182 research outputs found

    Real-time data acquisition and processing system for MHz repetition rate image sensors

    Get PDF
    An electro-optic detector is one of the diagnostic setups used in particle accelerators. It employs an electro-optic crystal to encode the longitudinal beam charge profile in the spectrum of a light pulse. The charge distribution is then reconstructed using data captured by a fast spectrometer. The measurement repetition rate should match or exceed the machine bunching frequency, which is often in the range of several MHz. A high-speed optical line detector (HOLD) is a linear camera designed for easy integration with scientific experiments. The use of modern FPGA circuits helps in the efficient collection and processing of data. The solution is based on Xilinx 7-Series FPGA circuits and implements a custom latency-optimized architecture utilizing the AXI4 family of interfaces. HOLD is one of the fastest line cameras in the world. Thanks to its hardware architecture and a powerful KALYPSO sensor from KIT, it outperforms the fastest comparable commercial devices

    New Light Source (NLS) project: conceptual design report

    Get PDF

    Conceptual Design Report of the CompactLight X-ray FEL

    Get PDF
    The report presents, as the main result of the CompactLight project, the conceptual design of the CompactLight hard X-ray FEL. It is devided in the following chapters: 1. Executive Summary 2. Introduction 3. Science Goals and Photon Output Requirements 4. Systems Design and Performance 5. Accelerator 6. Light Production 7. Civil Engineering 8. Strategy and Implementation 9. Examples of CompactLight Facilities 10. Alternative Technology Solutions A. Appendice

    Measurements of FEL dynamics

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN024390 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    EuPRAXIA@SPARC_LAB Conceptual Design Report

    Get PDF
    It is widely accepted by the international scientific community that a fundamental milestone towards the realization of a plasma driven future Linear Collider (LC) will be the integration of high gradient accelerating plasma modules in a short wavelength Free Electron Laser (FEL) user facility. To this end, in October 2019 the Horizon2020 Design Study EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) will propose the first European Research Infrastructure that is dedicated to demonstrate usability of plasma accelerators delivering high brightness beams up to 1-5 GeV for users. In this report we discuss the EuPRAXIA@ SPARC_LAB project, intended to put forward LNF as host of the EuPRAXIA European Facility. The EuPRAXIA@SPARC_- LAB facility will equip LNF with a unique combination of a high brightness GeV-range electron beam generated in a state-of-the-art X-band RF linac, a 0.5 PW-class laser system and the first 5th generation light source driven by a plasma accelerator. These unique features will enable at LNF new promising synergies between fundamental physics oriented research and high social impact applications, especially in the domain of Key Enabling Technologies (KET) and Smart Specialisation Strategies (S3)

    Two-pass two-way acceleration in a superconducting continuous wave linac to drive low jitter x-ray free electron lasers

    Get PDF
    We present a design study of an innovative scheme to generate high rep rate (MHz-class) GeV electron beams by adopting a two-pass two-way acceleration in a Superconducting (SC) linac operated in Continuous Wave (CW) mode. The electron beam is accelerated twice by being re-injected in opposite direction of propagation into the linac after the first passage. Acceleration in opposite directions is accomplished thanks to standing waves supported in RF cavities. The task of recirculating the electron beam when it leaves the linac after first pass is performed by a Bubble-shaped Arc Compressor composed by a sequence of Double Bend Achromat. In this paper we address the main issues inherent to the two-pass acceleration process and the preservation of the electron beam quality parameters (emittance, energy spread, peak current) required to operate X-ray Free Electron Lasers with low jitters in the amplitude, spectral and temporal domain, as achieved by operating in seeding and/or oscillator mode a CW FEL up to 1 MHz rep rate. Detailed start-to-end simulations are shown to assess the capability of this new scheme to double the electron beam energy as well as to compress the electron bunch length from picoseconds down to tens of femtoseconds. The advantage of such a scheme is to halve the requested linac length for the same final electron beam energy, which is typically in the few GeV range, as needed to drive an X-ray FEL. The AC power to supply the cryogenic plant is also significantly reduced with respect to a conventional single-pass SC linac for the same final energy. We are reporting also X-ray FEL simulations for typical values of wavelengths of interest (in the 200 eV \u2013 8 keV photon energy range) to better illustrate the potentiality of this new scheme

    Undulator design for Laser Plasma Based Free electron laser

    Get PDF
    The fourth generation of synchrotron radiation sources, commonly referred to as the Free Electron Laser (FEL), provides an intense source of brilliant X-ray beams enabling the investigation of matter at the atomic scale with unprecedented time resolution. These sources require the use of conventional linear accelerators providing high electron beam performance. The achievement of chirped pulse amplification allowing lasers to be operated at the Terawatt range, opened the way for the Laser Plasma Acceleration (LPA) technique where high energy electron bunches with high current can be produced within a very short centimeter-scale distance. Such an advanced acceleration concept is of great interest to be qualified by an FEL application for compact X-ray light sources. We explore in this paper what the LPA specificities imply on the design of the undulator, part of the gain medium. First, the LPA concept and state-of-art are presented showing the different operation regimes and what electron beam parameters are likely to be achieved. The LPA scaling laws are discussed afterwards to better understand what laser or plasma parameters have to be adjusted in order to improve electron beam quality. The FEL is secondly discussed starting with the spontaneous emission, followed by the different FEL configurations, the electron beam transport to the undulator and finally the scaling laws and correction terms in the high gain case. Then, the different types of compact undulators that can be implemented for an LPA based FEL application are analyzed. Finally, examples of relevant experiments are reported by describing the transport beamline, presenting the spontaneous emission characteristics achieved so far and the future prospects
    • …
    corecore