16,360 research outputs found

    A knowledge-based approach to VLSI-design in an open CAD-environment

    Get PDF
    A knowledge-based approach is suggested to assist a designer in the increasingly complex task of generating VLSI-chips from abstract, high-level specifications of the system. The complexity of designing VLSI-circuits has reached a level where computer-based assistance has become indispensable. Not all of the design tasks allow for algorithmic solutions. AI technique can be used, in order to support the designer with computer-aided tools for tasks not suited for algorithmic approaches. The approach described in this paper is based upon the underlying characteristics of VLSI design processes in general, comprising all stages of the design. A universal model is presented, accompanied with a recording method for the acquisition of design knowledge - strategic and task-specific - in terms of the design actions involved and their effects on the design itself. This method is illustrated by a simple design example: the implementation of the logical EXOR-component. Finally suggestions are made for obtaining a universally usable architecture of a knowledge-based system for VLSI-design

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    Using Bayesian Programming for Multisensor Multi-Target Tracking in Automative Applications

    Get PDF
    A prerequisite to the design of future Advanced Driver Assistance Systems for cars is a sensing system providing all the information required for high-level driving assistance tasks. Carsense is a European project whose purpose is to develop such a new sensing system. It will combine different sensors (laser, radar and video) and will rely on the fusion of the information coming from these sensors in order to achieve better accuracy, robustness and an increase of the information content. This paper demonstrates the interest of using probabilistic reasoning techniques to address this challenging multi-sensor data fusion problem. The approach used is called Bayesian Programming. It is a general approach based on an implementation of the Bayesian theory. It was introduced rst to design robot control programs but its scope of application is much broader and it can be used whenever one has to deal with problems involving uncertain or incomplete knowledge

    Detecting and classifying lesions in mammograms with Deep Learning

    Get PDF
    In the last two decades Computer Aided Diagnostics (CAD) systems were developed to help radiologists analyze screening mammograms. The benefits of current CAD technologies appear to be contradictory and they should be improved to be ultimately considered useful. Since 2012 deep convolutional neural networks (CNN) have been a tremendous success in image recognition, reaching human performance. These methods have greatly surpassed the traditional approaches, which are similar to currently used CAD solutions. Deep CNN-s have the potential to revolutionize medical image analysis. We propose a CAD system based on one of the most successful object detection frameworks, Faster R-CNN. The system detects and classifies malignant or benign lesions on a mammogram without any human intervention. The proposed method sets the state of the art classification performance on the public INbreast database, AUC = 0.95 . The approach described here has achieved the 2nd place in the Digital Mammography DREAM Challenge with AUC = 0.85 . When used as a detector, the system reaches high sensitivity with very few false positive marks per image on the INbreast dataset. Source code, the trained model and an OsiriX plugin are availaible online at https://github.com/riblidezso/frcnn_cad

    Mixed-methods research: a new approach to evaluating the motivation and satisfaction of university students using advanced visual technologies

    Get PDF
    The final publication is available at link.springer.comA mixed-methods study evaluating the motivation and satisfaction of Architecture degree students using interactive visualization methods is presented in this paper. New technology implementations in the teaching field have been largely extended to all types of levels and educational frameworks. However, these innovations require approval validation and evaluation by the final users, the students. In this paper, the advantages and disadvantages of applying mixed evaluation technology are discussed in a case study of the use of interactive and collaborative tools for the visualization of 3D architectonical models. The main objective was to evaluate Architecture and Building Science students’ the motivation to use and satisfaction with this type of technology and to obtain adequate feedback that allows for the optimization of this type of experiment in future iterations.Postprint (author’s final draft

    High Energy Physics Forum for Computational Excellence: Working Group Reports (I. Applications Software II. Software Libraries and Tools III. Systems)

    Full text link
    Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to develop an effective response to a series of expected challenges. In order to help shape the desired response, the HEP Forum for Computational Excellence (HEP-FCE) initiated a roadmap planning activity with two key overlapping drivers -- 1) software effectiveness, and 2) infrastructure and expertise advancement. The HEP-FCE formed three working groups, 1) Applications Software, 2) Software Libraries and Tools, and 3) Systems (including systems software), to provide an overview of the current status of HEP computing and to present findings and opportunities for the desired HEP computational roadmap. The final versions of the reports are combined in this document, and are presented along with introductory material.Comment: 72 page
    corecore