45 research outputs found

    Force-Sensing-Based Multi-Platform Robotic Assistance for Vitreoretinal Surgery

    Get PDF
    Vitreoretinal surgery aims to treat disorders of the retina, vitreous body, and macula, such as retinal detachment, diabetic retinopathy, macular hole, epiretinal membrane and retinal vein occlusion. Challenged by several technical and human limitations, vitreoretinal practice currently ranks amongst the most demanding fields in ophthalmic surgery. Of vitreoretinal procedures, membrane peeling is the most common to be performed, over 0.5 million times annually, and among the most prone to complications. It requires an extremely delicate tissue manipulation by various micron scale maneuvers near the retina despite the physiological hand tremor of the operator. In addition, to avoid injuries, the applied forces on the retina need to be kept at a very fine level, which is often well below the tactile sensory threshold of the surgeon. Retinal vein cannulation is another demanding procedure where therapeutic agents are injected into occluded retinal veins. The feasibility of this treatment is limited due to challenges in identifying the moment of venous puncture, achieving cannulation and maintaining it throughout the drug delivery period. Recent advancements in medical robotics have significant potential to address most of the challenges in vitreoretinal practice, and therefore to prevent traumas, lessen complications, minimize intra-operative surgeon effort, maximize surgeon comfort, and promote patient safety. This dissertation presents the development of novel force-sensing tools that can easily be used on various robotic platforms, and robot control methods to produce integrated assistive surgical systems that work in partnership with surgeons against the current limitations in vitreoretinal surgery, specifically focusing on membrane peeling and vein cannulation procedures. Integrating high sensitivity force sensing into the ophthalmic instruments enables precise quantitative monitoring of applied forces. Auditory feedback based upon the measured forces can inform (and warn) the surgeon quickly during the surgery and help prevent injury due to excessive forces. Using these tools on a robotic platform can attenuate hand tremor of the surgeon, which effectively promotes tool manipulation accuracy. In addition, based upon certain force signatures, the robotic system can precisely identify critical instants, such as the venous puncture in retinal vein cannulation, and actively guide the tool towards clinical targets, compensate any involuntary motion of the surgeon, or generate additional motion that will make the surgical task easier. The experimental results using two distinct robotic platforms, the Steady-Hand Eye Robot and Micron, in combination with the force-sensing ophthalmic instruments, show significant performance improvement in artificial dry phantoms and ex vivo biological tissues

    A 5-DOFs Robot for Posterior Segment Eye Microsurgery

    Get PDF
    In retinal surgery clinicians access the internal volume of the eyeball through small scale trocar ports, typically 0.65 mm in diameter, to treat vitreoretinal disorders like idiopathic epiretinal membrane and age-related macular holes. The treatment of these conditions involves the removal of thin layers of diseased tissue, namely the epiretinal membrane and the internal limiting membrane. These membranes have an average thickness of only 60 μm and 2 μm respectively making extremely challenging even for expert clinicians to peel without damaging the surrounding tissue. In this work we present a novel Ophthalmic microsurgery Robot (OmSR) designed to operate a standard surgical forceps used in these procedures with micrometric precision, overcoming the limitations of current robotic systems associated with the offsetting of the remote centre of motion of the end effector when accessing the sclera. The design of the proposed system is presented, and its performance evaluated. The results show that the end effector can be controlled with an accuracy of less than 30 μm and the surgical forceps opening and closing positional error is less than 4.3 μm. Trajectory-following experiments and membrane peeling experiments are also presented, showing promising results in both scenarios

    Doctor of Philosophy

    Get PDF
    dissertationIn this dissertation, we present methods for intuitive telemanipulation of manipulators that use piezoelectric stick-slip actuators (PSSAs). Commercial micro/nano-manipulators, which utilize PSSAs to achieve high precision over a large workspace, are typically controlled by a human operator at the joint level, leading to unintuitive and time-consuming telemanipulation. Prior work has considered the use of computer-vision-feedback to close a control loop for improved performance, but computer-vision-feedback is not a viable option for many end users. We discuss how open-loop models of the micro/nano-manipulator can be used to achieve desired end-effector movements, and we explain the process of obtaining open-loop models. We propose a rate-control telemanipulation method that utilizes the obtained model, and we experimentally quantify the effectiveness of the method using a common commercial manipulator (the Kleindiek MM3A). The utility of open-loop control methods for PSSAs with a human in the loop depends directly on the accuracy of the open-loop models of the manipulator. Prior research has shown that modeling of piezoelectric actuators is not a trivial task as they are known to suffer from nonlinearities that degrade their performance. We study the effect of static (non-inertial) loads on a prismatic and a rotary PSSA, and obtain a model relating the step size of the actuator to the load. The actuator-specific parameters of the model are calibrated by taking measurements in specific configurations of the manipulator. Results comparing the obtained model to experimental data are presented. PSSAs have properties that make them desirable over traditional DC-motor actuators for use in retinal surgery. We present a telemanipulation system for retinal surgery that uses a full range of existing disposable instruments. The system uses a PSSA-based manipulator that is compact and light enough that it could reasonably be made head-mounted to passively compensate for head movements. Two mechanisms are presented that enable the system to use existing disposable actuated instruments, and an instrument adapter enables quick-change of instruments during surgery. A custom stylus for a haptic interface enables intuitive and ergonomic telemanipulation of actuated instruments. Experimental results with a force-sensitive phantom eye show that telemanipulated surgery results in reduced forces on the retina compared to manual surgery, and training with the system results in improved performance. Finally, we evaluate operator efficiency with different haptic-interface kinematics for telemanipulated retinal surgery. Surgical procedures of the retina require precise manipulation of instruments inserted through trocars in the sclera. Telemanipulated robotic systems have been developed to improve retinal surgery, but there is not a unique mapping of the motions of the surgeon's hand to the lower-dimensional motions of the instrument through the trocar. We study operator performance during a precision positioning task on a force-sensing phantom retina, reminiscent of telemanipulated retinal surgery, with three common haptic-interface kinematics implemented in software on a PHANTOM Premium 6DOF haptic interface. Results from a study with 12 human subjects show that overall performance is best with the kinematics that represent a compact and inexpensive option, and that subjects' subjective preference agrees with the objective performance results

    Development and preliminary results of bimanual smart micro-surgical system using a ball-lens coupled OCT distance sensor

    Get PDF
    Bimanual surgery enhances surgical effectiveness and is required to successfully accomplish complex microsurgical tasks. The essential advantage is the ability to simultaneously grasp tissue with one hand to provide counter traction or exposure, while dissecting with the other. Towards enhancing the precision and safety of bimanual microsurgery we present a bimanual SMART micro-surgical system for a preliminary ex-vivo study. To the best of our knowledge, this is the first demonstration of a handheld bimanual microsurgical system. The essential components include a ball-lens coupled common-path swept source optical coherence tomography sensor. This system effectively suppresses asynchronous hand tremor using two PZT motors in feedback control loop and efficiently assists ambidextrous tasks. It allows precise bimanual dissection of biological tissues with a reduction in operating time as compared to the same tasks performed with conventional onehanded approaches. Ā© 2016 Optical Society of America.1

    Augmentation Of Human Skill In Microsurgery

    Get PDF
    Surgeons performing highly skilled microsurgery tasks can benefit from information and manual assistance to overcome technological and physiological limitations to make surgery safer, efficient, and more successful. Vitreoretinal surgery is particularly difficult due to inherent micro-scale and fragility of human eye anatomy. Additionally, surgeons are challenged by physiological hand tremor, poor visualization, lack of force sensing, and significant cognitive load while executing high-risk procedures inside the eye, such as epiretinal membrane peeling. This dissertation presents the architecture and the design principles for a surgical augmentation environment which is used to develop innovative functionality to address the fundamental limitations in vitreoretinal surgery. It is an inherently information driven modular system incorporating robotics, sensors, and multimedia components. The integrated nature of the system is leveraged to create intuitive and relevant human-machine interfaces and generate a particular system behavior to provide active physical assistance and present relevant sensory information to the surgeon. These include basic manipulation assistance, audio-visual and haptic feedback, intraoperative imaging and force sensing. The resulting functionality, and the proposed architecture and design methods generalize to other microsurgical procedures. The system's performance is demonstrated and evaluated using phantoms and in vivo experiments

    Robocatch: Design and Making of a Hand-Held Spillage-Free Specimen Retrieval Robot for Laparoscopic Surgery

    Get PDF
    Specimen retrieval is an important step in laparoscopy, a minimally invasive surgical procedure performed to diagnose and treat a myriad of medical pathologies in fields ranging from gynecology to oncology. Specimen retrieval bags (SRBs) are used to facilitate this task, while minimizing contamination of neighboring tissues and port-sites in the abdominal cavity. This manual surgical procedure requires usage of multiple ports, creating a traffic of simultaneous operations of multiple instruments in a limited shared workspace. The skill-demanding nature of this procedure makes it time-consuming, leading to surgeonsā€™ fatigue and operational inefficiency. This thesis presents the design and making of RoboCatch, a novel hand-held robot that aids a surgeon in performing spillage-free retrieval of operative specimens in laparoscopic surgery. The proposed design significantly modifies and extends conventional instruments that are currently used by surgeons for the retrieval task: The core instrumentation of RoboCatch comprises a webbed three-fingered grasper and atraumatic forceps that are concentrically situated in a folded configuration inside a trocar. The specimen retrieval task is achieved in six stages: 1) The trocar is introduced into the surgical site through an instrument port, 2) the three webbed fingers slide out of the tube and simultaneously unfold in an umbrella like-fashion, 3) the forceps slide toward, and grasp, the excised specimen, 4) the forceps retract the grasped specimen into the center of the surrounding grasper, 5) the grasper closes to achieve a secured containment of the specimen, and 6) the grasper, along with the contained specimen, is manually removed from the abdominal cavity. The resulting reduction in the number of active ports reduces obstruction of the port-site and increases the procedureā€™s efficiency. The design process was initiated by acquiring crucial parameters from surgeons and creating a design table, which informed the CAD modeling of the robot structure and selection of actuation units and fabrication material. The robot prototype was first examined in CAD simulation and then fabricated using an Objet30 Prime 3D printer. Physical validation experiments were conducted to verify the functionality of different mechanisms of the robot. Further, specimen retrieval experiments were conducted with porcine meat samples to test the feasibility of the proposed design. Experimental results revealed that the robot was capable of retrieving masses of specimen ranging from 1 gram to 50 grams. The making of RoboCatch represents a significant step toward advancing the frontiers of hand-held robots for performing specimen retrieval tasks in minimally invasive surgery

    From teleoperation to autonomous robot-assisted microsurgery: A survey

    Get PDF
    Robot-assisted microsurgery (RAMS) has many benefits compared to traditional microsurgery. Microsurgical platforms with advanced control strategies, high-quality micro-imaging modalities and micro-sensing systems are worth developing to further enhance the clinical outcomes of RAMS. Within only a few decades, microsurgical robotics has evolved into a rapidly developing research field with increasing attention all over the world. Despite the appreciated benefits, significant challenges remain to be solved. In this review paper, the emerging concepts and achievements of RAMS will be presented. We introduce the development tendency of RAMS from teleoperation to autonomous systems. We highlight the upcoming new research opportunities that require joint efforts from both clinicians and engineers to pursue further outcomes for RAMS in years to come

    Vision-and-Force-Based Compliance Control for a Posterior Segment Ophthalmic Surgical Robot

    Get PDF
    In ophthalmic surgery, particularly in procedures involving the posterior segment, clinicians face significant challenges in maintaining precise control of hand-held instruments without damaging the fundus tissue. Typical targets of this type of surgery are the internal limiting membrane (ILM) and the epiretinal membrane (ERM) which have an average thickness of only 60 Ī¼m and 2 Ī¼m , respectively, making it challenging, even for experienced clinicians utilising dedicated ophthalmic surgical robots, to peel these delicate membranes successfully without damaging the healthy tissue. Minimal intra-operative motion errors when driving both hand-held and robotic-assisted surgical tools may result in significant stress on the delicate tissue of the fundus, potentially causing irreversible damage to the eye. To address these issues, this work proposes an intra-operative vision-and-force-based compliance control method for a posterior segment ophthalmic surgical robot. This method aims to achieve compliance control of the surgical instrument in contact with the tissue to minimise the risk of tissue damage. In this work we demonstrate that we can achieve a maximum motion error for the end effector (EE) of our ophthalmic robot of just 8 Ī¼m , resulting in a 64 % increase in motion accuracy compared to our previous work where the system was firstly introduced. The results of the proposed compliance control demonstrate consistent performance in the force range of 40 mN during membrane tearing
    corecore