131 research outputs found

    Who wrote this scientific text?

    No full text
    The IEEE bibliographic database contains a number of proven duplications with indication of the original paper(s) copied. This corpus is used to test a method for the detection of hidden intertextuality (commonly named "plagiarism"). The intertextual distance, combined with the sliding window and with various classification techniques, identifies these duplications with a very low risk of error. These experiments also show that several factors blur the identity of the scientific author, including variable group authorship and the high levels of intertextuality accepted, and sometimes desired, in scientific papers on the same topic

    Network Coding Enabled Named Data Networking Architectures

    Get PDF
    The volume of data traffic in the Internet has increased drastically in the last years, mostly due to data intensive applications like video streaming, file sharing, etc.. This motivates the development of new communication methods that can deal with the growing volume of data traffic. To this aim, Named Data Networking (NDN) has been proposed as a future Internet architecture that changes how the Internet works, from the exchange of content between particular nodes of the network, to retrieval of particular content in the network. The NDN architecture enables ubiquitous in-network caching and naturally supports dynamic selection of content sources, characteristics that fit well with the communication needs of data intensive applications. However, the performance of data intensive applications is degraded by the limited throughput seen by applications, which can be caused by (i) limited bandwidth, (ii) network bottlenecks and (iii) packet losses. In this thesis, we argue that introducing network coding into the NDN architecture improves the performance of NDN-based data intensive applications by alleviating the three issues presented above. In particular, network coding (i) enables efficient multipath data retrieval in NDN, which allows nodes to aggregate all the bandwidth available through their multiple interfaces; (ii) allows information from multiple sources to be combined at the intermediate routers, which alleviates the impact of network bottlenecks; and (iii) enables clients to efficiently handle packet losses. This thesis first provides an architecture that enables network coding in NDN for data intensive applications. Then, a study demonstrates and quantifies the benefits that network coding brings to video streaming over NDN, a particular data intensive application. To study the benefits that network coding brings in a more realistic NDN scenario, this thesis finally provides a caching strategy that is used when the in-network caches have limited capacity. Overall, the evaluation results show that the use of network coding permits to exploit more efficiently available network resources, which leads to reduced data traffic load on the sources, increased cache-hit rate at the in-network caches and faster content retrieval at the clients. In particular, for video streaming applications, network coding enables clients to watch higher quality videos compared to using traditional NDN, while it also reduces the video servers' load. Moreover, the proposed caching strategy for network coding enabled NDN maintains the benefits that network coding brings to NDN even when the caches have limited storage space

    Integration of Heterogeneous Networks: Protocols, Technologies, and Applications

    Get PDF
    Today, the possibility of being connected to the Internet at every time and without interruption is almost a reality. The great capabilities of new generation cellular networks and their wide coverage enable people to use the innumerable resources of the Internet, almost everywhere and in any mobility scenario. All modern mobile devices have multiple interfaces to get connected to the Internet, and (almost) all smartphone users think to know which interface is the best one to use in a specific situation. In particular, despite the great improvement of cellular networks, in certain situations, the use of an alternative network (for instance, WiFi, is to be preferred). Therefore, the selection of the best network is not straightforward. If we change perspective and we do not talk about people and their smartphones, rather about mobile machines (say vehicles) that have to stay connected in order to provide or to receive a certain service, then the matter of finding, at every time, the best network to connect to, appears a little more urgent. Furthermore, since in some situations it could be very important to have a performing connection, for example with very low delay, then it is evident that the selection of the best network is not trivial. The characteristics of the networks to use, in order to choose the best network, are different according to the application at hand. A world where machines move automatically and use the Internet just like humans seems at the moment far away, but it is rapidly approaching. Besides the problem of network selection, one could wonder why one should just use the best network, instead of using all networks available in order to get the best "sides" of all? The development of efficient methods for the integration of multiple networks is an interesting but still open research area. This thesis focuses on the interaction and integration of heterogeneous networks. Several innovative protocols, technologies, and applications developed, in order to make network integration easier for humans and automatic for machines, will be presented

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks
    corecore