2,474 research outputs found

    Optimization and Control of Lumped Transmitting Coil-Based In-Motion Wireless Power Transfer Systems

    Get PDF
    Wireless inductive power transfer systems are the only viable option for transferring energy to a moving vehicle. In recent years, there has been a great deal of interest in in-motion vehicle charging. The dominant technology thus far for in motion charging is elongated tracks, creating a constant eld for the moving vehicle. This technology suers from high volt ampere ratings and lower efficiency of 70%. On the other hand, stationary charging systems can demonstrate efficiency up to 95%. This thesis proposes lumped coils, similar to stationary charging coils for in-motion electric vehicle charging application. This novel primary coil architecture introduces new challenges in optimization and control. Traditional design of wireless inductive power transfer systems require designer experience, use of time consuming 3D FEM algorithms and lacks the comprehensive nature required for these systems. This thesis proposes two new optimization algorithms for the design problem which are comprehensive, based on only analytical formulations and do not need designer experience. There are challenges in the control of power transfer as well. Higher efficiency comparable to stationary systems can only be realized with proper synchronization of primary voltage with the vehicle position. Vehicle position detection and communication introduce significant cost and convenience issues. This thesis proposes a novel control algorithm which eliminates the need for vehicle position sensing and yet transfers the required percentage of energy. Both the optimization and control algorithms are verified with hardware setup

    A Novel Power-Efficient Wireless Multi-channel Recording System for the Telemonitoring of Electroencephalography (EEG)

    Get PDF
    This research introduces the development of a novel EEG recording system that is modular, batteryless, and wireless (untethered) with the supporting theoretical foundation in wireless communications and related design elements and circuitry. Its modular construct overcomes the EEG scaling problem and makes it easier for reconfiguring the hardware design in terms of the number and placement of electrodes and type of standard EEG system contemplated for use. In this development, portability, lightweight, and applicability to other clinical applications that rely on EEG data are sought. Due to printer tolerance, the 3D printed cap consists of 61 electrode placements. This recording capacity can however extend from 21 (as in the international 10-20 systems) up to 61 EEG channels at sample rates ranging from 250 to 1000 Hz and the transfer of the raw EEG signal using a standard allocated frequency as a data carrier. The main objectives of this dissertation are to (1) eliminate the need for heavy mounted batteries, (2) overcome the requirement for bulky power systems, and (3) avoid the use of data cables to untether the EEG system from the subject for a more practical and less restrictive setting. Unpredictability and temporal variations of the EEG input make developing a battery-free and cable-free EEG reading device challenging. Professional high-quality and high-resolution analog front ends are required to capture non-stationary EEG signals at microvolt levels. The primary components of the proposed setup are the wireless power transmission unit, which consists of a power amplifier, highly efficient resonant-inductive link, rectification, regulation, and power management units, as well as the analog front end, which consists of an analog to digital converter, pre-amplification unit, filtering unit, host microprocessor, and the wireless communication unit. These must all be compatible with the rest of the system and must use the least amount of power possible while minimizing the presence of noise and the attenuation of the recorded signal A highly efficient resonant-inductive coupling link is developed to decrease power transmission dissipation. Magnetized materials were utilized to steer electromagnetic flux and decrease route and medium loss while transmitting the required energy with low dissipation. Signal pre-amplification is handled by the front-end active electrodes. Standard bio-amplifier design approaches are combined to accomplish this purpose, and a thorough investigation of the optimum ADC, microcontroller, and transceiver units has been carried out. We can minimize overall system weight and power consumption by employing battery-less and cable-free EEG readout system designs, consequently giving patients more comfort and freedom of movement. Similarly, the solutions are designed to match the performance of medical-grade equipment. The captured electrical impulses using the proposed setup can be stored for various uses, including classification, prediction, 3D source localization, and for monitoring and diagnosing different brain disorders. All the proposed designs and supporting mathematical derivations were validated through empirical and software-simulated experiments. Many of the proposed designs, including the 3D head cap, the wireless power transmission unit, and the pre-amplification unit, are already fabricated, and the schematic circuits and simulation results were based on Spice, Altium, and high-frequency structure simulator (HFSS) software. The fully integrated head cap to be fabricated would require embedding the active electrodes into the 3D headset and applying current technological advances to miniaturize some of the design elements developed in this dissertation

    Enhancement algorithm for reverse loop technique on planar reverse loop antenna

    Get PDF
    Finding a trade-off balance between wireless transfer efficiency (WTE) and distance is a key issue in wireless energy transfer (WET). This paper presents a method of reducing the radical alteration in WTE versus distance, by using a reverse loop technique on planar reverse loop antenna (PRLA). The design focuses on 13.56 MHz Near Field Communication (NFC). The first stage uses mathematical modelling, based on an analytical approach, to determine the size of the reverse loop using Matlab. The proposed model predicts the size of the reverse loop to stabilize the WTE at a closer distance. Next, full-wave electromagnetic simulations are applied, using the computer simulation technology (CST) MICROWAVE STUDIO®, to determine the WTE effect with distance changes with mismatch condition. Planar loop antennas (PLAs) are fabricated on glass-reinforced epoxy laminated sheets (FR4). A validation of the simulation result in a real test scenario, using these PLAs and PRLA, confirms a stability enhancement in WTE at closer distance using the reverse loop technique, compared to conventional designs

    Wireless Power Transfer by Using Magnetically Coupled Resonators

    Get PDF
    In this chapter, a wireless power transmission system based on magnetic resonance coupling circuit was carried out. Mathematical expressions of optimal coupling coefficients were examined with the coupling model. Equivalent circuit parameters were calculated with Maxwell 3D software, and then, the equivalent circuit was solved using MATLAB technical computing software. The transfer efficiency of the system was derived using the electrical parameters of the equivalent circuit. System efficiency was analyzed depending on the different air gap values for various characteristic impedances using PSIM circuit simulation software. Since magnetic resonance coupling involves creating a resonance and transferring the power without the radiation of electromagnetic waves, resonance frequency is a key parameter in system design. The aim of this research was to define the efficiency according to variations of coefficients in wireless power transfer (WPT) system. In order to do that, the calculation procedure of mutual inductance between two self-resonators is performed by Maxwell software. Equivalent circuit is solved in circuit simulator PSIM platform. The calculations show that using the parameters that are obtained by magnetic analysis can be used for the equivalent circuit which has the capability to provide the efficiency using electrical quantities. The chapter discusses the application of this approach to a coil excited by a sinusoidal voltage source and a receiver coil, which receives energy voltage and current. Both could be obtained to calculate the instantaneous power and efficiency. To do so, the waveforms for voltage and current were obtained and computed with the PSIM circuit simulator. As the air gap between the coils increased, the coupling between the coils was weakened. The impedance of the circuit varied as the air gap changed, affecting the power transfer efficiency. In order to determine the differences between the software programs, efficiency values were calculated using three kinds of software. And it is concluded that equivalent circuit analysis by means of numerical computing is proper to obtain the voltage and current waveforms. Correspondingly, transmission efficiency can be calculated using the electrical relations

    Design and Experimental Characterization of a Combined WPT - PLC System

    Get PDF
    In this contribution, the authors perform the design and show the experimental results relative to a prototype of a combined wireless power transfer (WPT)–power line communications (PLC) system, in which the WPT channel is interfaced to a PLC environment to allow data transfer when the cabled connection is no longer available. The main rationale behind this idea stays in the fact that PLC communication is now a popular choice to enable communications, for instance, in smart grids and in home automation, while WPT devices start to be available in the market (i.e. for mobile phones) and soon they will be a reality also for higher power (i.e. vehicle battery charging). In particular, theoretical insights about the requirements of the system are given; a two coils system has been implemented and a measurement campaign, together with simulations, show that the system is of great potentiality and could be used in applications where both wireless power and data transfer are needed (such as vehicles battery charging), achieving maximum power transfer and good data rate in order to transmit high-speed signals

    An Accurate Equivalent Circuit Model of Metasurface-Based Wireless Power Transfer Systems

    Get PDF
    In this article, we introduce a general analytical procedure to unambiguously characterize a metasurface through its lumped circuital equivalent in resonant inductive Wireless Power Transfer (WPT) applications. The proposed model incorporates the finite extent of the slab, as well as the WPT near field operative regime and the presence of the particular driving/receiving coils arrangement, providing quantitative and easy-to-handle parameters which can be manipulated to achieve WPT performance enhancement. We first develop the theoretical background aimed at the lumped parameters extraction, which reveals, for WPT applications, more accurate and robust with respect to the conventional sub-wavelength homogenization theories based on infinite slab extent and impinging plane wave hypotheses. We provide some general guidelines for the design of metasurfaces for WPT performance enhancement based on the derived circuit model; afterwards, we numerically design a test-case consisting of two resonant coils (driver and receiver, respectively) with an interposed passive metasurface to verify the developed theory. Finally, we show some measurements performed on a fabricated prototype, that present an overall excellent agreement with both the lumped model and the numerical simulations

    Dual-Band Resonator Designs for Near-Field Wireless Energy Transfer Applications

    Get PDF
    Dual-band near-field wireless energy transfer (WET) designs outweigh single-band system with regard to either concurrent energy and data transfer or multiple wireless charging standard functionalities. There are two major approaches in resonator designs, namely, multi-coil and single-coil. This chapter presents a review on design constraints for each design approach and rectification techniques available in counteracting impediments of dual-band near-field WET systems. Challenges pertinent to link design are discussed primarily followed by methods implemented to mitigate detrimental impact on performance metrics. Front-end dual-band resonator design methods are accentuated in this chapter in lieu of end-to-end WET system. This is envisioned to offer insights for designers contemplating on design modes or developing ways to facilitate a boost in rectification options currently available

    Wireless Power Transfer Techniques for Implantable Medical Devices:A Review

    Get PDF
    Wireless power transfer (WPT) systems have become increasingly suitable solutions for the electrical powering of advanced multifunctional micro-electronic devices such as those found in current biomedical implants. The design and implementation of high power transfer efficiency WPT systems are, however, challenging. The size of the WPT system, the separation distance between the outside environment and location of the implanted medical device inside the body, the operating frequency and tissue safety due to power dissipation are key parameters to consider in the design of WPT systems. This article provides a systematic review of the wide range of WPT systems that have been investigated over the last two decades to improve overall system performance. The various strategies implemented to transfer wireless power in implantable medical devices (IMDs) were reviewed, which includes capacitive coupling, inductive coupling, magnetic resonance coupling and, more recently, acoustic and optical powering methods. The strengths and limitations of all these techniques are benchmarked against each other and particular emphasis is placed on comparing the implanted receiver size, the WPT distance, power transfer efficiency and tissue safety presented by the resulting systems. Necessary improvements and trends of each WPT techniques are also indicated per specific IMD
    corecore