22,973 research outputs found

    Preliminary design study of a regenerative life support system information management and display system

    Get PDF
    The instrumentation requirements for a regenerative life support systems were studied to provide the earliest possible indication of a malfunction that will permit degradation of the environment. Four categories of parameters were investigated: environmental parameters that directly and immediately influence the health and safety of the cabin crew; subsystems' inputs to the cabin that directly maintain the cabin environmental parameters; indications for maintenance or repair; and parameters useful as diagnostic indicators. A data averager concept is introduced which provides a moving average of parameter values that is not influenced by spurious changes, and is convenient for detecting parameter rates of change. A system is included to provide alarms at preselected parameter levels

    CMOS OTA-C high-frequency sinusoidal oscillators

    Get PDF
    Several topology families are given to implement practical CMOS sinusoidal oscillators by using operational transconductance amplifier-capacitor (OTA-C) techniques. Design techniques are proposed taking into account the CMOS OTA's dominant nonidealities. Building blocks are presented for amplitude control, both by automatic gain control (AGC) schemes and by limitation schemes. Experimental results from 3- and 2- mu m CMOS (MOSIS) prototypes that exhibit oscillation frequencies of up to 69 MHz are obtained. The amplitudes can be adjusted between 1 V peak to peak and 100 mV peak to peak. Total harmonic distortions from 2.8% down to 0.2% have been measured experimentally.Comisión Interministerial de Ciencia y Tecnología ME87-000

    CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit

    Get PDF
    This paper presents design considerations for monolithic implementation of piecewise-linear (PWL) dynamic systems in CMOS technology. Starting from a review of available CMOS circuit primitives and their respective merits and drawbacks, the paper proposes a synthesis approach for PWL dynamic systems, based on state-variable methods, and identifies the associated analog operators. The GmC approach, combining quasi-linear VCCS's, PWL VCCS's, and capacitors is then explored regarding the implementation of these operators. CMOS basic building blocks for the realization of the quasi-linear VCCS's and PWL VCCS's are presented and applied to design a Chua's circuit IC. The influence of GmC parasitics on the performance of dynamic PWL systems is illustrated through this example. Measured chaotic attractors from a Chua's circuit prototype are given. The prototype has been fabricated in a 2.4- mu m double-poly n-well CMOS technology, and occupies 0.35 mm/sup 2/, with a power consumption of 1.6 mW for a +or-2.5-V symmetric supply. Measurements show bifurcation toward a double-scroll Chua's attractor by changing a bias current

    Passive alignment stability and auto-alignment of multipass amplifiers based on Fourier transforms

    Full text link
    The stability properties of Fourier-based multipass amplifier to misalignments (tilts) of its optical components has been investigated. For this purpose, a method to quantify the sensitivity to tilts based on the amplifier small signal gain has been elaborated and compared with measurements. To improve on the tilt stability by more than an order of magnitude a simple auto-alignment system has been proposed and tested. This study, combined with other investigations devoted to the stability of the output beam to variations of aperture and thermal lens effects of the active medium, qualifies the Fourier-based amplifier for the high-energy and the high-power sector.Comment: 10 pages, 11 figure

    An Experiment and Detection Scheme for Cavity-based Cold Dark Matter Searches

    Full text link
    A resonance detection scheme and some useful ideas for cavity-based searches of light cold dark matter particles (such as axions) are presented, as an effort to aid in the on-going endeavors in this direction as well as for future experiments, especially in possibly developing a table-top experiment. The scheme is based on our idea of a resonant detector, incorporating an integrated Tunnel Diode (TD) and a GaAs HEMT/HFET (High Electron Mobility Transistor/Heterogenous FET) transistor amplifier, weakly coupled to a cavity in a strong transverse magnetic field. The TD-amplifier combination is suggested as a sensitive and simple technique to facilitate resonance detection within the cavity while maintaining excellent noise performance, whereas our proposed Halbach magnet array could serve as a low-noise and permanent solution replacing the conventional electromagnets scheme. We present some preliminary test results which demonstrate resonance detection from simulated test signals in a small optimal axion mass range with superior Signal-to-Noise Ratios (SNR). Our suggested design also contains an overview of a simpler on-resonance dc signal read-out scheme replacing the complicated heterodyne readout. We believe that all these factors and our propositions could possibly improve or at least simplify the resonance detection and read-out in cavity-based DM particle detection searches (and other spectroscopy applications) and reduce the complications (and associated costs), in addition to reducing the electromagnetic interference and background.Comment: 22 pages, 7 figure

    Accurate Settling-Time Modeling and Design Procedures for Two-Stage Miller-Compensated Amplifiers for Switched-Capacitor Circuits

    Get PDF
    We present modeling techniques for accurate estimation of settling errors in switched-capacitor (SC) circuits built with Miller-compensated operational transconductance amplifiers (OTAs). One distinctive feature of the proposal is the computation of the impact of signal levels (on both the model parameters and the model structure) as they change during transient evolution. This is achieved by using an event-driven behavioral approach that combines small- and large-signal behavioral descriptions and keeps track of the amplifier state after each clock phase. Also, SC circuits are modeled under closed-loop conditions to guarantee that the results remain close to those obtained by electrical simulation of the actual circuits. Based on these models, which can be regarded as intermediate between the more established small-signal approach and full-fledged simulations, design procedures for dimensioning SC building blocks are presented whose targets are system-level specifications (such as ENOB and SNDR) instead of OTA specifications. The proposed techniques allow to complete top-down model-based designs with 0.3-b accuracy.Ministerio de Educación y Ciencia TEC2006-03022Junta de Andalucía TIC-0281

    Multiple Order Dual-Band Active Ring Filters with Composite Right/Left Handed Cells

    Get PDF
    In this paper, a novel dual-band active filter topology is presented. The non-linear phase response of a composite right/left-handed cell is used to achieve the desired dual-band performance. Additionally, the proposed structure based on coupled ring resonators yields a very compact solution in which high-order implementations can be easily obtained by cascading multiple rings. The theoretical principles of this type of filters are analyzed in detail. Finally, three prototypes based on first-, second- and third-order structures validate the feasibility of this type of filters. Good agreement between simulations and measurements has been achieved

    Progress of analog-hybrid computation

    Get PDF
    Review of fast analog/hybrid computer systems, integrated operational amplifiers, electronic mode-control switches, digital attenuators, and packaging technique

    Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena Xray observatory

    Full text link
    Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes. Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory. This paper discusses the design considerations which are applicable to optimise the multiplex factor within the boundary conditions as set by the space craft. More specifically, the interplay between the science requirements such as pixel dynamic range, pixel speed, and cross talk, and the space craft requirements such as the power dissipation budget, available bandwidth, and electromagnetic compatibility will be discussed
    corecore