the higher order synchronisation 

errors of the system (ie 'velocity synchronisation error') is useful where the 

synchronisation error is changing rapidly, for example, when disturbances occur on one 

C$ c4 "ý v- ý C, 4 e, 6e 
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axis, or the required motion involves a step change in position. From the 'work-energy 

theorem', . 
both kinds of energy have the same effect[ 191. Human operators can 

naturally consider the 'kinetic energy' effects in control actions. The fuzzy logic control 

which is based on human knowledge representation normally requires both error and 

error change to evaluate the control inputs, which may result in fuzzy logic coupling 

having a more effective and adaptive capability[4]. 

4.4.2 Stability Issues of Multi-axis Systems with the Fuzzy Logic Coupling 

Mechanism 

The multi-axis motion control system we consider is assumed to be a steady-state 

system, because each motion is furnished with a stabilizing controller, which causes the 

whole system to be in steady-state[20]. In order to achieve tight motion synchronisation 

with the independent servo-drives, an interconnected or coupled control structure and 

on-line compensation are necessary. See section 4.2.2. 

However, with the proposed fuzzy logic coupling mechanism, the compensation term 

is generated by a fuzzy algorithm, therefore, the fuzzy system has to be stable as well. 
Stability analysis of fuzzy logic control systems has been difficult because fuzzy systems 

are essentially nonlinear. Recently, some useful stability techniques [231-[271, which 

are based on nonlinear stability theory, have been reported. Therefore, stability analysis 

of fuzzy control systems became easy. But, generally speaking the analysis of fuzzy 

control systems by means of nonlinear control theory can never be general, simply 
because a general theory of nonlinear control systems does not exist. It is quite difficult 

to develop a method for analysing the stability of fuzzy logic coupling mechanism, 
because the whole system includes not only a fuzzy logic algorithm, but also has a 

number of interconnected servo-drives. This will be one aspect of the future work. 
Currently, the fuzzy logic coupling system is analysed by simulation tests and tuned 

manually. 

4.5 Conclusions 

new coupling strategy for multi-axis motion synchronisation, which embeds human 

intelligence, has been proposed. Advantages of the new scheme are: 
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1) The characteristics of individual servos can be handled separately by input/output 

variable membership definitions and rule base derivation, which enables the multi-axis 

system designer to use the state of art control techniques for each axis, then integrate the 

axes as a whole multi-axis system in an intelligent way. 

2) The uncertainness of the controlled process can be described linguistically and 
implemented in fuzzy logic. When some inforTnation of the processes can be described 

in linguistic values, these information can be incorporated into the proposed fuzzy logic 

synchronisation control algorithm to enhance the synchronisation performance. 

3) No mathematical modelling is necessary. Therefore, all types of motion 

synchronisation can be implemented easily and use the same framework. 

The calculation of the proposed algorithm may slow down the possible sampling-rate 

of the software mechanism. However, with present advances in computer power, 

especially digital fuzzy processors have been developed[211, we do not see it is a 
drawback of the proposed mechanism. 
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CHAPTER FIVE 
Intelligent Motion Control (IMC) 

Structure Design 

5.1 Introduction 

IMC (Intelligent Motion Control) is a method to facilitate the design and control of 

multi-axis motion control systems in an intelligent manner. Intelligent motion control 
is defted as utilizing feedback from the physical environment to manifest "intelligent 

behaviour" in real-time via computerised, real-time coordinated and synchronised 

motion control of the machine's electro-mechanical actuators and sensors. Such 

multi-axis systems are termed dual-closed loop motion control systems and are 
distinguished from open-loop motion control systems in that open-loop systems do not 
have the capacity to alter their behaviour in real-time based on sensory feedback from 

the environment. The requirements and developments of the method are described in 

this chapter. 

5.1.1 Intelligent Software Mechanisms for Manufacturing Machines 

For a typical manufacturing machine the high-speed concurrent manipulation and 

synchronisation of workpieces, tools and sensors may be involved. Thus, a number of 

motion and sensing elements (which will be referred to as machine components) will be 

required to operate in a coordinated manner, the number and type of these components 
being chosen to accomplish the specific producing function. 7be individual components 

will each require their own subset of information processing and control functions. The 

individual components will be required to interact with other components forming one 

or more 'close coupled' component groups, performing logically separate parts of the 

overall producing function. The term 'closely coupled' is used here to imply a 'close 

relationship between'; an example of such a relationship occurs when more than one 

machine component is involved in locating a workpiece or tool according to some 

specified position, velocity or force profile. The individual components of a 'closely 

coupled' component group may, in fact, be operating at different physical locations in 

a specific machine. Indeed, the individual components may also be distributed at remote 



Intelligent Motion Control (IMC) Structure Design 83 

locations along a production line but be required to operate in a synchronised manner 
(a common requirement in the packaging and process industries)[1]. Thus, the 

individual components of a 'closely coupled' component group can be considered to be 

logically related, but may or may not be physically linked to each other. 

The components of a'closelycoupled'group are inter-linked by a software mechanism. 
The motion of all of the axes defined in a software mechanism can then be coordinated. 
Therefore, the intelligent motion control of the multiple axes depends on the intelligence 

of this software mechanism. The fuzzy logic coupling mechanism developed in the 

previous chapter will be used as one of the essential building blocks in the IMC structure. 

5.2 Hierarchical Design of Multi-Axis Machine Systems 

Industrial automation spans a huge spectrum of complexity in terms of both the physical 

structure of machines and the tasks which they perform. A design method for machine 

systems, termed Intelligent Motion Control (IMC), has been developed based on the 

hierarchical modelling of the machine systems. 

5.2.1 Task Oriented Decomposition 

Every method seeks to devise a model of the problem domain which explicitly represents 

and emphasises the most critical components of the problem while simplifying those 

aspects which have a lesser impact on the solution being sought. Every model is, after 

all, a simplification of the real world. The aim is to choose an appropriate abstraction 
(or set of abstractions) that highlights the parts of the problem that make a difference in 

the understandability, quality and efficiency of the solution. That is why it is so 
important to choose a method which matches the problem domain[2]. In the domain of 

manufacturing machine control systems the author believes tasksl are the driving factor. 

Fundamental to the control of electro-mechanical devices is an understanding of the task 
it is to perform. For tasks that involve complicated sequences of steps and the complex 

Tasks are the activities which a machine performs together with the sequencing and synchronisation 

of these activities. 
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coordination of many operations, the exact nature of that task becomes critical to solving 

the control problem. The task determines the use and synchronisation of sensors and 

actuators, the choice of computing hardware, and nature of the world model. Effective 

design of control systems for complex decision oriented problems is well accomplished 

through careful task analysis and decomposition. 

5.2.2 Computer Control of Machines -- Levels of Abstraction 

The control structures of both conventional and independently-driven manufacturing 

machines are based on a hierarchy of operations [3]. The machine function is defined 

as the sequence of processing tasks necessary to transform raw materials into a product. 
The task level synchronises and coordinates the various axes required to accomplish a 

particular task. The axis level comprises a set of controlled motion profiles. These 

profiles are transformed into actuator profiles and used to manipulate the product as 

required. The levels of abstraction are discussed here from the perspective of physical 

movement tasks (rather than logical operations such as switch closures), as follows: 

Level 1. Servo -- The Servo Level functions as the interface to the machine's actuators 

and sensors, It can be thought of as the device driver level. Task commands from level 

2 are converted into voltages and in turn currents to drive electro-mechanical devices 

interfaced at this level. The Servo Level generally operates using high bandwidth 

synchronous closed-loop control. Each actuator maybe paired with one or more sensors 
to effect closed-loop feedback control. The Servo Level periodically samples sensors 

and sends out drive signals to effect stable control and smooth movements. 

Level 2. Sync (synchronisation) -- The Synchronisation or Sync Level accepts 

commands from Level 3 and decomposes them into regularly spaced "move" commands 
to the Servo Level. Sync deals with machine dynamics and performs functions such as 
the fuzzy logic coupling algorithm. Sync generally produces set-point output 

commands to the Servo Level in asynchronous fashion (evenly spaced in time). Sensory 

data, such as inputs from proximity, force, and torque sensors, are used to produce or 
modify reference commands in real-time. 

Level 3. Task (coordination) -- The Task Level accepts task commands from Level 
4 and converts them into tasks for the machine's subsystems (an axis or a group of axes). 
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This level is responsible for coordinating the actions of the subsystems within a single 

machine. This Level deals with machine kinematics and is typically responsible for 

generating reference commands to be further decomposed by the Sync Level. The 

control system components are typically hosted on a single multiprocessor backplane 

at this level and below. The backplane host is typically connected to a local area network 
(LAN) for communication with higher levels. 

Level 4. Machine -- This Level coordinates the actions of a small group of machines 

and people. Generally the machine controllers communicate over some type of local 

area network. Level 5 controllers are typically hosted on computer workstations in 

factory applications. 

The above levels of abstraction have their derivations from the RCS architecture [2]. 

They are, however, defined here in a manner more suitable for high speed, 

algorithmically complex servo controlled manufacturing machinery. 

53 The IMC Design Method 

An IMC motion control system consists of a set of runtime control software modules 

conforming to the above modelling. The philosophy behind the IMC design method 

provides the means for controlling the machine motions through the intelligent software 

mechanisms among the servo-drives. The IMC design method is proposed to improve 

the multi-axis motion control capability of the UMC2 methodology which was devised 

by the Manufacturing Systems Integration (MSI) Research Institute in the Department 

of Manufacturing Engineering, Loughborough University of Technology[5)[6]. 

5.3.1 The UMC Methodology 

UMC (Universal Machine Control) is a methodology to facilitate the design and 
implementation of machine control systems in a generalised manner. A UMC control 
system consists of a set of runtime software modules conforming to a reference 
architecture and off-line tools to aid with the configuration and management of the 

2. UMC is an abbreviation of Universal Machine Control. This is the nam by which the machine control 
methodology is known. An terminology of the UMC methodology is described in Appendix V. 
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runtime system. The philosophy behind the UMC reference architecture provides the 

means for integrating proprietary control products (such as motion controllers, 1/0 

controllers and sensors) and presenting a unified view of these products to the runtime 

software. In addition to the off-line tools specific to UMC, proprietary design products 

and tools can be employed by the system builder and the applications programmer. 
These products can come from a wide range of sources and include off-line modelling, 

evaluation and programming tools. 

The UMC methodology provides a consistent approach for system configuration and for 

the integration of additional functionality as new requirements evolve. The 

methodology allows the control system to develop over a period of time and to adapt to 

evolving requirements and technologies. 

Features of the UMC methodology: 

* Consistent device interface. The key difference between UMC and 

typical proprietary control systems is that a UMC control system can 
incorporate components from a wide range of different manufacturers 

and provides a consistent interface to these components. 

Ease of control system modification or upgrade. A UNIC control 

system can readily accommodate either physical or logical changes to the 

machine, making future modifications or upgrades relatively 

straightforward. This is an enormously important advantage and is 

brought home by considering the large number of changes which a 

typical machine undergoes from initial development to obsolescence. 

* Data visibility. The architecture has been designed so that all system 
data is readily accessible to software running outside the control system. 
A vast range of machine information is therefore available if required. 

5.3.2 UMC Machine Overview 

A UMC machine consists of a number of concurrently executing processes together with 
mechanisms for communication, co-ordination and synchronisation of the processes. 
This approach encourages the user to divide the overall machine requirements at the 

application level into easily programmable application tasks, which relate to a functional 
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decomposition of the whole machine operation. The application tasks together have a 
heterarchical relationship although functionally one task can be a master task. Events 

are used to synchronise the tasks, control the use of shared resources and for passing data 

between the tasks. 

Any of the application tasks can control any subset of the handlers in a particular UMC 

machine. The subsets of handlers used by the tasks can overlap, allowing sharing of 
handled external devices between tasks. 

This decomposition of dependencies is specified as a set of UMC configuration data 

which is stored within a database in the UMC off-line environment. The UMC 

configuration data contains a high level description of the physical and logical machine 

relating to: 

" device configuration information 

" tasks 

o handlers 

o events 

The UMC configuration data includes descriptions of individual "handled" external 
devices. This includes the data needed to describe the external device in terms of the 

task communication capabilities, and the data required to initialise and run the handler. 

The UMC methodology allows for the programming of control systems made up from 

essentially any external devices for which suitable handlers can be provided. Handlers 

thus provide a standardized interface between tasks and the external devices which they 

control. 

Application tasks, written in a high level language, utilize language interfaces for 
inter-process communication provided as part of the implementation. These interfaces 

provide the means for the establishment of communications to other tasks and handlers, 
issuing commands to handlers, provision for inter-task co-ordination, and access to all 
information modules. The interface for a particular programming language is provided 
by means of a library of functions or sub-routines specific to that language. 

The position co-ordinates of UMC axes may be referenced by means of named 
locations. Each task can use an optional location information module to contain the axis 
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co-ordinates for named locations. Ibe locations may define position co-ordinates for 

some or all of the axes controllable by a given task, as specified in the machine 
information module. 

5.3.3 UMC Reference Architecture 

5.3.3.1 Introduction 

The UMC reference architecture provides a common framework for UMC machines. 
The reference architecture is simple in both concept and structure. See Figure 5.1. 

5.3.3.2 Rererence Architecture Levels and Building Blocks 

The UMC reference architecture explicitly defines three hierarchical levels, namely, 

machine level, task level and handler level. 

o Machine Level 

This is the top level in the UMC reference architecture. It consists of a machine 
information module together with utilities to configure and manage a UMC 

machine. The machine information module describes a particular UMC machine 

at runtime. 

o Task Level 

The task level consists of application tasks and utility tasks, together with any 

associated task or location information modules. Application tasks are the 

application specific components in the UMC reference architecture, and are user 
defined. Complete applications are divided into concurrent application tasks with 
defined synchronisation and data access mechanisms. Since the design of a 

particular UMC machine is seen as very application dependent, the application task 

structure is deliberately not explicitly defined. The task level therefore supports the 

concept of multiple tasks which can be arranged both hierarchically and 
heterarchically in a user defined manner, as determined by the requirements of 
individual applications. 
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o Handler Level 

The handler level is the lowest level and consists of handlers and associated handler 

information modules. This level provides isolation between the internal unified 

UMC system representation and external devices. A defined type of handler is 

required to cater for each generic class of external device. 

5.3.3.3 Reference Architecture Communication 

-, Machine to Above 

No cuffent specification. 

1, Tasks to Global Data View 

Consistent data access control mechanisms to any global information modules 

within the runtime system. 

Task to Task 

Defined data transfer and synchronisation mechanisms. The implementation 

platform affects specific use. 

9 Task to Handler 

Provides for the communication of UMC commands. This allows tasks to control 

virtual devices by means of a generic command set. Note that particular external 
devices may not be able to support all the capabilities of a generic device type. 

4, Handier to Device 

External device specific communication. 

5.3.4 Real Time Performance of the Current UMC 

The current UMC axis handler provides motion control with the option of defined 

velocity profiles when these are supported by the motion control devices. The use of 
intelligent 1/0 devices supervised via the UMC handlers is the intended philosophy for 
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time critical hard real-time processes beyond the performance capabilities of the UMC 

environment. For example, in the case of high speed synchronised drives, a dedicated 

motion controller would typically be utilised for each axis of motion. Pre-calculated 

position demand profiles may be stored in the motion controller local memory and drive 

synchronisation is achieved heterarchically via a common clock [7]. In this supervisory 

role the UMC system performs device set-up, monitoring and adjustments via 

appropriate handler functions. 

The UMC system does not currently support tight synchronisation of multi-axis 

movement at the task level, since the handler does not have the capacity to alter its 

behaviour in real-time based on sensory feedback from the environment. From this 

viewpoint, within the current UMC system boundary multi-axis motion control systems 

are restricted to an implementation that is of the "open-loop" type. It should be 

emphasised that nearly all cur-rent commercial multi-axis motion control systems are of 

this cdopen-loop" type. Therefore, although interpolation, contouring and 

programmable transmission capabilities are being progressively incorporated into the 

system since the addition of such capabilities is intrinsic in the UMC approach, the tight 

motion synchronisation for multi-axis systems is still attained by external devices 

outside the UMC system boundary. Normally, performance limitations within the UMC 

system boundary need not however be a limiting factor on overall control system 

performance. As advances occur in state of the art external device performance these 

can be rapidly and consistently interfaced to the UMC system via the implementation 

of appropriate handlers. Nevertheless, for the multi-axis system this implementation 

may result a complex handler which might be inefficient in real-time control when fast 

communication between task level to device level is required. 

Inter-device synchronisation under software control is a prerequisite for many 

applications as described in previous chapters (ie, between closely-coupled axes, axes 

and 1/0, and selected 110 conditions). The interrupt based communication mechanisms 

at the device level can be very fast and efficient, however, synchronising hardware at 
the element or handler level is generally inappropriate because standard communication 

mechanisms and the logic functions (if they existed) would not provide the required 

application dependant functionality. This application logic has to be expressed in the 
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user task processes, but the existing task to device communication mechanisms are in 

no way fast enough for efficient 'real-time' synchronisation[8]. 

The current UMC hierarchy introduces time delays because all task to device 

communication takes place through handler process. Advantages of using handlers are: 

" Supports device data visibility 

" Application tasks are hardware independent 

" Devices are shareable between user task processes 

" Task independence from hardware error recovery 

Disadvantages of the handler approach: 

Large delays are incurred when device/hardware has to be synchronised 

at the task level. 

e Devices are not shareable between different UMC machines. 

In the following section, the IMC design method is introduced to replace the current 
handler approach in order to provide tight motion synchronisation within UMC system 
boundary. 

5.3.5 IMC Structure 

The IMC structure is based on the UMC reference architecture, since IMC modelling 

of the multi-axis machine system is much similar to UMC modelling. The Machine 

Level and Task Level remain unchanged. The Handler Level of UMC is replaced by 

Sync Level and Servo Level in order to introduce couplings between the servo axes to 

provide tight motion synchronisation. Figure 5.2 shows the IMC run-time structure. 

The dual closed-loop control structure described in Chapter 4 is used to construct the 
Sync Level and Servo Level. In this way the fuzzy logic coupling mechanism is 

embedded in Sync Level. Therefore the IMC has a closed-loop control structure 
between tasks and the external devices, so that IMC can provide tight motion 

synchronisation control without having to rely on some dedicated control software or 
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controHers (such as, the PTS[7]). Therefore, the functions of the current UMC system 

will be expanded, and the real-time performance will be improved[9]. 

5.3.5.1 The Task-Device Levels Communication in the IMC Structure 

The current UMC machine is implemented on 68OxO family processors running the 

OS-9 operating system. OS-9 can respond to extemal events via interrupts which 

generate a hardware signal to the processor. It causes the processor to suspend execution 

of the current program, and execute a separate function (called an "interrupt handler"). 

The interrupt handler carries out any tasks that require "immediate" attention, and/or 

sends a software signal to the program that wants to know about the external event. 

Interrupt based communication mechanisms are very fast and efficient[10]. 

Figure 5.3 shows the current UMC task level hardware synchronisation mechanism[8]. 
Through this mechanism, a hardware input (from either axis or 1/0 hardware) is read by 

the task, the necessary action is decided upon and an appropriate output is sent to the 

other hardware. Apart from the initial hardware interrupt to the first driver, which takes 

place in OS-9 system state, all the other actions are carried out in OS-9 user state. Each 

process waits in the active process queue until it is given a time slice (OS-9 is a time slice 
based operation system), it then carries out all its processing until its time slice is 

complete or it voluntarily gives it up. Substantial (and indeterminate) delays can 

therefore be accrued. 

In the IMC structure, the UMC handler is replaced by Sync level and Servo level. Since 

the modules in Sync level tightly link with the modules of Task level and the modules 
in Servo level include the device, the "distance" between tasks and devices becomes 

short. Figure 5.4 outlines the communication mechanism in the IMC structure. The task 

can overpass Sync level and Servo level to reach the device. 
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5.4 Summary 

7be IMC method aims to facilitate the design and control of multi-axis motion control 

systems in an intelligent manner. 

The IMC structure provides a common framework to design intelligent motion control 

systems for applications which require tight motion synchronisation. 

Since IMC is based on the UMC methodology, all facilities of UMC can be used to build 

IMC systems. 

The next chapter looks at the selection of suitable enabling technology and describes the 

implementation of the IMC method using selected hardware and software. 
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CHAPTER SIX 

Implementation of 
Intelligent Motion Control (IMC) Elements 

6.1 Introduction 

The previous chapter described the essential features of an intelligent approach to 

motion control IMC which is derived from the UMC architecture conceived at 

Loughborough University. From UMC to IMC, the major change is to the handler 

mechanism. IMC can therefore be considered as a 'special case' UMC, which provides 

tight motion synchronisation at task level. The realisation of IMC only necessitates the 

implementation of the elements in Sync level and Servo level. Elements in Machine 

Level and Task Level are unaltered. This chapter provides an in-depth discussion of 
implementation methods for the Sync level and Servo level of IMC and documents the 

design of the real-time execution modules. 

6.1.1 Hardware Selected Ensuring Adequate Real-Time Performance 

IMC can be considered as a 'special case' of UMC, as such, it is very convenient to 

implement IMC in the same environment as that of UMC. However, since the motion 

state information is needed to feedback t6 the Sync level in IMC, fast communication 
between Sync level and Servo level is required. Generally speaking, in order to tightly 

control the motions the sample rate for the Sync level should be as fast as in the Servo 

level[ 11. But for some applications, such as web synchronisation, the Sync level closes 

a loop (for example, the tension loop) which may be slower in nature than the position 
loop at the Servo level. 

Computation speed and the real-time response of the local operating system are two 

issues that will influence the co-ordination and synchronisation performance and as 

such require consideration when selecting hardware for an IMC system. The current 
UMC machine is implemented on 680xO family processors running the OS-9 operating 

system. The 680xO family processors with a 68881 floating-point coprocessor have 

powerful calculation capability, and OS-9 can respond to external events via interrupts 
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which generate a hardware signal to the processor. Interrupt based communication 

mechanisms are very fast and efficient[2]. 

6.2 Software Development System 

The OS-9 operating system, on a Syntel VM022 processing platform, is used to 

implement the IMC elements. At the heart of the VM022 is a 68020 processor running 
OS-9, together with a 68881 floating-point coprocessor. The operating system OS-9 

was originally conceived around 1979 by Nficroware Systems Corporation, and has 

become one of industry's standard operating system environments for real-time 

applications. It presents a multi-user, multi-tasking kernel with comprehensive 
input/output (1/0) capabilities, and is robust enough to support real-time processes. The 

version OS-9/68OxO can be used across the range of the 68OxO microprocessor family. 

To fully exploit its potential, the 'C' programming language has been chosen by the 

originators for the operating system. 

Interfacing to the outside world is achieved by using position independent modules of 

code called 'device drivers'. Upon receiving an interrupt signal, the drivers access the 
1/0 memory locations of the interfacing hardware and buffer the values into system 

memory. The system memory is then accessible to an awaiting C program. Since OS-9 

is designed to be interrupt driven, accurately timed acquisitions can be achieved with a 

robustness which is not always available with some other operating systems, such as 
PC-DOS and UNIX [2]. The drivers are also re-entrant, enabling the same driver to be 

shared by many processes, each with its own device. 

63 Motion Controller 

The Quin Systems multi-axis digital motor control modules -- DSC-lM -- are used 
as motion controllers[3]. They are used for multi-axis operation in a G64 bus based 
OS9 computer system. The DSC-l controller comprises hardware and software to 
control one servo system. They may be used as part of a multi-axis servo system in 

conjunction with other modules. They receive commands via the systems bus from the 
host processor. 
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6.4 Interfacing 

6.4.1 Interfacing Hardware 

For machine control with multi-axis something more is needed -a machine controller. 
It is a unit that has enough processing capacity to coordinate operations of individual 

servo-drives. As operational elements of a machine the independent servo-drives 

should operate according to the machine controller's commands. This leads to a 

structure where the physically distributed independent servo-drives are connected to the 

machine controller. 

Figure 6.1 describes the interconnection which uses a parallel interface[13]. The chosen 

motion controllers (DSC-lM) are interfaced to the OS-9 computer system through 

G-64 bus[31. 
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6.4.2 Interfacing Software 

Communication with the servo module is performed by the dscl device driver. The 

DSC-1 uses device driver functions to provide all the interface functions between the 

axis controller module(s) and the host OS9 system. They allow commands and data to 

be sent to and from the module, and provide the facilities for setting up position data 

transfers between axes to support the position mapping and broadcast functions. They 

also provide comprehensive mechanisms for signalling between the axis cards and the 

host system. 

6.5 Real-Time Multi-Axis Execution Modules 

6.5.1 Motion Control Applications -- Real-time Systems 

A real-time system is a system which has timing constraints associated with its actions. 

The timing constraints are of course dependent upon the application. Stankovic, [5] has 

defined a real-time system to be a system where the "Correctness depends not only on 

the logical result of computation but also on the time at which the results are produced". 

Consider a real-time system composed of several processes (activities in the computer 

system) which perform one or more actions in order to control the motion of a 

mechanical system. The system may consist of several layers. An IMC structure has 

a machine level, a task level, a sync level and a servo level. Some important 

characteristics of the real-time system include: 

(1) The granularity of the timing requirements for various actions. 

(2) Whether the timing requirements are periodic or aperiodic. 

(3) Whether the timing requirements are soft or hard. 

(4) Reliability requirements of the system. 

Most processes in the considered motion control system are periodic and can be divided 
into "computations" and "sampling/actuating" processes[4]: 

1. Periodic computations I Ci, Di, Til Ci<Di<Tl; 

11. Periodic actuating or Sampling 1q, Dj, Tj) q<Dj<Tj 

where C is a worst case execution time, D is the deadline and T is the period. 
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The type I is required to produce a result before the end of its period (due to other 

requirements such as communication latencies or safety margins the deadline may be 

required to be smaller than the period). The type II has to perform the sampling or 

actuating action at periodic intervals of time with only small deviation allowed from the 

period, ie the deadline is usually much smaller than the period. 

Soft vs hard timing requirements usually refer to whether there is a meaning or not to 

completing the process even if the deadline of the process has expired. For a soft 

deadline this can be interpreted such that the meaning of completing the process 

diminishes towards zero as a function of time when the deadline has expired. For a hard 

deadline the meaning drops to zero directly after the deadline has been reached. Another 

characteristic is the criticality of a deadline. Most hard deadlines are critical, ie the 

computer system has failed if these deadlines are not met. However, the system usually 

can afford to miss a soft deadline. 

The periodic processes performing motion control do not have hard deadlines in the 

sense that the system has failed if one single deadline is missed. If at any time there is 

no new position data available to be sent, the device driver maintains the previous 

position value for each axis. However, repeatedly missed deadlines can lead to degraded 

accuracy and even cause instability in the controlled motion. We therefore consider the 

deadlines of this process to be critical and avoid classifying them as hard or soft. A 

real-time control system should provide a guarantee that critical deadlines are always 

met. 

In the following sections, real-time execution modules in the Sync and Servo level of 

IMC have been defined. 

6.5.2 Axis Control 

(I) Functionality Description of Axis Control Module 

Axis Control module is in the lowest level of IMC. It plans the motion commands, 

broadcasts the commands and servos the axis motors. Since different servo-drives may 
be integrated into the system, the concrete implementation of this module may be 

different. However, the functions of the axis control module are same and can be defined 

as follows: 
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9 Combination of the reference with the compensation term 

-, Broadcast of the motion commands to each channel 

* Implementation of position control algorithms 

(2) Environment Model of an Axis Controller ( DSC-1M ) 

The DSC-1 module is a complete control system for a servo motor. It has its own 

processor with independent programs and data memory. It is normally supplied with 

comprehensive firmware which performs all the real-time functions and interfacing for 

the servo system. The module includes an input for an incremental position encoder, two 

analogue outputs, one as the main speed control signal for the power amplifier and one 

as an auxiliary output, a spare counter/timer input and output, seven digital inputs, seven 

digital outputs, and two RS-232 serial ports. Figure 6.2 shows the environment model 

of DSC-1. 

Host Installation 
Circuits System Device 

1/0 
Axis Controller ( DS C- 1 

Peer Axis 
Device Controllers 

Axis Amplifier Gearbox 
Sensors 

IIII 

Drive --- Drive, power amplifier. 
Axis Sensors -- Digital incremental position encoders which provide two 

signals in quadrature. 
Safety Circuits -- ISO-1 module, which isalates the DSC-1 servo controller 

from external equipment 

- Gearbox --- Gearbox, transmission,.... 

- Peer Axis Controllers --- Other axis controllers. 

- Installation Device --- PC, terminal, ... 

-I/0 Device --- Extemal switches, a PLC, ... 

Figure 6.2 Environment Model of DSC-1 
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(3) Function Charts in Axis Control Module 

The software in the Axis Control Module was written in a mixture of 68000 assembly 
language and C. The dscl device drive (including interrupt service routine) and DSC-1 

control functions were written in assembly language due to the low-level activities it 

performs, and in order to be as quick and efficient as possible. High-level language C 

access to the driver is provided through a library of device driver interface C. functions, 

which may be linked with the other C functions at compilation time. The function chart 
is shown in Figure 6.3. Appendix IH includes the C-code of these functions. 
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C Language 
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13 Controller state setting 
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Control Command Sending Mechan 

ti Link channels 

a Set regular position data interrupt mode Ia 

Broadcast position buffer 
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I 

--------- 
Assembly Language 

Device Driver 

Control Block 

Encoder Block Error Block *. a 

--------------- ---------------- 

Figure 6.3 Function Chart of Axis Control Module 
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6.53 Motion State Assessment Module 

The motion state assessment module maintains the best estimate of the state of the 

machine in real-time. It includes the following operations: 

-, Sensor data capture 

9 Sensory processing 

(I) Sensor data capture 

For event synchronisation, the motion control systems must be able to coordinate their 

movement with an external motion event. With precision servo control, the purpose is 

to be able to do this coordination quickly and accurately, often 'on-the-fly'. The actual 

methods used to synchronise the motion under direct control with external events have 

tremendous impact on the speed and accuracy of the entire process. 

When the events occur at a regular time, then continuous synchronisation is required. 
The external event is usually a timer or some trigger[3]. The interval of the events is 

the servo sample time. Because the events can be pre-planed and are cyclical, the data 

capture can be set cyclically. 

Another class of application is the real-time capture of axis position under control at the 

occurrence of an external event(s)[6]. This is commonly used in registration 

applications, such as printing or cutting on the fly, and to even out spacing of objects on 

a conveyer for packaging or other processing. This mechanism is also used during the 
homing-search move for any axis with an incremental sensor, even if the application 

requires no further synchronisation. 

The above applications require the ability to receive a signal from a sensor at random, 

then take proper action based on the state of the controller, especially position, at the time 

of the signal. In digital electronic terms, the controller must be able to detect a signal 

edge, copy the contents of the position register(s) into working register(s), and perform 

some action based on that position inforTnation[6][7][8]. 

There are three methods for capturing position at a signal transition in a digital control 

system[6][7]. One is software polling of the input, and copying the contents of the 

position counter into a storage register (usually RAM) when a change in the input is 

detected. In a typical motion controller, which is cycling between tasks such as servo 
loop closure, trajectory update, move planning, error condition checking and monitoring 
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inputs, the potential delay in detecting the input signal can be 10 msec or more. Because 

the system is moving, the position captured on detection of the input signal can be 

substantially different from the actual position at the time of the signal. At a speed of 

100 nun/see (slow for many applications) a 10 msec delay means a1 mm error. An error 

this large would be enough to destroy the quality of colour printing with multiple passes 

referenced to a common registration mark. To keep sufficient accuracy, this latency has 

often caused system designers to slow down the motion when expecting an input signal. 

Many machine tools require a two-pass homing procedure for this reason. Ibefirstpass 

is fast, but inaccurate; the second pass is short and slow to get the required accuracy. 

Another method of position capture is to bring the signal to an interrupt input on the 

motion control processor. On receipt of the interrupt, the processor suspends whatever 

calculations it is performing, figures out which interrupt it received, and executes the 

proper instructions for that interrupt[2]. Here, that means reading the position 

register(s). This process usually involves a delay of several microseconds between 

receiving and reading the position. This is a factor of a thousand better than the polled 

method, but it still can limit speed and/or accuracy. To keep delays this short, it must 
be able to 'snapshot' the position registers in between servo cycles. If not, there will 

always be a potential of one servo cycle delay (approximately 1 or 4 millisecond). At 

100 mm/sec, a1 [tsec delay can introduce a 0.1 micron eff or. A 10 [tsec delay could 
introduce a1 micron error at this speed[6]. 

The third method of capturing position on an input signal is to devote dedicated hardware 

to the process[6][7]. The easiest way to do this is to have the input signal directly latch 

the contents of the active position counter into a buffered register. Because this capture 

requires no software intervention, the only delays are the hardware delays - the gate 
delays of the position circuits. These delays are usually in tens of nanoseconds; a factor 

of a thousand better than the interrupt method, and a factor of a million better than the 

polled method. 

A special register should be dedicated just to this function. Many motion controllers 
latch the contents of the position counter into a buffered register every servo cycle. But 

because the registration inputs are asynchronous to the control functions, we cannot use 
the same latching register for registration and the servo cycle without possibly degrading 

servo position information accuracy. 



Implementation ofIntelligent Motion Control (IMC) Elements 108 

Because the hardware capture delays can be smaller than the minimum time interval 

between position counts, the hardware technique, used properly, can guarantee to 

capture position on the exact count of the input signal. Therefore, hardware position 

capture imposes no additional speed or accuracy limitations on the motion control 

system. There is no need to slow down the system when the registration signal is 

expected, unless physical constraints dictate this need. 

It is important to realise the difference between the delay in capturing the position on 

a trigger, and the delay in starting to react to it. In many systems, particularly those with 

a polled position capture, these delays are the same - as soon as the controller sees the 

trigger, it captures the position and starts to calculate the response. However, the 

reaction delay can often be much longer than the delay in capture. The total response 

time (delay to start, calculation time, and physical response time) must be short enough 

to finish in time for the required synchronised action (e. g. printing, cutting, inserting). 

The problem of sensor data capture mentioned at this point is a general discussion. When 

using the DSC-1 motion controllers to implement the Axis Control Module for 

continuous synchronisation control, a DSC- 1 command is used to ten the servo modules 

to transmit the host processor various data values continuously, on each servo time step. 
Therefore, in the Sync level of IMC, state feedback information is available. 

(2) Sensory Processing 

Figure 6.4 gives a very general Sensory Processing module[9]. The Sensory Processing 

function is responsible for filtering incoming sensor data, comparing the data stream 

with predicted values supplied by the Locations in the Task Level, integrating sensor 
data over time, extracting a historical trace of the data values, performing some special 
functions on the data to allow data fusion from multiple sensors, and applying windows 

to the data stream in order to detect sensory input which has exceeded an event threshold. 

in multi-axis motion synchronisation applications, the main function of the Sensory 

processing is for providing the detected synchronisation error to the Motion Control 

Mechanisms. 
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Figure 6.4 Sensory Processing. Source: Quintero. 

6.5.4 Motion Control Mechanisms 

The motion control mechanism is constructed by a coupling or other type of control 

algorithm. The 'closely coupled' components of the motion control system are 

inter-linked by the software mechanism. The motion of all of the axes defined in a 

software mechanism can then be coordinated through the coupling control algorithm. 

The control algorithms can be simple cross-coupling algorithms, a scalar field control 

algorithm and a fuzzy logic coupling algorithm as developed in Chapter 4. It is these 
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algorithms that control the motion synchronisation among the axes. Figure 6.5 shows 

the motion control mechanism module. The following section gives a more detailed 

description of the implementation of the fuzzy logic coupling algorithm. 

Reference Command 

Update Compensation Compensation 
0 1ý0 cd 
ca 

0 

rn Motion Control Algorithm Motion 
Commands 

Motion Control Mechanism 

Figure 6.5 The Motion Control Mechanism Module 

6.5.4.1 Implementation of the Fuzzy Logic Coupling Control Algorithm 

i) Organization of the FuzzY Logic Coupling Control Algorithm 

Figure 6.6 illustrates the flow of data through the fuzzy logic coupling control algorithm. 
System inputs (the synchronisation error and the rate of change of synchronisation error) 

undergo three transfort-nations to become system output (the compensation terms for the 

reference commands of axes). First, a fuzzification process that uses predefined 

membership functions maps each system input into one or more degrees of membership. 
Then, the rules in the rule base (also predefined) are evaluated by combining degrees of 
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Degrees of Rule Output 
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Figure 6.6 Fuzzy-system data flow. Source: Viot. 

membership to fonn output strengths. And lastly, the defuzzification process computes 

system outputs based on strengths and membership functions[10]. 

( ii ) Data Structures of the Fuzzy Logic Coupling Control Algorithm 

To implement the fuzzy control algorithm in C programming language, the following 

types of data must be accommodated: 

o System inputs, 

* Input membership functions, 

* Antecedent values, 

4, Rules, 

* Rule-output strengths, 

* Output membership functions, 

* System outputs. 
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Figure 6.7 illustrates an overall linked-list arrangement of system-input and 

membership-function nodes. The details of these structures are shown in Figure 6.8. 

The system-input node is straight-forward and contains an input name, and a 

membership-function pointer. The membership-function structure contains two points 

and two slope values that describe a trapezoidal membership function. This information 

is used to calculate antecedent values (degrees of membership), as shown in Figure 6.9. 

The resulting antecedent value is stored in the "value" field of the membership-function 

structure. 
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input 2 -"N 

The rate of change 
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Mf 1.1 mf 2.1 
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mf 1.2 mf 2.2 
Set of Positive Positive 
Membership Small SmaU 
Functions for 
each System 
input 

Mf 13 mf 23 

Zero Zero 

Figure 6.7 Input-data Arrangement. Example: mf 1.2 is 
the second membership function of system input 1. 
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Rules can be represented by two sets of pointers; see Figure 6.10. The first set indicates 

which antecedent values are used to determine the rule's strength, and the second set 

points to output locations where the strength is to be applied. 

Rule Base 

if part if part 
1.1 

1 
1.2 

Rule I< 
then part then part 

1.1 1.2 

if part 90 2.1 

Rule 2 
then part 

2.1 

Figure 6.10 Rule-base Structure. Example: if part 1.1 is the 
first antecedent of rule 1. Source: Viot. 

Figure 6.11 shows a data arrangement similar to the input-data structure which handles 

outputs and output membership functions. 

System output 2 
Outputs inpensation for ompepsatio Co 

output I ý*ý 

--Io. 

( 

axis 11 
C4 

axis 2n 
for 

Set of Mf 1.1 
Membership 
Functions for 
each System 
output 

Figure 6.11 Output-data Arrangement (similar to the input-data 
structure shown in Figure 6.7) 
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Appendix HI includes the C-code definition of these data structures. The 

implementation of fuzzy systems at the assembly language level is explained in [ 111 [ 121. 

6.6 Summary 

A particular implementation of the IMC control structure conforming to the IMC design 

method has been created. The implementation is conducted in the same environment 

as that of UMC. Actually, only the modules in Sync level and Servo level are 

implemented, since the elements in Machine Level and Task Level are the same as for 

UMC. 

The motion controllers DSC-lM are used to form the basic part of the Axis Control 

module for continuous synchronisataion control the axes. Although the whole 
implementation is based on the DSC-1M modules, the defined execution modules can 
be applied in a generalised way. 

The special implementation issue of the fuzzy logic coupling control algorithm is 

included. The software mechanism which is based on this control algorithm is verified 
in the next chapter. 
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CHAPTER SEVEN 

Verification of the Software Mechanism 
of Intelligent Motion Control (IMC) 

7.1 Introduction 

An experimental rig was developed in order to test the various software coupling 

mechanisms. This comprised a computer system which was interfaced with two DC 

servo-drive position control systems. An overall system schematic is shown in Figure 

7.1. Two DSC-IM controllers are connected to the OS-9 based computer through a 

G-64 bus. When each DSC- 1M motion controller is sequently linked with a PWM drive 

0 

E: l 

Au N= 
PC 

ýCDC motor 
drive 

I 

ý(Zc drivj DC moto 

VM022 OS-9 
Comouter Svstem 

Li 
Terminal 

Figure 7.1 - System Schematic 

Sun Workstation 
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amplifier, a DC motor, and a feedback encoder to form a complete servo-drive system, 

a simple multi-axis motion control system is established. The C-codes are written in 

a Unix-based Sun workstation environment, then, compiled by a UNIX-OS9 cross 

compiler and the result object codes run in the OS-9 based computer. Logged data is 

analysed by using Excel which is a DOS based software package. 

Before running the programs in the real system, a simulation study is carried out. The 

reasons for the simulation study are: 

(i) simulation is the commonly used method to verify fuzzy systems[l]; 

(ii) simulating the system before linking to a real system is a safe and easy 

method for debugging; 

(iii) simulations can extend the current hardware's limits to show the 

performance boundary of the proposed methods. 

For the simulation study, the servo-drives were identified and modelled. These models 

were used to run simulations to investigate the behaviour of the system under different 

types of control. The simulation analysis enables parameters of the fuzzy logic coupling 

mechanism to be evaluated. Since there is always a modelling error when using a 

mathematical tool to model a system, these evaluated parameters have to be refinded 

when they are applied to the real experimental rig. 

7.2 Modelling and Identifying the Digital Position Control Systems 

Modelling a digital position control system is well defined in control system text 

books[21-151. In Appendix IV, the details of the modelling are given. Figure 7.2 shows 

a representative block diagram of a digital position control system. 'Me desired position, 

expressed in encoder quadrature counts is r. This position is compared with the actual 
feedback, c, and the position error, x, is determined. The control block of the 

microprocessor-based motion controller amplifies the position error, x, and filters it. 

The output of the filter is then applied to the DAC which generates the motor command 

V. The motor and the driver are modelled together by the combined transfer function 

M(s). This is the transfer function between the motor conunand, v, and the angular 

position of the motor, 0. The motor angular position is sensed by the encoder which 
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Figure 7.2 Modelling position control system elements 

generates two signals in quadrature, channels A and B. These two signals are then 

applied to the position decoder, which generates the position feedback, c. 

7.2.1 System Identirication 

For the simulation and experimental studies, two position control systems were chosen 

which have the same configuration. The sampling period chosen for the implementa- 

tions was 4 ms, corresponding to a sampling frequency of 250 Hz which is the same as 

the motion controller used for the experiments. The motors are DC motors, which are 
driven by a PWM drive. The characteristic of the motors is given in Table 7.1[6]. The 

Table 7.1 Characteristic of the DC Motor 
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encoders have N=250 lines per revolution. The control block of the motion controller 
is shown in Figure 7.3. The DS C- 1 has a PID with velocity feedback and feed-forward 

control algorithm. 
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I measured position 

Control Block 
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Figure 7.3 The DSC-1 Servo-drive System. Source: Quin. 

Motor 

Encoder 

With reference to Appendix IV, the system parameters can be obtained as foHowing. 

From Table 7.1, Tm--0.0084 S, Te--0.0021 s, and the transfer function of the motor is: 

M(S)= 
I/ Kr 

0.0084s+ I) 
1/0.071 

0.0021s +1 ) 

s(0.0084s + 1) ( 0.0021s +1 

rad 
volt 

The position is sensed by an encoder with a line density of N=250 lines/rev. Since the 
encoder has two channels in quadrature, it is possible to increase the resolution to 4N. 
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In this case the effective resolution is 1000 quadrature counts per revolution. This 

corresponds to a feedback gain of. 

1000 coun s (7-2) Ke 
2n rad 

From the Figure 7.3, the DAC gain is: 

Kdc ý 
10 

1 
count 

(7-3) 
256 x 2048 

The sampling time(T) is 4ms. Therefore, the model of the ZOH is 

F(s) =e -sT/2 =e -O. W2 s (7-4) 

At this point, it is best to describe all of the system elements by block diagram. This is 

done in Figure 7.4. 
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Figure 7.4 System Elements 
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73 Case Studies 

Programs have been written to execute two kinds of motion synchronisation -a 2-axis 

system with a linear position relationship and a 2-axis system with a nonlinear circular 

position relationship. The position relationships of these systems are shown in Figure 

7.5. 

(a) (b) 

Figure 7.5 (a) Gearing path, (b) Circular path. 

7.3.1 Linear Gear Implementation 

A linear position relationship of a 2-axis system can be represented by a gearbox path 
(x=ky). As shown in Figure 7.6, an actual position point m (xy) may not be on the path, 

and a synchronisation error (e) occurs. In order to meet synchronisation requirements, 

the actual point m should be "forced" back to the path M (ie to eliminate e). For each 

axis, the modified value will depend on the other axis'. 

One case is to "force" m back to q (as the nearest state point to m lying within the path 
M). The modified value for each axis will be : 

a= (x - ky) / (1 + k2) 

b= (x - ky) k/ (1 + k2) (7-5) 

From the above equations (7-5), the compensation for y axis is k times than that for x 

axis. 
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ky ) /I I -+k2 

(x-ky) /(1 +k2) 

(x-ky) kI (I +k2) 

Figure 7.6 A Two Axis System with Linear Relationship, X=KY 

From the synchronisation viewpoint, it does not matter that the m is "forced" back to 

any specific point in the path. However, in order to reduce the tracking error, it is better 

to force m back to the reference point (r). However, the modified values for each axis 
have to be related to each other. If axis X reduces by a, then axis Y should increase by 

b. If axis X reduces by less than a, then, axis Y must increase by more than b. 

In the case of trying to approach the reference point r, the modified values for each axis 

wi. U be: 

x -x, 
b=Y- Yr (7-6) 

Figure 7.7 shows this case. The above expressions imply that the compensation term 
for each axis is trying to completely eliminate the following errors of the axes. However, 

this approach may increase the synchronisation error during the reduction of the 
following errors of the axes, since -- - 

it is only partially true that when the following 

errors of all axes are reducing, the synchronisation error will reduce. Figure 7.8 shows 
probable steps in reduction of the following errors of the axes to approach the reference 
point r. Although the axial errors (xj - Xr ) and (yj - yr ) at point ml are smaller than 
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rr (Xr 
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e 

ky ) IFI + kl a Y) e= (x T+ kl 17111 
11x a= x-x, 

xr x y-y, 

Figure 7.7 A Two Axis System with Linear Relationship, X=KY 

(x - xr ) and (y - y, ) at point m, the synchronis ation error el at ml is larger than that e 

at m. Therefore, the synchronisation control and tracking control have to be separated. 

The above expressions (7-6) can not be used to achieve the two control goals. 

In an extreme case, when one axis has reached saturation (or in master-slave configur- 

ation), the other axis (or slave) has to take complete responsibility to maintain synchro- 

nisation. The modified value for the unsaturated or slave axis will be: 

a=O 

y- x/k (7-7) 

Figure 7.9 gives this derivation. In this case, error b instead of e is used as the target for 

elmiunation to maintain synchronisation. 
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Figure 7.8 A Two Axis System with Linear Relationship, X=KY 
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Figure 7.9 A Two Axis System with Linear Relationship, X=KY 
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7.3.2 Circular Path Implementation 

The reasons that a circular position relationship of a 2-axis system is chosen to represent 

a nonlinear relationship between the axes are: 

4, Such a path might be used to describe a trajectory for a tool on an xy-table. 

Applications are known where a square path with rounded corners is used ( for 

example, glue-laying[71). 

A circular path is relatively easy to implementation compared with many other 

nonlinear relationships [7]. When the position of each axis change continuously in 

a sinusoidally mode with time, the joint point of the 2-axis' positions will follow 

a circular path at constant speed. 

In Figure 7.10, a graphical analysis for synchronisation control is given. When the 

synchronisation error is: 

XC)2 + (y - yo)2 -R (7-8) 

the modified values for each axis will be: 

e cosO. 
(7-9) 

e sinO. 

where 

sin0. =- 
Y-YO 

j (X -X . 
)2 + (y - y. )2 

COSO. = 
X-x 0 

ý (X -X 0 
)2 + (y - yo )2 
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Figure 7.10 A TWo Axis System with a Circular Relationship 

7.4 Simulations 

The C programming language was used to write all software modules for the IMC. For 

the simulation study, two position control systems were chosen which have the same 

configuration as shown in Figure 73. The sampling period chosen for the 

implementations was 4 ms, corresponding to a sampling frequency of 250 Hz which is 

the same as that in the motion controllers used. 

The system was simulated using the facilities described in Figure 7.1. The programs 

were written in a Unix workstation environment, compiled by a Unix-OS9 cross 

compiler and the object codes run on an OS-9 based target machine. The logged data 
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was analysed using Excel which is a DOS Windows software package. The system 

under simulation is based on the schematic of Figure 7.11. The controller and plant 

d 1 

Ei 
0 u 

plant -YI II MW 

T 
u2 

2 

plant 
2 

d 2 

Figure 7.11 Block Diagram of the Simulated System. 
Souce: Jenkinson. 

(drive & motor) are modelled using mathematical functions (for filtering the data) are 
implemented as software modules. When the system is "running", these modules enact 
the "response" in order during each "sample time'r (4ms)". The disturbance added to 

one of the "axes" is simulated by applying a step signal at d, or d2. 

7.4.1 Test Simulation Using a Linear Relationship 

The two "motors" are assumed to "run" at constant rates where a speed differential may 
exist. The reference generation module provides commands which are calculated based 
on a trapezoidal velocity profile defined by the acceleration, velocity, and distance of 
the requested move. Before adding the disturbance to the "motors", the "controllers" 

controller 
1 

r2 

controller 
2 

have been tuned to make the individual axes stable with minimum following error. The 

gains of the "controllers" are given in Table 7.2. 
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Table 7.2 Simulation Parameters 
I Simulation Parameter I Widi Fuzzy Logic Coupling 

I 
Widiout Fuzzy Logic Coupl: in] 

kp =58 ki =30 kd =1.5 kp =58 kcj =30 kd =1.5 

Position Control S ysterr kv = 20 kf = 15 km =I 0 kv =20 kf =15 kzn=10 

Gains & Constants 
kdc =0.000019 kde =0.000019 
ke = 159.135 ke =159.135 
Tm = 0.0084 Te =0.0021 Tm--0.0084 Te =0.0021 

Disturbance D=0.2 v D=0.2 v 
t 0.2 s to 0.3s t=0.2 s to 0.3s 

Distance Sd 5000 (counts) Sd = 5000 (counts) 
Speed 10000 (counts/s) S S= 10000 (counts/s) 
Acceleration v S 200000 (counts/sý Sý = 200000 (counts/ý) 
Deceleration a S, d= 20WOO(counts/e) a S 

ad = 200(M(countsfi') 

(counts/s) Velocity 
10000 - Time (s) 0.1 0.108 0.412 0.5 

jL0.612 
t1L 

-30- 0 Disturbance Distance D=0.2 v 
0 i0oo ing 3ý20 44W 5000 (counts) 

Figure 7.11A The Trapezoidal Velocity Profile and the Disturbance 

In the motion control mechanism module, seven fuzzy subsets are selected for its input 

variables (synchronisation error _e and the rate of the error change Ne ) of the fuzzy 

coupling algorithm. The fuzzy subsets for the outputs ( compensation terms for each 

axis, Rln and R2m ) are selected as PUL, PMM, PSL, PSM, PS, PVS, ZR, NVS, NS, 

NSM, NSL, NMM and NML. They form thirteen fuzzy subsets. Their values and 
dimensions are heuristically set and adjusted to keep the whole system stable and give 
high synchronisation accuracy. Figure 7.12 shows the fuzzy membership functions for 

the input-output variables. The fuzzy rule bases are set up using the principles 
developed in Chapter 4. Figure 7.13 gives the details of the fuzzy rule bases. The fuzzy 

logic coupling software mechanism uses the heuristic control "rules" which are based 

on quantised values of _e and 3-e. We do not quantise inputs in the classical sense that 

we assign each input an exact output level. Instead, each linguistic value equals a fuzzy 

set that overlaps with adjacent fuzzy sets. The fuzzy logic coupling mechanism uses 
triangular fuzzy-set values, as Figure 7.12 shows. The lengths of the upper and lower 
bases provide design parameters that we must calibrate for satisfactory performance. 
A good rule of thumb is adjacent fuzzy-set values should overlap approximately 25 

percent[l]. 
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Figure 7.12 Fuzzy Membership Function for Input/Output Variables 
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Figure 7.13 Fuzzy Rule Bases for Simulation Study 
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7.4.2 Discussion for Linear Relationship Simulations Results 

The plots in Figure 7.14 show simulation results for a 1: 1 ratio 'gearbox' application. 

In order to clearly show the influence of the disturbance for the different types of control 

structure, a large constant disturbance is added to an axis. The suitability of the 

disturbance for these servo-systems was not a consideration. To which axis the 

disturbance is applied is arbitrary. In the simulation test, a constant disturbance was 

added to the axis 2 as shown in Figure 7.11 A. 

Figure 7.14a shows the case of two independent servo-drives. When a disturbance is 

added to an axis, a big position synchronisation error occurs. but the disturbed axis 

gradually reduces the following error caused by the disturbance, then a period the 

accurate synchronisation returns. The reason for this phenomenon is that even though 

there is no coupling among the axes, the PID control algorithms included in each axis 

have the ability to reject the external disturbance. However, in this case, the external 

disturbance is only 'seen' by the disturbed axis, the other axis does not 'know' what is 

happening in other parts of the system. 

Figure 7.14b shows the response using fuzzy logic coupling in the equal-status 

structure. In this case, the synchronisation error caused by the disturbance decays very 

rapidly. When the fuzzy parameters are well tuned, better results can be expected. This 

will be shown in the following nonlinear case. With the fuzzy coupling mechanism, the 

disturbance results in a reaction on both axes to minimise the synchronisation error. 

Figure 7.14c illustrates the performance of the closed-loop linked master-slave 

structure. When the slave has been disturbed, the coupling mechanism can still help the 

slave cope with the disturbance. The result shows that the synchronisation error is 

reduced much more quicker when compared with the uncoupled axes seeing the same 
disturbance as in Figure 7.14a. 

The reasons the synchronisation error can not be completely eliminated when using the 

fuzzy logic coupling mechanism are: 1) the disturbance is too large and when applied 

suddenly makes the axis reach its saturation state; 2) the fuzzy parameters and the rule 
bases needed to be optimized. Tools do not currently exist which can achieve this 

optimisation process. 
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Figure 7.14 The simulation results of a linear 'gearbox' application 

91111 

Motor I position (counts) inme (nw) 

§IIII 
Motor I position (counts) Time One) 

71me 



Verification of the Software Mechanism of Intelligent Motion Control (IMC) 133 

7.4.3 Test Simulations Using a Circular Path Reference 

In order to let thejointpoint of the two axes'positions "travel" around in aradiusR cycle 

path with a constant angular velocity w, one axis will follow a sine function and the other 

axis will follow a cosine function. The positions of the two "motors" can be represented 

as: 

ml =R sinwt; 

m2 =R coso)t, (7-11) 

where t is the time. 

The simulation is carried out in three phases. Firstly, both "motors" start to move from 

the original point (zero), then run at a same constant speed towards the circular path. 
Upon reaching the circular path the two "motors" follow the equations given in (7-11). 

After the joint point of the two axes' positions "travels" around the circular path twice, 

the "motors" move at a constant speed to return back to the original point (zero). 

Since the same "motors" are used in the linear and nonlinear cases, the control 

parameters including fuzzy parameters set in the linear case can be used directly in the 

nonlinear case. Also, the fuzzy rule bases set in the linear case can be used in the 

nonlinear case. The parameters used in the nonlinear case are given in Table 7.3. 

Table 7.3 Simulation parameters for circular path 

Simulation Parameter With Fuzzy Logic Coupling Without Fuzzy Logic Coup! 
ý' 

Distance Sd= 5000 (counts) Sd = 5000 (counts) 

0 Speed S= 10000 (counts/s) 
v 

$v = 10000 (counts/s) 
Acceleration = 200000 (counts/I S Sý = 200000 (countsfi) 

.S Deceleration 
a 

S= 200000 (counts/? ) ad 
S= 200000 (counts/? ) ad 

angular velocity w (0 = 2.758 (radians/s) 0) = 2.758 (radians/s) 10 

U radius R R= 5000 (counts) R= 5000 (counts) 

Disturbance D=0.2 vD0.2 v 
It=2.136 

s to 2.14's 

It2.136 

s to 2.14 s 
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7.4.4 Discussion for Circular Path Simulations Results 

The plots in Figure 7.15 show simulation results for a circular path application. The 

disturbance was added to the axes in the same way with the same magnitude as with the 

linear case, but the disturbance period was very short, only lasting 4ms. An intermittent 

disturbance of this type presents most problems for synchronisation control. The 

simulation results of the linear case verify this viewpoint. As shown in Figure 7.14, the 

effect of the disturbance only happens at the time of start and end of the disturbance. 

The simulation results shown in Figure 7.15 reproduce the phenomenon exhibited in the 
linear case. 77he fuzzy logic coupling algorithm demonstrates the ability to reject 
disturbances better, and has a shorter settling time. Figure 7.15c shows a response for 

a well tuned fuzzy logic coupling, this clearly illustrates that good synchronisation can 
be achieved even when disturbances are present. 

7.5 Experimental Verification 

The experimental set-up, as shown in Figure 7.16, consists of two digital motor control 

systems (Quin Systems, DS C- 1M), a low-loss pulse width modulated DC drive (Parker 

Digiplan Ltd, UD5), two DC servo motors (Electro-Craft, M540SA), and an OS-9 

computer system (a Syntel VM022, with a 68020 processor running OS-9, together with 

a 68881 floating-point coprocessor). The software structure is shown in Figure 7.17, 

which is constructed from to the modules developed in Chapter 6. 

The fuzzy logic parameters used in the simulation are also used for the experiments, with 

some minor modifications to account for the existence of modelling errors. The gains 

of the motion controllers were set to minimise the following error in each servo. Table 
7.4 shows the gains set, Figure 7.18 gives the fuzzy parameters and Figure 7.19 shows 
the rule bases. 

The following experiments were conducted: 

(i) to reduce the synchronisation errors caused by the different characteristics 
of the two servo-systems; and 

(ii) to reduce the synchronisation error caused by an external disturbance. 
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Figure 7.15 The simulation results for a circular path application 
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Figure 7.16 Hardware Configuration Figure 7.17 Software Structure 
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Table 7.4 Parameters for Experimental Verification 

Parameters With Fuzzy Logic Coupling I Widiout Fuzzy Logic Coup! 
A 

motor 1: motor 1: 

Position Control Systerr kp =205 ki =5 kd =50 kp =205 ki =5 kd =50 

Gains & Constants kv = 1200 kf =I 000 kv =1200 kf =1000 

motor 2: motor 2: 
kp = 180 ki = 10 kd =50 kp = 180 ki = 10 kd =50 
kv =1200 kf =1200 kv =1200 kf =1200 

E Distance = 5000 (counts) S = 5000 (counts) S 

0 ý4 
Speed 

d 

S= 10000 (counts/s) 
V 

d 

S= 10000 (counts/s) 
V 

Acceleration S= 200000 (counts/i Sý = 200000 (counts/i 
Deceleration 

a 

S= 200000 (counts/I d = 200000 (counts/b S 
a d 

angular velocity to 0) 2.758 (radians/s) 0) = 2.758 (radians/s) 

0 
U: ý radius R R 5000 (counts) R= 5000 (counts) 
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Verification of the Software Mechanism of Intelligent Motion Control (IMC) 138 

(1) To reduce the synchronisation error caused by the different characteristics of 

the servo-systems 

As shown in Table 7.4, different gains were set on the two motion controllers to minimise 

the position following error on each axis. However, when combining these 

servo-systems to construct a multi-axis system for synchronisation errors may be 

introduced. The synchronisation errors between the motors can result from the different 

dynamic characteristics of the servo-systems. The largest synchronisation errors occur 
during the acceleration phase, because of the differences in the dynamic response of the 

servo-systems. In the steady state phase, the following errors of the servo-systems gives 

an approximately constant position synchronisation error. Figure 7.20a shows one test 

result, with the two motors following the same trapezoidal velocity profile. This 

synchronisation error can be reduced using the fuzzy logic coupling mechanism. The 

test result shown in Figure 7.20b illustrates the response (the synchronisation error being 

significantly reduced). 

30 
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(a) independent servo-systems 
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(b) with fuzzy logic coupling 

igure 7.20 Experimental Results (the influence by the 
different characteristics of the servo-systems) 

2) To reduce the synchronisation error caused by external disturbances 

As shown in the simulation section, the external disturbances will give rise to a 
synchronisation error and the fuzzy logic coupling algorithm will act to reduce the error 
to maintain tight synchronisation. Here, a similar approach was adopted to that taken 

. 30 
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in the simulation tests. In order to investigate the effects of disturbances to the different 

control structures, a method to apply a repeatable disturbance to an axis was required. 
A simple method was used to introduce the disturbances by fixing a random shaped disk 

on the rotor of the motor and using a spring-driven roller or plunger to push the disk. 

Figure 7.21 shows the arrangement of this method. Different shaped projections gave 

DISK Fe 

PR 

PROJECTION 
PLUNGER 

I 

SPRING 

NUT 

SCREW 

Figure 7.21 A Variable Loading Mechanism 

different loadings or disturbances to the rotor. However, this method can only be used 
for the comparison of the performance of the systems under the same disturbance. It can 

not be used for the quantitative analysis for the effects of the disturbances, because the 
exact magnitude of the disturbance is not known. 

Experimental results are shown in Figures 7.22 and 7.23 for two systems. Each Figure 
is splitintoparts (a) and (b). Part (a) shows the systernresponse without disturbance, 

and Part (b) shows the effects of the disturbance. The same disturbance is applied for 

all tests. 
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Figure 7.22 Experimental results using independent servo drives 
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7.5.1 Discussion of Experimental Results 

Figure 7.22a 

In the linear case, the result repeats the phenomenon shown in Figure 7.20a. In the 

nonlinear case (the circular path application), ripple synchronisation error occurred due 

to mismatched dynamics of the servo-systems. Similar phenomena were observed in 

[71, which also addressed mismatched dynamics. In addition, overshoot phenomenon 

occurrs at the corner where the straight-line motion transfers to the circular path motion, 

or from the circular path to the straight-line. It is quite a common situation in 

applications such as contouring[8]. In reference[8], a similar effect is observed when 

a PID controller is used for 'corner tracking'. 

Figure 7.22b 

With the introduction of a disturbance to axis 2, the system performance is degraded, as 
expected. Large peaks of position synchronisation error are observed. For the 

straight-line motion, a large load was suddenly applied to axis 2 for a short period. The 

shape of the synchronisation error curve observed is very common, when an axis is under 
PID control[8]. A variable high friction disturbance was introduced to the circular 
motion by the loading mechanism shown in Figure 7.2 1. As can be seen in Figure 7.22b, 

the controller does not provide good immunity to disturbance. A similar shape of 
synchronisation error curve was observed in [8], when the axis was under P controller. 
Therefore, we may come to the conclusion that the DS C- 1 controllers used for the axes 
were not well tuned, they acted only as P controllers. In reference[8], it was observed 
that a PID controller had a good ability in disturbance rejection. 

Figure 7.23a 

The results of Figure 7.23 are included here to highlight the differences between the two 

approaches. As seen from Table 7.4, the same control parameters were used in the two 
types of control. When using the fuzzy logic coupling control structure, better 

synchronisation can be obtained. The plots of Figure 7.23a shows a significant 
improvement over Figure 7.22a with both linear and nonlinear motion. Nevertheless, 

the corner tracking is still poor. Further investigation is needed. 
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Figure 7.23b 

The plots of Figure 7.23b shows the synchronisation errors are significantly smaller 

when the fuzzy logic coupling was used. This means that the fuzzy logic coupling does 

enhance the ability to reject disturbance. However, the improvement was not as good 

as expected, since the unexpectedly highly computational load of this algorithm 
(especially for the nonlinear motion), the coupling loop sampling time was increased. 

Currently, the sample time of the coupling loop is 8ms which is twice than that of axis 

servo loop. Therefore, more efficient hardware and software tools are required to 
implement and run this algorithm in order to reduce the execution time (ie shorten the 

sample time). This will be further discussed in the next chapter. 

7.6 Conclusions 

The software mechanism of IMC, namely the fuzzy logic coupling algorithm which has 

been developed in the previous chapters, has been verified by the simulation and 

experimental studies in this chapter. Simulations involving models of these 

servo-drives have been implemented, which verify the theory of earlier chapters. The 

performance of the linear and nonlinear motion synchronisation of two DC motors has 

been tested under normal and disturbance conditions. The results obtained were 

consistent with the theory and simulations. 
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CHAPTER EIGHT 

Intelligent Motion Control (IMC) Evaluation 
and Future Extensions 

8.1 Introduction 

A considerable amount of software has been written in order to enable the concepts of 

IMC to be tested. The fuzzy logic coupling mechanism, the core element of IMC, has 

been verified in the previous chapter. This chapter considers the capabilities of the 

current implementation of IMC, its perceived advantages, limitations, and possible 

routes to its exploitation. 

8.2 The Advantages of the IMC Method 

The proposed IMC method is expected to solve some of the deficiencies of the existing 

methods for multi-axis motion control and synchronisation. Apart from the proposed 

fuzzy logic coupling algorithm which can provide accurate synchronisation for 

multi-axis motion control systems, the IMC approach enables the multi-axis system 

designer to use the state of art single axis controllers for each individual axis, then 

integrate the axes as a co-ordinated multi-axis system in an intelligent way. The 

advantages of IMC as compared to the existing methods can be summarised as follows: 

The proposed fuzzy logic coupling algorithm can provide accurate 

synchronisation for many kinds of multi-axis motion control systems. 

e Because human intelligence in coordination can be directly incorporated 

and fuzzy control has a parallel processing structure, the fuzzy logic rule 
based approach allows a complex motion synchronisation to be created 

simply. 

4, Since the fuzzy logic based software motion synchronisation mechanism 

can couple any types of servo-drive, it is possible to apply an appropriate 

control algorithm for each axis which matches the axis dynamic 

characteristic and assigned task. 
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* With the fuzzy logic software mechanism, the bus supported motion 

controllers can be directly used for multi-axis systems where tight 

motion synchronisation is required. This makes the multi-axis system 

design very efficient compared to completely designing a conventional 

NJIMO controller. 

- IMC methods provide guide lines for designing multi-axis systems for 

a variety of motion synchronisation requirements, from position 

synchronisation to web synchronisation. 

IMC control structures support machine control architectures (such as 

UMC and MOSAIC[101) to have tight motion synchronisation 

capability at their task level. 

83 The Limitations of the Current Implementation of the IMC Method 

The IMC method is based on the introduction of a 'dual closed-loop' control structure 
for multi-axis systems and the development of the fuzzy logic coupling algorithm. The 

limitations of the current implementation of the IMC method can be categorised in the 

two groups. 

The 'dual closed-loop' control structure requires the axes state information fedback to 

the higher level (or host processor). The current implementation of IMC requires the 

motion controller to return to the host processor various data values continuously, at each 

servo time step. The main limitation of this technique is that a large data buffer is needed 

to hold all the returned data. If there are more axes, a large storage is required in the 

supervisory computer. In addition, this configuration requires a very efficient 

'handshaking' between the motion processors and host processor in order to shorten the 

communication time. 

Generally, the fuzzy logic coupling compensations need to be applied to the axes at 

every servo cycle. Using a high-level language (such as the C language) to write the 

fuzzy logic programs and running them on conventional microcomputers can result in 

long execution times when nonlinear motion synchronisation is involved. It may be the 

case that a combination of assembly language and a high speed processor or special 
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hardware, such as DSP[Il][12] or fuzzy logic processors[6][13], are required to realise 

optimised loop closure rates. 

Fuzzifying the control variables and setting the FAM rules are the ma or tasks involved i 

with this approach. They determine the system's performance (accuracy and stability). 

It is quite a difficult and time consurning process to tune manually. Therefore, a method 

for optimising the fuzzification and rule base setting are needed. 

8.4 Future Extensions 

The basic premise of the IMC method is that many multi-axis motion control 

applications have motion synchronisation requirements which can be effectively catered 

for by an intelligent integrated approach. IMC currently enables the implementation of 

multi-axis motion control systems in a intelligent manner. In a broader context the IMC 

method could be naturally extended to create a framework capable of supporting an 
intelligent approach to machine design. The suggestions listed below provide some 

possible directions for future work which could be carried out to extend the existing 

system boundaries. 

8.4.1 Parameter 71ming of the Fuzzy Logic Coupling Algorithm 

The performance of the fuzzy logic coupling algorithm is partially dependent on the 
fuzzy parameter tuning. The fuzzy parameter tuning involves: (i) modifying the span 

of the membership functions which affect the sensitivity of the fuzzy system to process 

noise[l]; (ii) determining a term set which is at the right level of granularity for 

describing the values of each (linguistic) variable; (iii) selecting the type of fuzzy 

variable, (such as monotonic, triangular, trapezoidal, and bell-shaped. ), which will 

affect the type of reasoning to be performed by the inference mechanism[2]; and (iv) 

adjusting the normalizing gains. 

So far, very few methods have been developed for tuning the fuzzy system and no 
method can handle all the fuzzy parameter tuning[31. Therefore, more general studies 
are needed to develop a parameter tuning method for the fuzzy logic coupling algorithm. 
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8.4.2 The Generation of the Fuzzy Logic Coupling Rules 

The approach used in Chapter 4 for the derivation of the fuzzy logic coupling rules is 

a heuristic method. In this method, a collection of fuzzy control rules is formed by 

analysing the behaviour associated with synchronisation of multiple axes. 'Me control 

rules are derived in such a way that the deviation from the desired state can be corrected 

and the control objective (motion synchronisation) can be achieved. The derivation is 

purely heuristic in nature and relies on the qualitative knowledge of the system 

characteristics. 

It has been shown in Chapter 4 that the control characteristics of the fuzzy logic coupling 

algorithm are similar to those of the scalar field control method. Therefore, the physical 

analogy method which is used in generating a scalar field to introduce coupling into 

decoupled systems, such as a ball on a surface[ 141, can be applied to generate the fuzzy 

logic coupling rules. Some of the ideas are shown as follows: 

We use the scalar field control concept to derive the first 7 rules (ie for the condition 
6e = 0) and obtain a parabolic curve against the synchronisation error e, as shown in 

Figme 4.2 1. 

(2) Imagine a "ball" is at the bottom of the curve ( ie when e= 0). In this case, in order 

to keep the "ball" stationary we have to provide ': force" to counteract the "kinetic 

energy" when 6e 0 0. Because of 'energy equivalence', we can use similar rules to 

generate the 7orce" to hold back the "ball". Based on these conditions, we obtain 

another 7 rules (ie when e= 0). 

(3) When the "ball" is on the parabolic curve with "speed 6e ", if 6e's direction is toward 

the bottom 0, it may help the "ball" to go down to the bottom. Therefore, we can reduce 
some 'potential energy' requirements. However, if 6e is too large, even if we remove 
all the 'potential energy' at the point, the "ball" will overshoot the bottom, then a 
counteracting force should be added. When 6e's direction is away from the bottom 0, 
it will resist the "ball" to go down to the bottom. An 'extra-force' is needed to push the 
"ball" down to the bottom. Appropriate rules are readily derived using such an analogy. 
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8.43 Intermittent Motion Synchronisation 

The IMC method can also embed intermittent motion synchronisation in which two or 

more coordinated servo-drives are brought into synchronisation at specific spatial 

positions or points in time. The problem of intermittent synchronisation is somewhat 
different and involves enforcing the synchronisation, as a discrete event, upon 

asynchronous controlled servo-drives[7]. For intermittent motion synchronisation, 

conventionally the on-line synchronisation error correction is directly added to the 

measured synchronisation error values to form the servo-controllers command. Since 

some error sources exist in the system the response to the reference may be imprecise. 

As such the on-line corrective action from the synchronisation error has to be added in 

a compensation term which includes the correct reasoning for coping with these errors. 
However, since very little data about the error sources is available in complex 

applications, to express this control action using conventional control expressions 
(equations or logical expressions) is very dffficult, if not impossible. The proposed 
fuzzy logic coupling approach provides a framework to implement the control reasoning 
for such corrective action. 

The ability of motion control systems to execute a pre-programmed motion profile in 

response to a signal from an external sensor, even though the motor is already moving, 
is vital to many of today's high-throughput manufacturing processes--particularly 

those involving web materials. Known as dynamic registration, this control technique 
is one of the mostpowerful ways of synchronising plantmachinery with the material that 
is being processed[8]. 

Now, we look at a typical intermittent motion synchronisation example used in 

packagingg flying shears and other cyclic cutting applications. Figure 8.1 shows one of 
these applicafions[9]. In this example, the Master-slave axes have a Cam path position 
relationship as shown in Figure 8.2 and the motion is cyclic. 7hat is, the slave follows 

the same trajectory periodically. A cycle is programmed as the master's position 
displacement (e. g., one turn of the shaft in a rotary motion or 2 inches of a linear move). 
To provide an accurate positioning of the knife, a registration sensor measures the marks 
imprinted on the web. Ideally, knife displacement in one cycle (measured by the knife's 

marker pulse) must be equal to the distance between adjacent registration marks. 
However, in an actual application, this may not always be the case. The difference, 
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Figure 8.1 Synchronous Cutter Application. Source: Meshcat. 
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defined as the cutting error, is measured as: 

Cutting Error = Knife Marker position - Registration Marker Position. 

Conventionally the cutting error is directly added onto the servo-controllers commands, 

in order to maintain the synchronisation. As the afore-mentioned analysis, this 

approach may not result in precise synchronisation. In order to reduce the 

synchronisation error, a compensation term has to provide a corrective action towards 

the ideal zero cutting error. The compensation term can be obtained by a fuzzy rule based 

control scheme similar to the fuzzy rule base for closed loop master-slave linked 

motion synchronisation method described in Chapter 4. 

8.4.4 Different Structures of the Fuzzy Logic Coupling 

The structure of the proposed fuzzy logic coupling in Chapter 4 can be defined as a 

modifying with fuzzy logic coupling. In this structure, the compensations are added to 

the local controllers' inputs (reference command). The direct modification of the 

controllers' reference command is a straightforward way which does not involve 

changing the system configuration. Another structure of fuzzy logic coupling can be 

termed parallelfuzzy logic coupling. This coupling structure adds the compensations 

to the local controllers' outputs (control values). The fuzzy logic coupling algorithm 

provides direct control of the synchronisation error. This may give more effective 

synchronisation control. However, adding a control value to the axis controller is not 

easy. This structure is suitable to implement in a multi-axis controller where the 

addition of control values can be done through software. 

8.4.5 Motion Synchronisation Incorporating Process Information 

In order to cope with environmental variation and system nonlinearities, adaptive 
control is often introduced. The function of adaptive control is to sense manufacturing 
conditions and adjust the motions accordingly. However, some uncertainness of the 
manufacturing process and inaccuracies of the system modelling can reduce the 

efficiency of the adaptive method, since the approach relies on an attempt to formulate 

the input-output relationship by means of mathematical models, which may be difficult 
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in many cases. When process information can be described in linguistic terms or the 

operational knowledge of the processes is available, this information can be 

incorporated into the proposed fuzzy logic algorithm to enhance synchronisation 

performance. 

8.4.6 Extending the Number of Axes of the Systems 

Thus far, only 2-axis systems have been used to illustrate the ideas behind the new 

motion synchronisation control algorithm. However, a motion control system may 

involve more than two axes or motions which require tight synchronisation. In 

manufacturing systems, more than two axes may be involved, generally each 'closely 

coupled' group may only have one master with several slaves, or two or more 'closely 

coupled' masters and each master having several slaves, or several axes with equal 

status. For these multi-axis motion control systems, the following issues will occur in 

the proposed fuzzy logic coupling algorithm. 

The motion synchronisation error model 

For multi-axis systems which have two or more axes with an equal status or in the master 

status, the motion synchronisation error model may include a state synchronisation error 

and an orientation error[4][5]. The state synchronisation error can be a position or 

speed synchronisation error which depends on the application requirements. The term 

orientation error is used to denote the angular error between the actual orientation and 

the required orientation in respect to the relationship path. The orientation error will 

contribute to the motion synchronisation error. Therefore, the elimination of the 

orientation error as well as the elimination of the state synchronisation error should be 

chosen as the two control objectives of the multi-axis fuzzy logic coupling algorithm. 

In applications where a master axis has several slave axes, each slave axis should have 

a synchronisation error model relative to the master axis. Therefore, there are several 

synchronisation error models in the system. 
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(2) Thefuzzy rule basefor coupfing the axes 

Fuzzy control is based on the concept that complex processes are nothing more than a 

collection of simple processes. As such, complex control processes can be broken down 

into simple, independent parts[6]. The inference process used in fuzzy control is 

composed of several rule processes and a single logic sum. As described in Chapter 4, 

the rule processes are divided into conditions (the antecedent block) and a conclusion 
(the consequent block). The logic sum is arrived at when a defuzzifier operation 

converts the results of the rule processes into a single, fixed value. Each rule process 
is based on different inputs and is largely independent; each independent sum affects 

only the logical sum. While the individual rules are simple, the aggregation of them 

allows complex control to be strictly executed. These processes culminate in a 

defuzzifier operation which unifies the results, and calculates a final value which is then 

output to each device. This reasoning process is called a parallel processing structure, 

and it provides many benefits for controlling complex control systems enabling the 

system to be created simply, but operating efficiently at high speed and with high 

reliability[6]. 

In a n-axis system, the fuzzy logic coupling algorithm will have n fuzzy coupling rule 
bases, which means that each axis has its own rule base. The rule base can be generated 
by consideration of actions which help eliminate the synchronisation error of the system, 
based on the synchronisation error models. Because each rule process is separate, each 

rule within the rule bases can be set and tested individually. 7berefore, the complete 
fuzzy coupling rule base can easily be established. This separate processing of the fuzzy 

logic coupling algorithm produces an attractive advantage over the conventional 

coupling approaches when dealing with complex multi-axis motion control systems. 

The proposed approach when applied to multi-axis systems, however, will increase the 

computational load. Nevertheless, with the widely available increase in computational 

speed of microprocessors, this is no longer seen as a major limitation. 

8.5 Summary 

Based on the requirements identified in sections 1.2.3 and 4.2.5, the current 
implementation of IMC demonstrates a number of significant advantages over 
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conventional motion synchronisation methods for multi-axis motion control systems; 

particularly with regard to the ability to intelligently integrate different control 

algorithms or controllers to achieve tight motion synchronisation. Some limitations in 

the current implementation of the IMC do exist mainly due to constraints imposed by 

the test platform available. The further development of the IMC method has also been 

broadly discussed. 
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CHAPTER NINE 

Conclusions 

In pursuit of the global aim of creating and demonstrating improved multi-axis motion 

control and synchronisation. methods for machine control systems with multiple 

independent drives as defined in the original research objectives (Section 1.3, pages 8 

and 9), has involved many facets of study. In particular the author has: 

(i) Identified the requirements for multi-axis motion synchronisation; 

(ii) Surveyed the features of 'existing' software based motion synchronisation and 

coordination mechanisms; 

(iii) Proposed and implemented a novel new 'dual-loop' control scheme for 

intelligent multi-axis motion control based on a fuzzy logic approach; 

(iv) Proposed and implemented a new framework in which to design and build 

software based intelligent multi-axis motion control and synchronisation in 

machine systems, namely 'Intelligent Motion Control' (IMC); 

(v) Validated the IMC approach through selective simulation and experimental 

studies. 

The key conclusions from these studies, which have been considered in detail within the 

rnain body of the thesis, are presented in the following section. 

9.1 Summary of Work Undertaken 

There is a current trend in manufacturing industry towards greater automation and 

computer integration, with a view to improving productivity and competetiveness, 

through improved performance and greater flexibility. Increasingly, manufacturers are 

seeing the advantages of using more flexible machines in their production processes, 

rnaldng shorter production runs cost effective so that feature variants and product 

variants can be accommodated. Therefore, traditional machines, typically comprising 

a control prime mover and mechanical transmission systems, are being replaced with a 

number of modular independent servo-drives. The key advantages of flexibility, 

simplicity and intelligent sensor based operation are compelling reasons for 
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incorporating advanced motion controls in modem machine designs. When moving to 

eliminate mechanical components, the intelligent motion solution is microprocessor 
based to control position, speed or torque of a motor to a high level of precision. The 

microprocessor interacts with its environment and with a human operator, and 

co-ordinates synchronises multiple axes of motion to a programmed specification. 

This thesis has reviewed a number of control schemes commonly used for these types 

of applications. It has been found that in addition to the control algorithms for each 
individual axis, these axes also require coupling or interconnection in order to 

coordinate and synchronise with each other or external events in an optimum manner. 
It has also been found that existing control schemes for multi-axis motion 

synchronisation have some deficiencies because of. i). limitations in the control 

structure; ii). the uncertainness of the controlled processes; iii). the different 

characteristics of the individual servo-drive loops; and iv). the complex control 

situations where servo-drives have to be linked in a way which cannot be easily 
determined analytically. 

First of all, this research study established a 'dual closed-loop' control structure which 
introduces an interconnection to enable the axes to perform in a dependent manner. In 

this structure, each motion is furnished with a stable closed loop servo-controller to 

action with the assigned task. A supervisory system provides a secondary closed-loop 

which provides reciprocal actions to constrain the axes of motion into a synchronisation 

mode. The reciprocal actions are generated by a fuzzy logic coupling algorithm which 
incorporates human knowledge and reasoning in coordination. With the axes of motion 

under such a control scheme, the computer controlled multi-axis system runs as if there 

existed a mechanical mechanism enforcing the motion synchronisation. Complex 

motion synchronisation problems can be implemented by defining appropriate fuzzy 

logic coupling rules. The fuzzy rule based solution can be applied in a wide range of 

control applications including tasks that conventional methods can not easily handle. 

Through hierarchical decomposition of the tasks in machine control systems, it was 
found that motion synchronisation is a genuine requirement of a machine with multiple 
axes of motion. However, a number of 'open' machine control systems (such as UMC 

and MOSAIC) have not included a synchronisation level in their control architectures, 
which makes it difficult to provide tight synchronisation of the external devices from the 
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task level. A modified machine control architecture is proposed when an intelligent 

motion synchronisation mechanism is available. A multi-axis motion control system 
designmethodhas been developed to include a synchronisation level within the machine 

control architecture. The approach is termed Intelligent Motion Control (IMC), which 
facilitates the design and control of multi-axis motion control systems in an intelligent 

manner. 

To verify the concepts advanced in the thesis, simulation and experimental studies were 

conducted. The results show the effectiveness of the proposed motion synchronisation 

method. However, further development of the method is necessary to fully exploit its 

capabilities. A number of proposals have been made which could be implemented with 

appropriate enabling technologies. 

9.2 Contributions to Knowledge 

The major contributions to new knowledge that the author feels have resulted from this 

research study are surnmarised below: 

(i) The research study has identified and extended the design requirements that are 

considered as essential for software based motion co-ordination and 
synchronisation mechanisms for use in modern high performance machine systems; 

(ii) The research proposes and implements a novel 'dual-loop' control algorithm 
for generic application in motion synchronisataion scenarios using a fuzzy logic 

based approach. To the author's knowledge this is the first design and 
implementation of this type in the domain of motion control. This new control 

scheme has been shown to accommodate a range of application requirements in a 
very flexible and effective manner; demonstrating a number of significant attributes 

over existing control methods; 

(iii) A new framework to embody the design and control of multiple independent 

servo-drives that require co-ordination and synchronisation has been proposed and 
implemented namely 'Intelligent Motion Control' (IMC). IMC provides for 
structured hierarchical approach in which to build software based machine control 
systems that require tightly co-ordinated and synchronised, motion control; and 
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(iv) This new control scheme for motion control and synchronisation of multi-axis 
drive systems has been evaluated in carefully selected simulation and experimental 

studies to demonstrate the validity of the approach in meeting the requirements and 
demands of next generation machine systems. 
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Appendix I 

Error Sources which Affect 
Motion Control and Synchronisation 

Error sources from the controller, drive dynamics and external disturbances will affect 

the motion synchronisation of the multiple axes. These error sources can be further 

classified into three categories[ 11 [31 [4][6]. 

(1) mismatch in axial-loop parameters; 

(2) external disturbances, and 

(3) reference conunands. 

ALL Parameter Mismatch 

A mismatch in axial-loop parameters causes motion synchronisation errors. Take a 

general example, a closed-loop control system, shown in Figure AU[31. A process, 

represented by the transfer function G(s), whatever its nature, is subject to a changing 

environment, aging, ignorance of the exact values of the process parameters, and other 

natural factors that affect a control process. In order to illustrate the effect of parameter 

variations, let us to consider a change in the process so that the new process is G(s) + 
AG(s). Tben, we have 

C(s) + A(S) =- 
G(s) + AG(s) 

R(s) (Al-i) 1+ (G(s) + AG(s)) H (s) 

Then the change in the output is 

Ac(s) =- 
AG(s) 

- R(s) (Al-2) 
(1 + GH(s) + AGH(s)) (I + GH (s)) 
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When GH(s) >> AGH(s), as is often the case, we have 

AC(s) - 
AG(s) R(s) 

(1 + GH (s))2 

K 

Figure AM A closed-loop control system 

(Al-3) 

C(S) 

Examining Equation (Al-3), for multiple servo-loops, parameter mismatch means 

different change in the respective transfer function, which can result in different changes 

of output of the respective closed-loop systems. Therefore, the different output changes 

of the servo-loops will generate synchronisation errors. 

A1.2. Disturbances 

A disturbance is used here to mean an external action to the loop which changes or 
disturbs the operation of the controlled variable. Therefore, disturbances (such as 
fdcdons, load change etc. ) will influence the motion synchronisation. 

As a specific example of a system with a unwanted disturbances, let us consider the speed 
control system for a steel rolling mill[21. Rolls passing steel through are subject to large 
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sudden load changes or disturbances. As a steel bar approaches the rolls (see Figure 

A1.2), the rolls turn unloaded. However, when the bar engages in the rolls, the load on 

the rolls suddenly increases. This loading effect can be approximately by a step change 

of disturbance torque. 

Steel bar 

Conveyor 

Figure A1.2 Steel rolling mill 

Rolls 

i) 

Figure A 1.3 Closed-loop speed tachometer control system 

The output for the speed control system of Figure A 1.3 due to the load disturbance[21, 

when the input R(s) = 0, may be obtained using Mason's formula[51 

-1 

Is +f+ (Km/Ra) (KtKa + Kb) 
, Td(s) (A 1 4) 
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The steady-state error in speed due to the load torque Td(s) = D/s is found using the 

final-value theorem, and we have: 

limw(t) = lim (sw(s)) 
t-+oo s-+O 

-1 D (Al-5) 
f+ (Km/Ra) (YtKa + Kb) 

According to Equation (Al-5), load change will result in speed change as you would 

intuitively expect. There will be a speed synchronisation error among the rolls and 

conveyor because of the different loads applied on them. 

A1.3. Reference Commands 

A reference input may result in a steady-state error when it is fed into a particular type 

of control system. The steady-state error is the error once the transient response has 

decayed leaving only the continuous response. Figure A 1.4 shows a typical closed-loop 

position control system[l], with a forward path controller D(s), a feedback path H(s), 

and a plant model G(s). For the system of Figure AlA, the output is given by 

C(S) =- 
D(s)G(s) 

R(s) (A1-6) 1+ D(s)G(s)H(s) 

The error for the system is the difference between the input and the output, that is, 

System error = e(t) = r(t) - c(t) (A1-. 7) 

The steady-state system error is, by definition, the steady-state value of e(t). Denoting 
the steady-state error by ess, then, by the final value theorem of the Laplace transform 
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R(s) E(S) 
D(s) 17 ks) 

H(s) 

G(s) 
C(s) 

Figure AIA Typical Closed-loop Position Control System 

[3]. 

ess = lim sE(s) 
s-+O 

provided that e(t) has a final value. 

For the system of Figure A1.4, 

1+ D(s)G(s)H(s) - D(s)G(s) 
E(s) -1+ 

D(s)G(s)H(s) 
R(s) 

and 

ess = lim SR(s) 
1+ D(s)G(s)H(s) - D(s)G(s) 

(Al-10) 
s-+O 1+ D(s)G(s)H(s) 

Table AU gives the steady-state errors for three different input functions for a unity 
feedback system (H(s) = 1). 
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Table ALI Steady-state Errors [31 

Inpul 

Sys ge 

R(s) Step Response 

(1/s) 

Ramp Response 

1/s 2 

Parabolic input 

l/S 3 

N 

I KP = lim sD(s)G(s) 
0 1 +Kp 

CO 00 
s-+O 

1 0 
1 

Kv 00 Kv lim sD(s)G(s) 
S--ýO 

2 0 0 Ka lim sD(s)G(s) Ka 
s-+O 

In a multi-axis system, for each servo the reference input may be changed from one 

value to another value from time to time, and reference commands for different servo 

systems will be different at each update in order to keep a defined relationship. 

It is very difficult to have the reference input always match the system type. Therefore, 

steady-state errors will existed in each servo loop and for multi-axis system, the error 

value for each servo-loop is different as such synchronisation errors will exist. 
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Appendix H 
The Derivation of Coefficients for Compensation Terms 

in Nonlinear Motion Synchronisation 

The fuzzy algorithm described in section 4.3.1 is for a linear relationship between the 

axes. When it is used for nonlinear relationships, the coefficients for the system outputs 

change due to the nonlinear path. These coefficients are directly related with Om, but 

they can be expressed as 

C. = COSOM, 
Cy = -sin0m; 

A detailed derivation of the above equations is given as follows. 

(i) When Om = 00 to 900. 

This situation is the case shown in Figure A2.1. In order to eliminate the positive 

synchronisation error el, axis X should reduce by a, and axis Y should also reduce by 

b. To eliminate a negative synchronisation error e', axis X should increase by a, and axis 
Y should also increase by b. Compared with the linear relationship case as shown in 

Figure 4.4, to eliminate a positive synchronisation error e, axis X should reduce by a, 

and axis Y should increase by b. For elimination of a negative synchronisation error e, 

axis X should increase by a, and axis Y should reduce by b. Since the fuzzy rule base 

will be remained as the same as for a linear relationship, the system output for axis Y 

should change sign. Therefore, when Om = 00 to 900, the coefficients for the system 

outputs are 

C. = coso.; 
Cy = -sin0m; 

(U) When Om = 900 to 1800 
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ieous 
it 

ep cos 

e' sinO. 

sin0. m 
Y-YO 

j (X - X. )2 + (y - Y. )2 

COSO», = 
x-xo 

j 

(X - X. ), + (y - Y. ) 2' 

FigureA2.1 A Two Axis System with a Nonlinear Relationship 
When Om = 00 to 900 
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Figure A2.2 shows this situation. In order to eliminate the positive synchronisation 

error e), axis X should increase by a, and axis Y should reduce by b. To eliminate a nega- 

tive synchronisation error el, axis X should reduce by a, and axis Y should increase by 

b. Compared with the linear relationship case as shown in Figure 4.4, therefore, the sys- 

tem outputs for axis X and Y should both change sign. Therefore, when Om = 900 to 1800, 

the coefficients for the system outputs are 

Cx cosO.; ( in this case, cosOm is negative. 
Cy -sin0m; 

( iii ) When Om = 1800 to 2700 

In Figure A2.3, to eliminate a positive synchronisation error e', axis X should increase 

by a, and axis Y should also increase by b. To eliminate a negative synchronisation error 

e), axis X should reduce by a, and axis Y should also reduce by b. Compared with the 
linear relationship case as shown in Figure 4.4, therefore, the system output for axis X 

should change sign. Therefore, when Om = 1800 to 2700, the coefficients for the system 

outputs are 
Cx = cos0m; ( in this case, cosO. is negative. 
Cy = -sin0m; ( in this case, sinOm is negative. 

(iv) When Om = 2700 to 3600 

Figure A2.4 shows this situation. To eliminate a positive synchronisation error el, axis 
X should reduce by a, and axis Y should increase by b. To el='*nate a negative synchro- 
nisation error e-, axis X should increase by a, and axis Y should reduce by b. Compared 
with the linear relationship case as shown in Figure 4.4, therefore, the system outputs 
for axis X and Y do not change sign. Therefore, when Om = 2700 to 3600, the coefficients 
for the system outputs are 
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a-- et cos 

e' sinO. 

sin0. = 
Y-YO 

j-(X - X. ), + (y - 

COSO. = 
x-xo 

j (X - xi, + (Y - yjl 

FigureA2.2 A Two Axis System with a Nonlinear Relationship 

When Om = 900 to 1800 
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Instante 
tangt 

Path 

a=- el cos 

e' sinO. 

sin0. = 
Y-YO 

J(X 
-X0 )2 + (y - yj, 

COSO. = 
x-xo 

j (X -X 0 
)2 + (y -y0 )2 

FigureA2.3 AlWo Axis System with a Nonlinear Relationship 

When Om = 1800 to 2700 
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cosom; 
Cy = -sinO.; ( in this case, sinOm is negative. ). 

Y Desired Path 

Instantaneous 
tangent 

y 

x 
x 

a= ep cos 

e' sinO. 

sin0. = 
Y-YO 

i (x - xo)2 + (y - yj2 

coso. = 
x-xo 

j (x - xj, + (y - yj, 

FigureA2.4 AlWo Axis System with a Nonlinear Relationship 

When Om = 2700 to 3600 
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Appendix IH 

C-code of the Modules 
in Sync & Servo Levels of IMC 

The C-code listed in this appendix was used to implement the modules in Sync and 
Servo levels of IMC which are defined in Chpater 6. 

All Headers and Data Structures 

#include <errno. h> 
#include <stdio. h> 
#include <math. h> 

#define NULL (void *)0 

#define MAXNAME 10 /* max number of characters in 
names */ 

#define UPPER_LIMIT 100 /* max number assigned as 
degree of membership */ 

#def ine max (A, B) (A) > (B) ? (A) : (B) ) /* max Macro 
definition */ 

#def ine min (A, B) (A) > (B) ? (B) : (A) )/* min Macro 
definition */ 

/* Fuzzy Inference data structures definition */ 

/* io 
- 

type structure builds a list of system inputs and a list of 
system outputs. After initialization, these lists are fixed, except 
for value field which is updated on every inference pass. */ 

StruCt io-typet 
char name[MAXNAME]; /*name of system 

input/output */ 
int value; /* value of system input/output 
struct mf 

- 
type /* list of membership functions for 

*membership-functions; /*this system input/output*/ 
struct io-type *next; /*pointer to next input/output*/ 
I; 

/* Membership functions are associated with each system 
input/output. */ 

struct mf_typej 
char name[MAXNAME]; /* name of membership 

function(fuzzy set) */ 
int value; /* degree of membership or output 

strength 
int pointl; /* leftmost x-axis point of mem. 

function */ 
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int point2; 

int slopel; 

int slope2; 

struct mf-type 

1; 

/* rightmost x-axis point of mem. 
function */ 

/* slope of left 
membership function */ 

/* slope of right 
membership function */ 

*next; /* pointer to 
function */ 

side of 

side of 

next membership 

/* Each rule has an if side and a then side. Elements making up if 
side are pointers to antecedent values inside mf type structure. 
Elements making up then side of rule are pointers to output strength 
values, also inside mf 

- 
type structure. Each rule structure contains 

a pointer to next rule in rule base. */ 

struct rule 
- element-typef 

int *value; /* pointer to antecedent/output 
strength value */ 

struct rule element type *next; /* next 
antecý-edent/ou-tput element in rule 

I; 

struct rule typef 
struct rJe-element_type *if_side; /* list of 

antecedents in rule */ 
struct rule_element_type *then_side; /* list of 

outputs in rule */ 
StrUCt rule_type *next; /* next rule in rule base 
I; 

A3.2 C Subroutine Support Programs 

A3.2.1 Subroutines for the Fuzzy Processees 

fuzzificationo 
f /* Fuzzification-Degree of membership value is 
calculated for each membership function of each system input. 
Values correspond to antecedents in rules. */ 

StruCt io 
-- 

type *si; /* system input pointer */ 
struCt mf type *mfsi; /* membership function pointer 
for(si=System Inputs; si !- NULL; si=si->next) 

for(MfSi=sl->membership-functions; mfsi !- NULL; 
mfsi=mfsi->next) 

compute 
- 

degree of membership(mfsi, si->value); 
I /* END OF7REZIFICATION */ 

rule_evaluationo 
I /* Rule Evaluation--Each rule consists of a list of 
pointers to antecedents (if side), list of pointers to outputs (then 
side), and pointer to next rule in rule base. When a rule is 
evaluated, its antecedents are ANDed together, using a minimum function, to form strength of rule. Then strength is applied to 
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each of listed rule outputs. If an output has already been assigned 
a rule strength, during current inference pass, a maximum function 
is used to determine which strength should apply. */ 

struct rule 
- 

type *rule; 
struct rule_element_type *ip; /* pointer of antecedents 

(if-parts) */ 
struct rule_element_type *tp; /* pointer of consequences 

(then-parts) */ 
int strength; /*strength of rule currently being 

evaluated */ 
for(rule=Rule Bases; rule 1= NULL; rule=rule->next) 

strength = UPPER 
- 

LIMIT; /*max rule strength allowed*/ 
/* process if-side of rule to determine strength 

for(ip-rule->if 
- 

side; ip ! =NULL; ip=ip->next) 
strength = min(strength, *(ip->value)); 

/* process then-side of rule to apply strength 
for(tp=rule->then_side; tp ! =NULL; tp=tp->next) 

*(tp->value) - max(strength, *(tp->value)); 

/* END RULE EVALUATION */ 

defuzzificationo 

struct io type *so; /* system output pointer 
struct mfý-'type *mfso; /* output membership 

function pointer */ 
int sum_of_products; /* sum of products of area & 

centroid */ 
int sum 

- 
of 

- 
areas; /* sum of shortend trapezoid area 

int area; 
int centroid; 

/* compute a defuzzified value for each system output 
for(so=System, Outputs; so 1= NULL; so=so->next) 

f 
sum 

- 
of_products - 0; 

Sum of areas - 0; 
for(mfso=so->membership-functions; mfso !- NULL; 

mfso--mfso->next) 
f 

area = compute 
- 

area_of_trapezoid(mfso); 
centroid = mfso->pointl + (mfso->point2 

-mfso->pointl)/2; 
sum of_products +- area * centroid; 
Sum 

- 
of 

- 
areas += area; 

if(sum of areas == 0) 
so-ý5vallue = 0; /* position adjustment is zero 

else 
fso->value - sum_of_products/sum, of-areas; ) 

/* weighted average 
I 
/* END DEFUZZIFICATION 

compute 
- 

degree_of membership(mf, input) 
struct mf_type *mf; /* membership function pointer 



AppendixIII 177 

int input; 
f /* Compute Degree of Membership--Degree to which input is a member 
of mf is calculated as follows: l. Compute delta terms to determine 
if input is inside or outside membership function. 2. If outside, 
then degree of membership is 0. otherwise, smaller of delta 

T1 
slopel and delta_2 * slope2 apllies. 3. Enforce upper limit. 

int delta 1; 
int delta7-2; 
delta 1 =ý-input - mf-: 
delta-2 = mf->Point2 
if ((jelta-1 <= 0) 

mf->value = 0; 

>Pointl; 
- input; 

(delta 2 <= 0)) /* input outside 
mem. i-unction ? */ 
the degree of membership is 0 

elsef 
mf->value = min( (mf->slopel*delta-1), 

(mf->slope2*delta 2) ); 
mf->value = min(mf->val7ue, UPPER LIMIT); j /* enforce 

upper linll 
/* END DEGREE OF MEMBERSHIP */ 

compute 
- 

area_of_trapezoid(mf) 
struct mf_type *mf; 
( /* Compute Area of Trapezoid--Each inference pass 
produces a new set of output strengths which affect the areas of 
trapezoidal membership functions used in center-of-gravity 
defuzzification. Area of trapezoid is h*(a+b)/2 where 
h=height=output_strength--mf->value, 
b=base=mf ->point2-mf ->point 1, a=top= must be derived from h, b, and 
slopesl&2. */ 

int run 1; 
int run72; 
int base; 
int top; 
int area; 
base mf->point2 -mf->pointl; 
run 1 mf->value/mf->slopel; 
rurý72 mf->value/mf->slope2; 
top - base - run 1 -run - 

2; 
area - mf->value * (base + top)/2; 
return(area); 

/* END AREA OF TRAPEZOID 

initialize 
- 

systemo 
/* Gains for DSC-l Controllers 

static int, kp[] f 205,180 
ki[I f 5,10 1, 
kd[] f 50,50 1, 
kv[) f 1200,1200 
kf[I f 1000,1200 

/* parameters of DSC-l */ 
sv[] -f 10000,10000 
sa[] =f 200000,200000 

/* set velocity */ 
), /*set acceleration 
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initialize the fuzzy inference system 

*** ******* 

/* initialize the membership functions for the System inputs 
static struct mf-type SIlmf[7] -f 

"NLipl", 0, -260, -60,1,1, &SIlmf (1] 1, 
"NMipl", 0, -110, -10,2,2, &SIlmf[2]1, 
"NSipl", 0, -20,0,10,10, &SIlmf[311, 

j "ZRipl", 0, -10,10,10,10, &SIlmf[4]1, 
"Psipl, " 0,0,20,10,10, &SIlmf[511, 
"Pmipl", 0,10,110,2,2, &SIlmf[6]), 
"PLipl", 0,60,260,1,1, NULLI 

/* the membership functions for the 
System input 1 */ 

static struct mf 
- 

type S12mf[71 -j f "NLip2", 0, -260, -60,1,1, &S12mf[1]1, 
f "Mip2", 0, -110, -10,2,2, &S12mf[211, 
f "NSip2l, 0, -20,0,10,10, &S12mf [3] 1, 
( "ZRip2l, 0, -10,10,10,10, &S12mf[41), 
f "PSip2", 0,0,20,10,10, &S12mf[511, 
f "PMip2", 0,10,110,2,2, &S12mf[611, 
f "PLip2l, 0,60,260,1,1, NULLI 

/* the membership functions for the 
System input 2 */ 

/* initialize the inputs--synchronisation error and the error change rate */ 
static struct io type System Inputs[21 

f "Vel_Syn i-r", 0, &SIlrrýf-[01, &System Inputs[l]j, 
f "Syn, 

_Er_itII, 
0, &S12mf [0], NULLI 

1; 

/* initialize the membership functions for the System Outputs 
static struct mf 

- 
type SOlmf[191 =f f "NBLopl", 6, -155, -115,5,5, &SOlmf[111, 

f "NBMopl", 0, -135, -95,5,5, &SOlmf[211, 
f "NBSopl", 0, -115, -75,5,5, &SOlmf[311, 
f "NMLopl", 0, -95, -55,5,5, &SOlmf[411, 
f "NMMopl", 0, -75, -35,5,5, &SOlmf[511, 
f "NSLopl", 0, -45, -25,10,10, &SOlmf[61), 
f "NSMopl", 0, -35, -15,10,10, &SOlmf[711, f "NSopl", 0, -25, -5,10,10, &SOlmf[811, 
f "NVSopl", 0, -10,0,20,20, &SOlmf[911, 
f "ZRopl", 0, -5, -5,20,20, &SOlmf[1011, 
f "PVSOP1", 0, Or 10,, 20,. 20, &SOlmf[lljj, 
f "Psopl", 0,5,25,10,10, &SOlmfI1211, 
f "PSMOP111,0,15,35,10,10, &SOImf[I33 

"PSLopl", 0,25,45,10,10/KSOlmf[14)j, 
f "PMMOP1", 0,35,75,5,5, /&SOlmf[1511, 
I "PmLopl", 0,55,95,5j"-5, &SOlmf[1611, f "PBSopl", 0,75,115,5,5, &SOlmf[17]j, 

"PBMopl", 0,95,135,5,5, &Solmf[18)1, 
"PBLopl", 0,115,155,5,5, NULLI 

/* the membership functions for the System output 1 */ 
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static struct mf_type S02mf[191 =f 
f "NBLop2", 0, -155, -115,5,5, &S02mf[lll, 
f IINBMop2l, 0, -135, -95,5,5, &S02mf[21), 
f "NBSop2", 0, -115, -75,5,5, &S02mf[311, 
f "NMLop2ff, 0, -95, -55,5,5, &S02mf[41), 
f IINMMoP2", 0, -75, -35,5,5, &S02mf[511, 
f "NSLop2", 0, -45, -25,10,10, &S02mf[61j, 
f "NSMop2", 0, -35, -15,10,10, &S02mf[7]1, 
f "NSop2", 0, -25, -5,10,10, &S02mf [81 
f "INVSop2", 0, -10,0,20,20, &S02mf [9] 
f "ZRop2ff, 0, -5,5,20,20, &S02mf [1011, 
j "PVSop2", 0,0,10,20,20, &S02mf[llll, 
j "PSop2l, 0,5,25,10,10, &S02mf[1211, 
j "PSMop2", 0,15,35,10,10, &S02mf[1311, 
j "PSLop2", 0,25,45,10,10, &S02mf[1411, 
f "PMMop2", 0,35,75,5,5, &S02mf[1511, 
i "PMLop2", 0,55,95,5,5, &S02mf[1611, 
f "PBSop2", 0,75,115,5,5, &S02mf[17]1, 
f "PBMop2", 0,95,135,5,5, &S02mf[181), 
f "PBLop2", 0,115,155,5,5, NULL) 

/* the membership functions 
System Output 2 */ 

for the 

/* initialize the outputs--Aýxes reference adjustment amount 
static struct io 

- 
type System_Outputs[2] -J 

"Veil adj", 0, &SOlmf[O], &System. 
- 

Outputs[111, 
"Vel2_adj", 0, &So2mf[O], NULLI 

1; 

/* initialize the rule base */ 
/* Rule 1: If Vel Syn Er=NLipl & Syn 

- 
Er 

- 
Rt=ZRip2, Then 

Vell 
- 

adj=PSmopl, V-e12 
- 

ýýdj=NSMop2; */ 
static struct rule element tvpe isl[21 -f 

f &SIlmf[ol. value, &isY[111, f &S12mf[3]. value, NULLI 
1; /* If Side */ 

static struct rule 
- 

element-type tsl[21 
f &SOlmf[121. value, &tsl[ll), 
f &S02mf[61. value, NULLj 
1; /* Then Side */ 

/* Rule 2: If Vel Syn Er=NMipl & 
Vell 

- 
adj=PSMopl, Vel2 

- 
adj=NSMop2; 

static struct rule element type 
&SIlmf[l]. value, &iJ[111, 

f &S12mf[2l. value, NULLI 
1; /* If Side */ 

static struct rule 
- 

element_type 
J &SOlmf[121. value, &ts2[111, 
f &S02mf[61. value, NULL1 
1; /* Then Side */ 

Syn Er Rt=NSip2, Then 
*1 
is2[21 =f 

ts2 [21 =I 

/* Rule 3: If Vel 
- 

Syn 
- 

Er=NMipl & Syn_Ei; 
_Rt=ZRip2, 

Then 
Vell adj=PSopl, Ve! 2 adl=NSop2; */ 

static struct rule element type is3[2] 
&SIlmf[ll. va-lue, &is-3[111, 
&S12mf[3]. value, NULLI 

1; /* If Side */ 
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static struct rule 
- 

element_type ts3[2] 
&SOlmf[lll. value, &ts3[l]l, 
&S02mf[7]. value, NULLI 

/* Then Side */ 

/* Rule 4: If Vel 
- 

Syn, 
_Er=NMipl 

& 
Vell 

- 
adj=PSopl, Vel2 

- 
adj=NSop2; 

static struct rule element type 
j &SI1mf[11. value, &is'Z[11), 
f &S12mf[4]. value, NULLI 
); /* If Side */ 

static struct rule_element-type 
f &SOlmf[1l1. value, &ts4[11j, 
f &S02mf[7l. value, NULLI 
1; /* Then Side */ 

Syn_E3ý_Rt=PSip2, Then 

is4[21 =f 

ts4 [21 =f 

/* Rule 5: If Vel Syn_Er=NSipl & Syn 
- 

Er 
- 

Rt=NMip2, Then 
Vell ad1=PSoiDl, Ve'! 2 adi=NSoiD2; */ 

static struct rule_element-type is5[21 
f &SIlmf[2l. value, &is5[111, 
j &S12mf[l]. value, NULLI 
1; /* If Side */ 

static struct rule_element-type ts5[21 
I &Solmf[lll. value, &ts5[111, 
I &So2mf[7]. value, NULLI 
1; /* Then Side */ 

/* Rule 6: If Vel 
__ 

Syn_Er-NSipl & 
Vell 

- 
adj=PVSopl, Vel2 

- 
adj-NVSop2; 

static struct rule element-type 
f &SIlmf[21. value, &is6[l)), 
f &S12mf[2]. value, NULLI 
1; /* If Side */ 

static struct rule_element-type 
I &SOlmf[10]. value, &ts6[111, 

&S02mf[81. value, NULL) 
/* Then Side */ 

Syn ErýRt=NSip2, Then 

is6[2] 

ts6[21 -f 

/* Rule 7: If Vel-Syn-Er=NSipl & 
Vell adj=PVSopl, Vel2 adj=NVSop2; 

static struct rule element type 
f &SIlmf[21. value, &is 111), 
f &S12mf[3l. value, NULL) 
1; /* If Side */ 

static struct rule 
- 

element-type 
f &SOlmf[10]. value, &ts7[l1), 
f &S02mf[81. value, NULL1 
1; /* Then Side */ 

Syn_Er_Rt-ZRip2, Then 
*1 
is7[2] 

ts7 (2) -i 

/* Rule 8: If Vel 
__ 

Syn Er=NSipl & 
Vell adj=PvSopl, Vel2 adj=NVSop2; 

staýEic struct rule -element type 
&SIlmf[2]. va-lue, &is_d[_111, 
&S12mf[4l. value, NULLI 

/* If Side */ 
static struct rule 

- 
element type 

( &SOlmf[101. value, &ts-8[111, 
f &S02mf[81. value, NULL1 
1; /* Then Side */ 

Syn Er_Rt-PSip2, Then 
*1 
is8[21 =f 

ts8[2] =f 

/* Rule 9: If Vel 
- 

Syn, 
_Er=NSipl 

& Syn_Er_Rt-PMip2, Then 
Vell-adj=PvSopl, Vel2_adj-NVSop2; */ 
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static struct rule element type is9[2] 
f &SIlmf[2]. va-lue, &is-9[l]), 
f &S12mf[5l. value, NULLI 
1; /* If Side */ 

static struct rule 
- 

element-type ts9[21 
f &SOlmf[101. value, &ts9[l]), 
f &So2mf[8]. value, NULLI 
1; /* Then Side */ 

/* Rule 10: If Vel Svn_Er=ZRipl & Syn_Exý_Rt=NLip2, Then 
Vell adj=PSMopl, Vel2 adj=NSMop2; */ 
statTc struct rule element type islO[21 =j 

f &SI1mf[31. value, &islOE11), 
&S12mf[O]. value, NULLI 

/* If Side */ 
static struct rule 

- 
element type ts1O[21 =f 

f &Solmf[12]. value, &tsYO[11), 
f &S02mf[61. va1ue, NULL1 
1; /* Then Side */ 

/* Rule 11: If Vel Syn_Er=ZRipl & Syn_ErýRt=NMip2, Then 
Vell 

- 
adj=PSopl, Ve! 2 adj=NSop2; */ 

static struct. rule -element-type isll[21 =I 
f &SIlmf[31. value, &isll[ll), 

&S12mf[l]. value, NULLI 
/* If Side */ 

static struct rule_element-type tsll[21 -i 
f &SO1mf[1l]. value, &ts11[13j, 

&S02mf[71. value, NULL1 
/* Then Side */ 

/* Rule 12: If Vel 
- 

Syn Er=ZRipl & Syn Er Rt=NSip2, Then 
Vell 

' 
adj=PVSopl, Vel2 adj=NVSop2; */ 

statfc struct rule_jlement_type isl2[2) =f 
&SIlmf[31. value, &isl2[111, 
&S12mf[2]. value, NULL) 

/* If Side */ 
static struct, rule_element-type tsl2[21 =f 

i &SOlmf[10]. value, &tsl2[111, 
f &S02mf[8]. value, NULL1 
); /* Then Side */ 

/* Rule 13: If Vel 
, 

Syn Er=ZRipl & Syn 
- 

Er 
- 

Rt=ZRip2, Then 
Vell 

" 
adj=ZRopl, Ve12__ýLdj=ZRop2; */ 

statTc struct rule element type isl3[21 =f 
f &SIlmf[31. value, &isY3[111, 

&S12mf [31 value, NULLI 
/* If Side */ 

static struct rule 
- 

element 
- 

type ts13[21 -f 
f &SOlmf[91. value, &ts1ý[l11, 
f &S02mf[9]. value, NULLI 
); /* Then Side */ 

/* Rule 14: If Vel Syn Er=ZRipl & Syn Er Rt=PSip2, Then 
Vell adj=NVSopl, V7e-12 "ýdj=PVSop2; 

statTc struct rule_e-iement 
- 

type isl4[2] 
&SIlmf[3]. value, &isi4[l]), 
&S12mf[4]. value, NULL) 

/* If Side 
static struct rule element type tsl4[2] 

f &SOlmf[81. va-1ue, &tsl-i[l1j, 
f &S02mf[10]. value, NULL} 
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}; /* Then Side */ 

/* Rule 15: If Vel Svn Er=ZRipl Syn Er Rt=pmip2, Then 
Vell 

, 
adj=NSopl, VeT2 adj=PSop2; 

statTc struct rule -element-type isl5[21 =f 
f &SIlmf[31. value, &isl5[111, 
f &S12mf[5l. value, NULLI 
1; /* If Side */ 

static struct rule_element_type tsl5[2] =( 
f &SOlmf[7l. value, &tsl5[l]), 
f &S02mf[lll. value, NULLI 
}; /* Then Side */ 

/* Rule 16: If Vel Syn Er=ZRipl & Syn Er Rt=PLip2, Then 
Vell adj=NSMopl, e12 ýidj=PSmop2; */ -- 

stat'ic struct rule_element-type isl6[21 =I 
f &SIlmf[31. value, &isl6[111, 
f &S12mf[61. value, NULLj 
1; /* If Side */ 

static struct rule_element-type tsl6[21 -f 
f &SOlmf[61. value, &tsl6[111, 
f &S02mf[121. value, NULL) 
1; /* Then Side */ 

/* Rule 17: If Vel-Syn-Er=PSipl & Syn-Er-Rt=NMip2, Then 
Vell 

, 
adj=NVSopl, Vel2 

I 
adj=PVSop2; */ 

static struct rule_element-type isl7[21 -f 
I &SIlmf[41. value, &isl7[111, 
f &S12mf[ll. value, NULLI 
}; /* If Side */ 

static struct rule_element-type tsl7[21 =f 
f &SOlmf[8l. value, &tsl7[111, 

&S02mf[10]. value, NULLI 
/* Then Side */ 

/* Rule 18: If Vel Syn Er=PSipl & Syn 
- 

Er 
- 

Rt=NSip2, Then 
Vell adj=NVSopl, Vel2 ýýdj=PVSop2; */ 
statTc struct rule element type isl8[2] -j 

f &SIlmf[4]. va-lue, &is'18[111, 
f &S12mf[2l. value, NULLI 
1; /* If Side */ 

static struct rule element 
- 

type ts18[21 -f 
f &SO1mf[81. value, &tsld[l1j, 
f &S02mf[101. value, NULLI 
); /* Then Side */ 

/* Rule 19: If Vel 
-- 

Syn_Er=PSipl & Syn 
- 

Er 
- 

Rt=ZRip2, Then 
Vell 

- 
adj=NVSopl, Vel2 adj=PvSop2; */ 

statfc struct rule 
- 
ellement type isl9[21 -f 

&SIlmf[4l. va7lue, &isf9[l]), 
&S12mf[31. value, NULLj 

/* If Side */ 
static struct rule 

I 
element 

- 
type tsl9[21 -f 

i &SOlmf(81. value, &tslý[l11, 
f &S02mf[10]. value, NULLI 
1; /* Then Side */ 

/* Rule 20: If Vel_Syn_Er=PSipl & Syn_E]ý_Rt=PSip2, Then 
Vell adj=NvSopl, Vel2 adj=PvSop2; */ 
stat"Ic struct rule ilement type is2O[2] 

f &SIlmf[4]. value, &isiO[111, 
f &S12mf[4]. value, NULLI 
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1; /* If Side */ 
static struct rule element type ts20[21 

f &SOlmf[81. vad-ue, &ts2-6[l1j, 
f &S02mf[10]. value, NULLI 
1; /* Then Side */ 

/* Rule 21: If Vel 
- 

Syn Er=PSipl & Syn Er_Rt=PMip2, Then 
Vell-adj=NSMopl, Vel2 adj=PSMop2; */ 
static struct rule ellement type is2l[21 =I 

f &SIlmf[4]. va7lue, &is-ýFl[l]j, 
1 &S12mf[5l. value, NULL) 
1; /* If Side */ 

static struct rule_element-type ts2l[21 =j 
f &SOlmf[6l. value, &ts2l[lll, 
f &S02mf[121. value, NULLI 
1; /* Then Side */ 

/* Rule 22: If Vel Syn_Er=PMipl & Syn 
- 

Er 
- 

Rt=NSip2, Then 
Vell adj=NSopl, VeY2 adj=PSop2; */ 
statIc struct rule -element_type is22[2] =j 

f &SIlmf[53. value, &is22[111, 
f &S12mf[21. value, NULL1 
1; /* If Side */ 

static struct rule_element-type ts22[2) -f 
f &SOlmf[71. value, &ts22[111, 
f &S02mf[lll. value, NULLI 
1; /* Then Side */ 

/* Rule 23: If Vel 
" 

Syn Er=PMipl & Syn 
- 

Er 
- 

Rt-ZRip2, Then 
Vell adj=NSopl, Ve! 2 a-dj=PSop2; */ 
statIc struct rule -element_type is23[21 f 

( &SIlmf[51. value, &is23[111, 
f &S12mf[3l. value, NULLI 
1; /* If Side */ 

static struct rule element type ts23[2) 
&SOlmfj7]. va-1ue, &ts2'5[l1j, 
&S02mf[ll]. value, NULLI 

/* Then Side */ 

/* Rule 24: If Vel. 
- 

Syn 
" 

Er=PMipl & Syn_Er_Rt=PSip2, Then 
Vell adj=NSMopl, Vel2 gdj=PSMop2; */ 
static struct rule eYement type is24[21 -I 

( &SIlmf[5]. value, &isi4[l]lr 
f &S12mf[4]. value, NULL) 
1; /* If Side */ 

static struct rule element type ts24[21 -f 
i &SOlmf[61. va: -1ue, &ts2"Z[l1j, 
f &S02mf[12]. value, NULLI 
1; /* Then Side */ 

/* Rule 25: If Vel Syn Er=PLipl & Syn 
- 

Er Rt-ZRip2, Then 
Vell adj=NSMopl, Vel2 "ýdj=pSmop2; 
statIc struct rule element type is25[21 =f 

f &SIlmf[61. value, &isi5[111, 
&S12mf[31. value, NULLj 

/* If Side */ 
static struct rule element 

- 
type ts25[21 -f 

f &SOlmf[61. value, &ts2ý[l1), 
&S02mf[12]. value, NULLI 

/* Then Side */ 

/* Rule 26: If Vel_Syn Er=NMipl & Syn Er_Rt=NMip2, Then 
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Vell adj=PSMOPlrVel2 adj=NSMop2; 
static struct rule Jement type is26[21 

I &SIlmf[l]. value, &isý6[11), 
j &S12mf[ll. value, NULLI 
1; /* If Side */ 

static struct rule_element-type ts26[2] 
f &Solmf[121. value, &ts26[111, 
f &S02mf[61. value, NULL1 
1; /* Then Side */ 

/* Rule 27: If Vel Syn Er=NMipl & Syn Er Rt. pmip2, Then 
Vell adj=PVSopl, Vel2 adj=NVSop2; 
statTc struct rule eYement type is27[21 f 

f &silmf[l]. value, &isi7[l]), 
f &S12mf[5l. value, NULL) 
); /* If Side */ 

static struct rule_element_type ts27[2] 
f &Solmf[10]. value, &ts27[111, 
f &S02mf[81. value, NULLI 
); /* Then Side */ 

/* Rule 28: If Vel Syn Er=PMipl & Syn Er Rt=NMip2, Then 
Vell adj=NVSopl, V7el2 ýidi=PVSOP2; 

statTc struct, rule_e-lement-type is28[21 =I 
f &SIlmf[51. value, &is28[111, 
f &S12mf[l]. value, NULL) 
1; /* If Side */ 

static struct. rule_element_type ts28[21 = 
f &SOlmf[8]. value, &ts28[111, 
f &S02mf[10]. value, NULLI 
1; /* Then Side */ 

/* Rule 29: If Vel 
- 

Syn 
- 

Er=PMipl & Syn_Er_Rt=Pmip2, Then 
Vell 

- 
adj=NSLopl, Vel2 adj=PSLop2; */ 

statfc struct rule Jement type is29[21 =f 
f &SIlmf[5]. va-lue, &iJ9[l]), 

&S12mf[5]. value, NULLI 
/* If Side */ 

static struct rule element type ts29[21 - 
f &SOlmf[51. va71ue, &ts2'ý[1]j, 

&S02mf[13]. value, NULLI 
/* Then Side */ 

/* Rule 30: If Vel_Syn_Er=NLipl & Syn_Er_Rt=NLip2, Then 
Vell-adj=PMLopl, Vel2 adj=NMLop2; */ 
static struct rule Jement 

- 
type is30[21 

f &SIlmf[O]. va7lue, &isý0[111, 
&S12mf[O]. value, NULLI 

/* If Side */ 
static struct rule 

- 
element-type ts30[2] 

f &SOlmf[151. value, &ts3O[l]l, 
&S02mf[3l. value, NULLI 

/* Then Side */ 
/* Rule 31: If Vel Syn Er=NLipl & Syn 

- 
Er 

- 
Rt=NMip2, Then 

Vell adj=PMMopl, V7e-12 adj=NMMop2; */ 
static struct rule Jement type is3l[21 I 

f &SIlmf[Ol. va-lue, &ish[lM, 
1 &S12mf[ll. value, NULL) 
1; /* If Side */ 

static struct rule_element-type ts3l[21 f 
f &SOlmf[14]. value, &ts3l[lll, 

&S02mf[4]. value, NULL) 
/* Then Side */ 
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/* Rule 32: If Vel 
- 

Syn_Er=NLipl & Syn_Er_Rt=NSip2, Then 
Vell-adj=PSLopl, Vel2 

- 
adj=NSLop2; */ 

static struct rule_element-type is32[21 =f 
f &SIlmf[O]. value, &is32[111, 

-f &S12mf[21. value, NULL1 
1; /* If Side */ 

static struct rule_element-type ts32[21 =f 
f &SOlmf[131. value, &ts32[111, 
f &S02mf[51. value, NULL) 
1; /* Then Side */ 

/* Rule 33: If Vel 
- 

Syn_Er=NMipl & Syn_Er_Rt=NLip2, Then 
Vell-adj=PMMopl, Vel2 

- 
adj=NMMop2; */ 

static struct rule_element-type is33[21 =f 
&SIlmf[l]. value, &is33[111, 
&S12mf[O]. value, NULLI 

/* If Side */ 
static struct rule_element-type ts33[21 =f 

( &SOlmf[14]. value, &ts33[11j, 
f &S02mf[4l. value, NULLI 
1; /* Then Side */ 

/* Rule 34: If Vel Svn Er=NSipl & Syn Er Rt=NLip2, Then 
Vell-adj=PSMopl, Vel2 

, 
adj=NSMop2; */ 

static struct rule element type is34[21 =I 
&SIlmf[2l. va-lue, &is54[111, 
&S12mf[O1. value, NULLj 

/* If Side */ 
static struct. rule_element-type ts34[21 =I 

f &SOlmf[121. value, &ts34(l1), 
J &S02mf[61. value, NULLj 
1; /* Then Side */ 

/* Rule 35: If Vel Syn Er=PSipl & Syn 
- 

Er 
- 

Rt=NLip2, Then 
Vell-adj=NVSopl, V7e-12 'ýdj=PVSop2; */ 
static struct rule element type is35[21 -j 

&SIlmf[41. va-lue, &is'ý5[111, 
&S12mf[O]. value, NULLI 

/* If Side */ 
static struct rule element type ts35[21 -f 

f &SOlmf[81. va'1ue, &ts3ý[l1j, 
&S02mf[10]. value, NULLI 

/* Then Side */ 

/* Rule 36: If Vel 
-- 

Syn_Er=PMipl & Syn 
- 

Er Rt=NLip2, Then 
Vell 

I 
adj=Nvsopl, Vel2 

- 
adj-PVSop2; */ 

static struct rule element 
- 

type is36[2] - 
f &SIlmf[51. value, &isý6[111, 
f &S12mf[O]. value, NULLI 
); /* If Side */ 

static struct rule element type ts36[2] - 
f &SOlmf[81. va71ue, &ts3-j[lD, 
f &So2mf[lo]. value, NULLI 
1; /* Then Side */ 

/* Rule 37: If Vel 
Y 

Syn_Er=PLipl & Syn_Er_Rt=NLip2, Then 
Vell 

' 
adj-NSopl, Vel2 adj=PSop2; */ 

statfc struct rule -element type is37[21 =I 
f &SIlmf[61. value, &isD[l]), 
f &S12mf[O]. value, NULL) 
1; /* If Side */ 
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static struct rule 
- 

element - 
type ts37[21 =f 

f &SOlmf[71. value, &ts37[l]), 
f &S02mf[ll]. value, NULLI 
1; /* Then Side */ 

/* Rule 38: If Vel_Syn_Er=PLipl & Syn Er Rt=NMip2, Then 
Vell adj=NSopl, Vel2 adj=PSop2; */ 
statIc struct rule -element-type is38[21 = 

i &SIlmf[61. value, &is38[1]1, 
f &S12mf[l]. value, NULLI 
}; /* If Side */ 

static struct rule_element-type ts38[21 = 
f &SOlmf[7]. value, &ts38[1]1, 
1 &S02mf[lll. value, NULLI 
1; /* Then Side */ 

/* Rule 39: If Vel Syn Er=PLipl & Syn_E3; Rt=NSip2, Then 
Vell-adj=NSMopl, Vel2 'ýdj=PSMop2; 

static struct rule Jement type is39[21 =j 
f &SIlmf[6l. va-lue, &isS9[l]), 
J &S12mf[2]. value, NULLI 
1; /* If Side */ 

static struct rule_element-type ts39[21 =( 
I &SOlmf[6l. value, &ts39[111, 
J &So2mf[121. value, NULL) 
}; /* Then Side */ 

/* Rule 40: If Vel. 
-- 

Syn_Er=PLipl & Syn 
- 

Er 
- 

Rt=PSip2, Then 
Vell-adj=NSLopl, Vel2 

Y 
adj=PSLop2; */ 

- 
static struct rule 

- 
element 

- 
type is40[21 -f 

&SIlmf[61. value, &isiO[111, 
&S12mf[4]. value, NULLI 

/* If Side */ 
static struct rule element type ts40[21 =I 

f &SOlmf[51. va71ue, &ts4-d[l1j, 
f &S02mf[13]. value, NULLI 
1; /* Then Side */ 

/* Rule 41: If Vel_Syn_Er-PLipl & Syn_Er_Rt=PMip2, Then 
Vell 

I 
adj=NMMopl, Vel2 adj=PmMop2; */ 

static struct rule Jement type is4l[21 -f 
f &SIlmf[61. value, &isil[111, 

&S12mf[5]. value, NULL) 
/* If Side */ 

static struct rule element type ts4l[21 -f 
I &SOlmf[4l. value, &ts4Y[l]), 

&S02mf[14]. value, NULLI 
/* Then Side */ 

/* Rule 42: If Vel 
- 

Syn_Er=PLipl & Syn_Er_Rt=PLip2, Then 
Vell adj=NMLopl, Vel2 adj-PMLop2; */ 
stat-ic struct rule e-fement type is42[21 =j 

J &SIlmf[6l. va7lue, &is'Z2[11}, 
&S12mf[61. value, NULLj 

/* If Side */ 
static struct rule element type ts42[21 -f 

f &SOlmf[3j. va71ue, &ts4-i[l11, 
&S02mf[15]. value, NULL} 

/* Then Side */ 
/* Rule 43: If Vel Syn, 

_Er=PMipl 
&, Syn Er Rt=PLip2, Then 

Vell adj=NMMopl, Ve-12 adj=PmMop2; */ -- 
stat-ic struct rule_element-type is43[2] 
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I &SIlmf[51. value, &is43[l]), 
f &S12mf[61. value, NULLj 
1; /* If Side */ 

static struct rule element type ts43[21 
( &SOlmf[4j. value, &ts4ý[11j, 
1 &S02mf[141. value, NULLI 
1; /* Then Side */ 

Er=PSipl & Syn_Er_ Svn /* Rule 44: If Vel Rt=PLip2, Then 
- - adj=NSMopl, Vel2 

- 
adj=PSmop2; */ Vell 

- element-type is44[21 static struct rule =f 
_ j &SIlmf[41. value, &is44[l]), 

( &S12mf[6]. value, NULLI 
1; /* If Side */ 

static struct rule_element-type ts44[21 -( 
f &SOlmf[6l. value, &ts44[11}, 
f &S02mf[121. value, NULL) 
1; /* Then Side */ 

/* Rule 45: If Vel Syn Er=NSipl & Syn Er Rt=PLip2, Then 
adj=PVSopl, Vel2 ýýdj=NVSop2; */ Vell 

- static struct rule element type is45[21 
- 

=f 
lue, &isZ5[111, ( &SIlmf[2]. va 

f &S12mf[6l. value, NULLI 
1; /* If Side */ 

static struct rule_element-type ts45[21 -I 
&SOlmf[10]. value, &ts45[111, 
&S02mf[8]. value, NULL} 

/* Then Side */ 

/* Rule 46: If Vel Syn Er=NMipl & Syn 
- 

Er 
- 

Rt=PLip2, Then 
Vell 

' 
adj=PVSopl, 1ie_l2 'ýdj=NVSop2; */ 

statfc struct rule e-lement-type is46[21 = 
_ f &SIlmf[l]. value, &is46[111, 

f &S12mf[6]. value, NULLI 
1; /* If Side */ 

static struct rule element type ts46[21 -f 
( &SOlmf[101. value, &ts46[111, 
J &S02mf[8]. value, NULLI 
1; /* Then Side */ 

Syn Er=NLipl & Syn_Er /* Rule 47: If Vel Rt-PLip2, Then 
Vell-adj=PSopl, Ve! 2_adj=NSop2; */ " 

static struct rule 
Y 

element type is47[2] 
- 47[l]), &SIlmf[Ol. value, &is 

&S12mf[6l. value, NULLI 
/* If Side */ 

static struct rule 
- 

element-type ts47[21 
( &SOlmf[ll]. value, &ts47[111, 
1 &S02mf[7]. value, NULLI 
1; /* Then Side */ 

/* Rule 48: If Vel Syn Er=NLipl & Syn_Er Rt=PMip2, Then 
Vell 

' 
adj=psopl, VeY2 adj=NSop2; */ 

static struct, rule element type is48[2] 
&SIlmf[01. value, &is'Z8[l1j, 
&S12mf[5l. value, NULLI 

/* If Side */ 
static struct rule 

- 
element-type ts48[2] 

&SOlmf[lll. value, &ts48[l]l, 
&S02mf[71. value, NULLj 

/* Then Side */ 
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/* Rule 49: If Vel 
--- 

SYn_Er=NLipl & Syn_Er_Rt=PSip2, Then 
Vell 

- 
adj=PSMopl, Vel2_adj=NSMop2; */ 

static struct rule element type is49[21 -f 
&SIlmf[O]. value, &is49[111, 
&S12mf[4]. value, NULL) 

/* If Side */ 
static struct rule_element-type ts49[21 

&SOlmf[12]. value, &ts49[11j, 
&S02mf[6]. value, NULL) 

/* Then Side */ 

/* list of all rules in rule base */ 
static struct rule type Rule Bases[49] 

- - f e Bases[111, 1[0], &Rul &isl[01, &ts 
f &is2[0], &ts2[0], &RuliBases[211, 
f &is3[0], &ts3[01, &Rule Bases[3]j, 
f &is4[0], &ts4[0], &RuliBases[411, 
f &is5[0], &ts5[0], &RuliBases[511, 
I &is6[01, &ts6[0], &Rule Bases[61), 
I &is7[O], & ts7[O], &Rule 

- 
Bases[7]1, 

I &is8[o], & ts8[0], &Rule 
- 

Bases[811, 
f &is9co], & ts9[o), &Rule_Bases[9]1, 
I &islo[o], &tslo[o], &Rule Bases[1011, 
f &isll[01, &tsll[01, &Rule_Bases[11]1, 
f &isl2[01, &tsl2[O], &Rule_Bases[12]1, 
f &isl3[0], &tsl3[0], &Rule_Bases[13]1, 
f &isl4[0], &tsl4[0], &Rule_Bases[14]1, 
f &isl5[01, &tsl5[01, &Rule_Bases[1511, 
f &isl6[01, &tsl6[01, &Rule_Bases[1611, 
f &isl7[01, &tsl7[0], &Rule 

- 
Bases[1711, 

f &isl8co], &tsl8[O], &Rule 
- 

Bases[181}, 
I &isl9[01, &tsl9[o], &Rule 

- 
Bases[19]1, 

f &is20[O], &ts20[O], &Rule 
- 

Bases[201), 
f &is2l[O], &ts2l[O], &Rule Bases[2111, 
f &is22[01, &ts22[01, &Rule Bases[2211, 
f &is23[01, &ts23[0], &Rule_Bases[2311, 
f &is24[01, &ts24[o], &Rule_Bases[2411, 
f &is25[01, &ts25[01, &Rule_Bases[2511, 

&is26[0], &ts26[0], &Rule_Bases[26]1, 
&is27[01, &ts27[0], &Rule_Bases[2711, 
&is28[0], &ts28[0], &Rule Bases[2811, 

I &is29[0], &ts29[0], &Rule_Bases[291}, 
f &is30[O], &ts30[O], &Rule Bases[3011, 

&is3l[01, &ts3l[01, &Rule_Bases[311), 
&is32[0], &ts32[0], &Rule_Bases[3211, 

I &is33[01, &ts33[01, &Rule_Bases[33]), 
f &is34[0], &ts34[o], &Rule_Bases[341), 
f &is35[01, &ts35[0], &Rule Bases[3511, 
I &is36[01, &ts36[01, &Ru1jBases[361), 
I &is37[01, &ts37[0], &Rule_Bases[3711, 
f &is38[0], &ts38[01, &Rule Bases[3811, 

&is39[0], &ts39[0], &Rule_Bases[39]), 
&is40[O], &ts40[O), &Rule 

- 
Bases[40]1, 

&is4l[O], &ts4l[O], &Rule_Bases[41]1, 
f &is42[01, &ts42[0], &Rule Bases(42]j, 
f &is43[01, &ts43[0], &Rule7Bases[43]j, 
f &is44[0], &ts44[0], &Rule7Bases[44]j, 
f &is45[0], &ts45[0], &Rule Bases[4511, 
I &is46[0], &ts46[0], &Rule 

- 
Bases[46)j, 

f &is47(o], &ts47[o], &Rule_Bases[47)1, 

188 
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&is48[01, &ts48[01, &Rule_Bases[4811, 
&is49[01, &ts49[01, NULLI 

/* Initialize the DSC-l controllers 

/* Open paths to both channels 
for (chan=O; chan<=l; chan++) 

strcpy (string, 11/ff); 
strcat (string, moname[chan]); 
if ((motor[chan] = open (string, S-IREAD+S-IWRITE)) 

printf ("Error opening path to %s : error %d\n", 
string, errno); 
else printf ("Path number for %s is %d\nm, string, 

motor[chanl); 

/* Initialise channel parameters 
for (chan=O; chan<=l; chan++) I 

if (motor[chan] 1= -1) 

if ((err = _ss_sleep 
(motor[chan], (1<<31)+256)) 

-1) 
printf ("Error settimg sleep time on %s : error 

%d\n", moname(chan], errno); 
else printf ("Sleep time set to 1 sec on %s\n", 

moname[chan]); 
if ((err - ss tries (motor[chan], 50)) - -1) 

printf ("Error setting number of tries for dscl 
signal on %s\n", moname[chanl); 

else printf ("Number of tries for dscl signals on 
%s set to 50\n", moname[chanl); 

if Odata 
- 

ready (motor[chan])) 
f if (errno -- E NOTRDY) 

printf ("No data ready from %s\n", 
moname[chan]); 

else printf ("Error testing %s for data ready 
error %d\n", moname[chan], errno); 

else printf ("Data ready from %s\n", moname[chanl); 
if Ordy-for 

- 
data (motor[chanl)) 

f if (errno -E NOTRDY) 
Printf ("Not ready to receive data on %s\n", 

moname[chan]); 
else printf ("Error testing %s for rfd : error 

", d\n", moname[chan], errno); 
I 
else printf ("Ready to receive data on %s\n", 

moname[chan]); 
if ((err ss 

- 
sbase (motor[chan], sigsize*(chan+l))) 

printf ("Error setting up signal base value on %s 
error %d\n", moname[chan], errno ); 

else printf ("Signal base set to %d on %s\n", 
sigsize*(chan+l), moname[chan]); 

_ss_sigon 
(motor[chanl); /* Enable signals 
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status[chan] 
_gs_stat 

(motor[chanl); 
error[chan] 

_gs_errs 
(motor[chanl); 

printf ("Status of %s is %04X; error status is 
%04x\n", moname[chan], status[chan], 

error[chanl); 

send md (motor[chan], 
send7cmdp (motor[chan], 
sendýcmdp (motor(chani, 
send amdp (motor[chan], 
send: crndp (motor[chan], 
send, 

_amdp 
(motor[chan], 

send, 
_cmdp 

(motor[chan], 
send,. 

_cmdp 
(motor[chan], 

send cmd (motor[chan], 
send7amd (motor[chan], 

: setpc) ; 

_setkp, 
kp[chanl); 

_setki, 
ki[chanl); 

_setkd, 
kd[chanl); 

_setkv, 
kv[chanl); 

_setkf, 
kf[chanl); 

_setvel, 
sv[chanl); 

setacc, sa[chanl); 
initdac); 
setzero); 

/* Set up data storage buffer */ 
if ((err = ss dbuf (motor[chan], all-data, 

dmdatalchan), diýsi_ze)) - -1) 
printf ("Error %d setting up buffer\n", errno 

if ((err - send 
- 

cmd (motor[chan], 
_getconst)) i for (i=O; i<7; i++) 

j if ((code = read_data (motor[chan], &value)) 

printf ("%d %s = %-7d\n", i, parname[i], 
value) ; 

else printf ("Error reading parameter %d : error 
%d\n", i, errno); 

I 

/* Set up the position broadcast facilities */ 

send buf (motor(O], posbuf, psize); /* preload data 
: Cor (chan-0; chan<=l; chan++) 
send, 

_Cmdp 
(motor[chan], 

-execmap, 
0); /* put both 

channels into map mode */ 

I /* END INICIALIZE */ 

A3.2.2 Subroutines of DSC-1 

read status (chan) 
int ýhan; 

if ((status[chan] - _gs 
stat (motor[chanl)) 

printf("Error readIng %s status : error %d\nffo, 
moname[chan], errno); 

if ((error(chan] - -gs - 
errs (motor[chanl)) 

printf("Error reading %s error status error %d\n", moname[chan], errno); 
printf ("Status of %s is %04X; error status is 

%04x\n", moname[chan), status(chan], 
error[chanl); 
I 
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wait 
- 

for 
- 

idle (path) 
int path, 

int stat; 
do 

tsleep (20); 
stat = 

-gs - 
stat. (path); 

errchk 

while ((stat Ox7fOO) !-0 
return (0); 

/* Send command without parameter to dscl 

send 
- 

cmd (path, code) 
int path; 
unsigned char code; 

int err; 
/* Send command to dscl 
if ((err - ss send (path, code)) - -1) 

printf-("irror sending %s command to %s error 
I. d\n", =dname[codel, name[path], errno 

errchk (); 
return (err); 

/* Send command with parameter to dscl 
send_amdp (path, code, param) 
int path, param; 
unsigned char code; 

int err; 
/* Send command to dscl 
if ((err - 

_ss_send(path, 
codelflagbit, param)) 

printf ("Error sending %s command to %s : error 
%d\n", cmdname[code], name(pathl, errno 

errchk (); 
return (err); 

/* Send data to dscl - for example profile data points 
send 

- 
data (path, value) 

int. path, value; 
int err; 
/* Send data to dscl 
if ((err - ss_send (path, flagbit, value)) - -1) 

printC("Error sending data to %s : error 
%d\n", name[path], errno 

errchk (); 
return (err); 

/* Read command/data value from dscl 
read_data (path, valptr) 
int path, *valptr; 

short code; 
/* Read data from dscl 
if ((code = 

-gs-read 
(path, valptr)) =- -1) 

printf("Error reading data from %s : error 
%d\n", name[path], errno 

errchk (); 
return (code); 
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data_ready (path) /* Test path for data ready 
int path; 

int err; 

errchk (); 
if ((err = 

-gs 
rdy (path)) == -1) return (false); 

else return (t-rue); 

buffer ready (path) /* Test for buffer ready 
int pa7th; 

int err; 

errchk (); 
if ((err - 

-gs_prdy 
(path)) == -1) return (false); 

else return (true); 

rdy__., for data (path) /* Test if path is ready to receive data 
int patli; 

int err; 

errchk (); 
if ((err = 

-gs - 
rfd (path)) == -1) return (false); 

else return (true); 

send_buf (path, ptr, size) /* Set up broadcast position data buffer 

int path, *ptr, size; 
int err; 

errchk (); 
while (! buffer 

- 
ready(path)) tsleep(10); 

err - ss_pbuf (path, ptr, size); 
return-(err); 

trap (signal) 
register int signal; 

register int chan; 
chan = (int) signal sigsize; 
if (chan - 0) 

close (motor[O]); 
close (motor[l]); 
exit (signal); 

signal - chan-- * sigsize; /* Get signal offset and decrement 
chan */ 

if (signal >0 && signal < 127) /* User signal 
usig[chan] = signal; 

else 
signal - 128; /* Subtract system signal offset 
switch (signal) 

case statsig: 
status[chan] 

_gs - 
stat (motor(chan]); 

sflag(chan) True; 
break; 

case errsig: 
error[chan] 

_. 
9s 

- 
errs (motor[chan]); 

eflag(chan] True; 
break; 

case abortsig: 
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I 

errchk 
f register int chan, 

for 
i 

abflag[chan] = True; 
break; 

case flushsig: 
flflag[chan] = True; 
break; 

case refsig: 
referr[chan] = -gs - 

rdsig 
refsfg); 

rflag[chan] = True; 
break; 

(motor[chan], 

I 
case wrapsig: 

wrapcnt[chan] = 
_gs_rdsig 

(motor[chan], 
wrapsig); 

wflag[chan] = True; 
break; 

I 
case snapsig: 

snapdata[chan] = -gs - 
rdsig 

snapsig); 
pflag(chan] = True; 
break; 

(motor[chan], 

default: 
close (motor[O]); 
close (motor[l]); 
exit (signal); 

temp; 
(chan-0; chan<=1; chan++) 
if (eflag[chan]) 

eflag[chan] = False; 
if ((temp - error[chan] >> 8)) 

if (temp < e_limit) temp - e_limit; 
temp -- e- limit - 1; 
printf ("Error on %s : %s\n", 

moname[chan], errname[temp] 
I 
if ((temp - error[chan] & Oxff)) 

printf ("Error on %s : %s\n", 
moname[chan], errname[temp] 

if (sflag[chan]) 
sflag[chan] - False; 
temp - status(chan]; 
printf ("W", chan+l); /* Print channel 

number 
if (temp & Oxff) 

write (1, "W 11,2); 
else if (temp & motoroff << 8) 

write (l, ": ", 2); 
else if (temp & initmode << 8) 

write (1, "1 ", 2); 
else if (temp & stopmode << 8) 
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write (l, "S ", 2); 
else if (temp, & mapmode << 8) 

write (1,11X 11,2); 
else if (temp & prflmode << 8) 

write (1, "P ", 2) ; 
else if (temp & movemode << 8) 

write (1, "M ", 2) ; 
else if (temp & vcmode << 8) 

write (1, 'IV 11,2) ; 
else write (l, "> 11,2); 

if (abflag[chan]) 

abflag[chan] = False; 
printf ("%s aborted\n", moname[chan]); 

if (flflag[chan]) 
flflag[chan] = False; 
printf (ff%s flushed input buffer on an 

error\n", moname[chan]); 

if (rflag[chan]) 

rflag(chan] = False; 
printf ("%s reference error = %d\n", 

moname[chan], referr[chan]); 
I 
if (wflag[chan)) 

wflag[chan] = False; 
printf ("%s wraparound count = %d\n", 

moname[chan], wrapcnt[chanl); 
I 
if (pflag[chan]) 

pflag[chan] = False; 
printf ("%s position snapshot = %d\n", 

moname[chan], snapdata(chanl); 
I 
if (usig(chan]) 
f usig(chan] = 0; 

return (0); 



Appendix 111 195 

AppendLr III: References 

[11 Viot, G., "Fuzzy Logic in C", Dr. Dobb's Journal, February 1993, pp40-49. 
[21 "Digital Motor Control System, Programmer's Reference Manual", Quin 

Systems Ltd, Issue 10, December 1992. 



AppendixIV 196 

Appendix IV 

Modeling Digital Position Control Systems 

A digital position control system is represented by the block diagram of Figure A4.1. 

The desired position, expressed in encoder quadrature counts is r. This position is com- 

pared with the actual feedback, c, and the position error, x, is determined. The control 
block of the microprocessor-based motion controller amplifies the position error, x, and 
filters it. The output of the filter is then applied to the DAC which generates the motor 

command v. The motor and the drive are modeled together by the combined transfer 

function M(s). This is the transfer function between the motor command, v, and the 

angular position of the motor, 0. The motor angular position is sensed by the encoder 

which generates two signals in quadrature, channels A and B. These two signals are then 

applied to the position decoder, which generates the position feedback, c. 

ý' ý 0 
CIO 

u 

D 
Control Block of 

I 
u- I DACI v*I Drive & Motor 10 

F Motion ControU m(S) 
CI 

!j 

Encoder & Position Decoder 
I 

Ke 

Figure A4.1 Modelling position control system elements 

A4.1 Drive and Motor 

The motors under consideration may be of different types. The most common motors 
are DC motors, of both the brushed and the brushless types. When a DC motor is driven 
by a voltage amplifier, the transfer function can be represented as: 

M(s)= 
%1 

rad 1( A4- 1) 
s(sT, +I. )(sTe +l ) Volt 
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The term s in the denominator indicates integration due to the fact that there is position 
feedback. The two time constants Tm and Te are the mechanical and electrical time con- 

stants of the motor. When the electrical time constant is short, in comparison with the 

system response time, it can be ignored. In that case, M(s) can be simplified to the form: 

M(s)= 
Kn, 

s(sTm +1 ) 
rad 
volt 

(A4-2) 

When the motor is driven by an amplifier with current feedback, which acts as a current 

source, the corresponding transfer function can be represented as: 

Km 
11 (A4-3) 

S2 Volt 

A4.2 Digital to Analogue Converter (DAC) 

The DAC generates a voltage v, which is proportional to u, the microprocessor output. 
In general, if the DAC output voltage is within + Vm, and the DAC has n bits, its gain, 
Kdc, is: 

Kdc =2 
Vm volt (A4-4) 
2n count 

A4.3 Encoder and Position Decoder 

The encoder and the position decoder generate a count, c, which is proportional to the 

motor angular position 0. Let the encoder line density be N lines per revolution. Due 

to the quadrature sensing, the position decoder generates 4N counts per revolution. 'Mis 

corresponds to feedback gain, Ke, of- 

Ke = 
4N count (A4-5) 2; r rad 
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A4.4 Motion Controller 

The motion controller operates by sampling the position of the motor at regular intervals, 

and calculating a motor demand signal according to some control algorithm. 'Me algo- 

rithm used is of the following form. 

u=kpjq+ kiln+ kd(-n--n-l)+kv(q-ci-l)+kf(ri-rs-l) (A4-6) 

where kp = proportional gain constant 
ki = integral gain constant 
kd = differential gain constant 
kv = velocity feedback gain constant 

kf = velocity feed-forward gain constant 

The dynamic behaviour of the system depends on these gain constants, and on the mech- 

anical characteristics of the system being controlled. Tuning the control system to obtain 

good performance with a particular mechanical configuration requires set up of these 

gain constants. 
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Appendix V 

Derinitions of UMC Terms 

A5.1 General Definitions 

Architecture Architecture relates to the art of designing and realizing a 

complex system. Architecture is a powerful word, and is 

evocative of structure and style. The structure and 
interconnection of building blocks is the basis of 

architecture. 

A strong motive for enforcing a consistent architecture is to 

enable design reuse. This is based on the reuse of 

architectural building blocks and frameworks. 

Process An executing program. 

Reference Architecture A reference architecture describes the function of system 

parts, as opposed to how they operate internally. A reference 

architecture is composed of a set of generic guide-lines, 

constraints which provide a framework together with 

definitions of generic building blocks. 

It is important to put the consideration of architecture in the 

context of the control application being considered. For the 

reuse of control system building blocks to be worthwhile 

there must be common characteristics in the range of 

applications to be addressed by system users. Clearly there 

are big differences across machine control applications but 

there are also many major commonalities. These 

commonalities can be addressed by a reference architecture. 

View A view is a distinct aspect or dimension of an architecture 

which can be considered independently or coupled to other 

views. 
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A5.2 UMC Specific Definitions 

Application Task Application tasks are user defmed processes which 

collectively describe the application of a particular UMC 

machine. The scope of each application task is defmed by 

the application programmer. 

Axis An axis is a programmably Positioned mechanical system 

with one degree of freedom. Any axis which interfaces to a 
UMC machine does so via an axis handler. Oneormoreaxes 

may be associated with one axis handler. Axes may be linear 

or rotary and may be powered in any appropriate way such 

as electrically, pneumatically or hydraulically. If an axis is 

to be used by a UMC machine it must be at least position 

controllable via a motion controller. 

Axis Group Axes associated with one or more handlers can be logically 

grouped together to achieve collective movement in many 

degrees of freedom (typically as part of a distributed 

manipulator). The axes of an axis group need not be 

mechanically coupled (i. e. may belong to separate kinematic 

chains). Theoretically there is no restriction on the number 

of axes in a group and individually handled sets of axes may 

be part of more than one axis group. 

Channel A channel is a unit of input or output. Channels are 

controRed and monitored by ports. Output channels can be 

set by appropriate commands via the port handler of the port 
to which the channel belongs. 

Components A collective tenn for the events, handlers and tasks ofa UMC 

machine. 

Emulation Handler A special version of handler which is used to collect runtime 
data. 
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Event Events provide the mechanisms for interprocess 

communication coodination and synchronisation widiin a 

UMC machine. 

External Device Any software (drivers, processes, etc. ) or hardware 

(dedicated motion or 1/0 controHers etc. ) which can be 

interfaced to a UMC machine via a handler (axes of motion 

or binary/analogue ports etc. ). 

Handler Each external device to be accessed by a UMC machine must 
be interfaced to the higher levels of the runtime software via 

a handler. Two types of handlers, axis handlers (both single 

and multi-axis) and port handlers are currently defined. A 

handler provides the mechanism for interfacing an external 
device to a UMC machine in a unified and device 

independent manner. A specific type of handler must be 

written for each type of external device. 

With a handler in place an external device is referred to as 

a virtual device and may then be controlled using a standard 

set of UMC commands. Some of these commands are totally 

generic and may be used to control all external devices, but 

many are designed to control a particular class of device. 

This concept is applicable to many types of proprietary 
building block such as PLCs, robot arms and intelligent 

tools or sensors. The ultimate aim is to identify common 

control requirements within each of these groups and create 

standard UMC command sets and handlers to suit. 

Handier Information Module 

An information module used for communication between 

tasks and handlers. 

Handler Level The handler level forms the bottom level of the UMC 

reference architecture. It contains all of the handlers and 

associated handler information modules. 
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Information Module An information module is an area of memory used as a means 

of storing data which is to be shared betweenprocesses. Each 

information module is normally associated with a single 

process and provides the means of storing process variables 

and data in a form which is visible to the rest of the system. 
Data fields within the information modules have defined 

meanings and can be written to or read by the appropriate 

processes. 

Location A location is a named set of axis positions or coordinates 

used to specify a configuration or pose of an axis group 

associated with a UMC machine. Locations are used as a 

shorthand means of referencing by name and allow for 

modification of the axis position data by teaching or editing 

as a separate activity, without the need to modify the task. 

Location Information Module 

Location information module optionally exist for each task 

and contain position data for the axes being controRed by the 

task. 

Machine Utility A process which is used to load, modify and unload a UMC 

machine. 

Machine Information Module 

A data storage area used for machine configuration and 

runtime data. 

Machine Information Utility 

A UMC utility to retrieve and display information relating to 

the components of loaded UMC machines. 
Machine Level This is the top level of the UMC reference architecture. It 

contains the machine information module and machine 

utilities. 

Port A port is an external device which controls and monitors 

channels. A port is interfaced to a UMC machine via a port 
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handler. The configuration and number of channels is 

related to the specification of the external device, which 

might typically be a PLC or an intelligent 1/0 board. 

Task Application control logic is comprised of processes called 

tasks. 

Task Information Module 

Task information modules are optional and may contain 

application related information in a user defined format. 

Task Level This is the middle level of the UMC reference architecture. 

It contains all of the tasks, with associated task information 

modules and location information modules. 

UMC Universal Machine Control. This is the name by which the 

machine control methodology described in this document is 

known. 

UMCAxis A UMC axis refers to the view of and axis as seen by a task, 

which is the view presented to it by the axis handler. Hence 

the task has no knowledge of the actual axis, only a view of 

a virtual device. Replacing the axis device with an 

alternative which possesses comparable capabilities will not 

change this view. Hence the external device can be a 

hardware device, a software emulation, or a combination of 

both. 

UMC Command A handler is instructed to perform an operation when a task 

issues it with a UMC command. A set of UMC commands 

exists for each type of handler. The handler may or may not 
be able to execute an individual UMC command depending 

on the capabilities of the external device. 

UMC Conflguration Data 

This is an off-line set of setup data for particular UMC 

machines. This data is used to produce aU of the information 

modules when a UMC machine is loaded by the machine 
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utility. It contains the information to "create" (and 

d6uncreate") all the information modules, tasks and handlers 

in a UMC machine. 

UMC Function Library A library of UMC functions. 

UMC Library Functions Functions which tasks may call. These include functions to 

communicate commands to the handlers, functions to access 

the information modules and functions to manage events. 

UMC Machine A UMC machine consists of a number of concurrently 

executing processes together with mechanisms for 

communication, co-ordination and synchronisation of the 

processes. 

UMC Port See UMC Axis. 

UMC System Boundary A UMC system consists of building blocks which conform 

to the UMC reference architecture. The UMC system 
boundary encompasses these building blocks and separates 

them from anything not conforming to the reference 

architecture. 

Utility Task Utility tasks are generic tasks designed to be used in 

unmodified form. They perform device independent 

activities and serve as development aids during handler or 

machine development. A utility task can temporarily replace 

an unwritten user task and if appropriate, may be used in the 

final machine. 

Virtual Device This is the view a task has of an external device, when 

communicating with the handler which interfaces to the 

external device. 



Appendix V 206 

Appendix V. - References 

Harrison, R., et al., "UMC Conceptual Specification", 4th Working Draft, June 
21992. 


