368 research outputs found

    Étude de la gestion de l’autonomie en Ă©nergie d’objets communicants sans fil

    Get PDF
    Energy consumption and autonomy are crucial issues when designing wireless sensor networks (WSN). To study these problematics, our approach is based on simulation models and techniques that allow analyzing the system rapidly and accurately in different configurations. To do so, a behavioral modeling approach is used to model the receiver, the transmitter as well as the wireless communication channel. In order to reduce the simulation time while keeping an acceptable accuracy, our method considers a communication link level. Our models have been validated by comparing our simulation results with experiments performed in the field using WSN prototypes. In order to simulate the energy harvesting system, the battery as well as the power manager with efficiency, high level models have been developed. Those models are based on the electric charge balance between the energy harvesting system, the battery and the mote. Using these models, two innovative techniques of power management are proposed. According to both the amount of harvested energy and the state of charge of the battery, the power manager adapts the performance, thus the consumed energy, to ensure when it is possible the energy neutral operation (ENO) of a mote. A comparison with a state-of-the-art power management policy shows a 50% improvement of the throughput when our power managers are used. This PhD also addresses a global energy management technique. Our approach takes into account the harvested energy as well the communication channel to simultaneously handle the wake-up period and the transmitting power of the mote. A new transmission power technique, called PTPC (Predictive-Transmission-Power-Control), is proposed for that purpose. Simulation results show that for a 0.5 m/s speed, the throughput of the node using PTPC is around 5 times higher compared to a state-of-the-art transmission power technique approach.La consommation d’énergie et l’autonomie sont des problĂ©matiques majeures dans les rĂ©seaux de capteurs sans fil. Afin d’étudier ces problĂ©matiques, nous nous sommes appuyĂ©s sur un ensemble de modĂšles et de techniques de simulation qui permet d’analyser le systĂšme dans diffĂ©rentes configurations, rapidement et avec prĂ©cision. Nous avons utilisĂ© une approche de modĂ©lisation comportementale pour modĂ©liser le rĂ©cepteur, le transmetteur et le canal de communication sans fil et on se place au niveau liaison de communication, ce qui nous permet d'avoir un temps de simulation rĂ©duit et une prĂ©cision satisfaisante. Nous avons comparĂ© les rĂ©sultats de simulation Ă  des rĂ©sultats expĂ©rimentaux collectĂ©s lors de tests sur le terrain et ceci nous a permis de vĂ©rifier la validitĂ© de nos modĂšles. Pour pouvoir simuler de façon efficace le systĂšme de rĂ©cupĂ©ration d’énergie, la batterie et le power manager, des modĂšles de haut niveau ont Ă©tĂ© dĂ©veloppĂ©s. Ces modĂšles sont basĂ©s sur l’équilibre de charge Ă©lectrique entre le systĂšme de rĂ©cupĂ©ration d’énergie, la batterie et le nƓud. Sur la base de ces modĂšles, nous avons proposĂ© deux techniques innovantes de power management. En fonction de la quantitĂ© d’énergie rĂ©cupĂ©rĂ©e et l’état de charge de la batterie, le power manager change la performance et donc la consommation du nƓud, pour assurer, quand cela est possible, l’équilibre Ă©nergĂ©tique. La comparaison avec une technique de power management prĂ©sentĂ©e dans la littĂ©rature montre que nos power managers permettent une amĂ©lioration du dĂ©bit de prĂšs de 50%. Les travaux concernent Ă©galement une technique globale de gestion de la consommation d’énergie. Notre approche prend en compte la rĂ©cupĂ©ration d’énergie et le canal de communication et gĂšre simultanĂ©ment la pĂ©riode de rĂ©veil du nƓud et la puissance d’émission. Nous avons proposĂ© une technique de gestion de la puissance d’émission appelĂ©e PTPC (Predictive-Transmission-Power-Control). Les rĂ©sultats de simulation montrent que pour une vitesse de 0.5 m/s le dĂ©bit fourni par PTPC est environ 5 fois supĂ©rieur par rapport Ă  une technique de contrĂŽle de la puissance d’émission prĂ©sentĂ©e dans la littĂ©rature

    Contribution au domaine de la conception d’objets communicants embarquĂ©s basse consommation et autonomes en Ă©nergie

    Get PDF
    This report proposes a synthesis of my research and teaching activities. Since 2008, as associate professor at the University of Nice Sophia Antipolis, I did my research into the MCSOC team from the LEAT laboratory. For nearly 15 years, my activity is focused on the design of embedded communicating objects, with a strong emphasis for high level approach allowing, early in the design flow, to model and optimize the performance as well as the consumed energy. Those system-level approaches are more and more relevant over the last few years and become a must-have solution for designing efficient embedded systems. My activity on energy harvesting for autonomous systems brings an original contribution to this domain and has a national and international impact. This document is organized in two parts: the first part is a synthesis of my research and teaching activity, while the second one presents in details my research work, putting in evidence my contributions and innovative aspects. The manuscript ends with a scientific overview as well as some perspectives.Ce manuscrit prĂ©sente une synthĂšse de mes travaux de recherche. Depuis septembre 2008, date de ma nomination en tant que MaĂźtre de ConfĂ©rences Ă  l’UniversitĂ© de Nice Sophia Antipolis, j’ai effectuĂ© mes travaux de recherche au sein de la thĂ©matique MCSOC (ModĂ©lisation, Conception SystĂšme d’Objets Communicants) du laboratoire LEAT (UniversitĂ© de Nice Sophia Antipolis, UMR CNRS 7248). Depuis maintenant prĂšs de 15 ans, mes travaux de recherche s’intĂ©ressent au domaine de la conception d’objets communicants embarquĂ©s avec une Ă©volution forte vers des approches de haut niveau d’abstraction permettant tĂŽt dans le flot de conception, de modĂ©liser et d’optimiser les performances et la consommation d’énergie. Ces approches de niveau systĂšme n’ont cessĂ© de prendre de l’ampleur ces derniĂšres annĂ©es et s’installent aujourd’hui comme une solution incontournable du domaine de la conception de systĂšmes embarquĂ©s. Mes travaux plus spĂ©cifiques sur l’autonomie Ă©nergĂ©tique de ces systĂšmes apportent une contribution originale au domaine et ont un rayonnement national et international. Ce document est organisĂ© en deux parties : la premiĂšre partie propose une synthĂšse des travaux de recherche et d’enseignement ; la seconde prĂ©sente de maniĂšre dĂ©taillĂ©e mes travaux de recherche en mettant en avant toutes ses contributions et originalitĂ©s. Le manuscrit s’achĂšve par un bilan scientifique ainsi que quelques perspectives de recherche

    R-Urban - a participative strategy of urban resilience in suburban neighbourhoods

    Get PDF
    R-Urban strategy proposes the creation of a network of citizen projects and grassÂŹroots organisations around a network of collective civic hubs hosting economic and cultural activities and everyday life producÂŹtive practices that contribute to increasing resilience within an urban context. The hubs are key in providing the infrastructure for this change and offering space, training and capacity building for resilient practices to emerge and strategically connect to each other. The network, which functions through locally closed circuits, starts at the neighbourhood level and progressively scales up at the city and region level. Differently with other regeneration projects conceived by specialist teams and facilÂŹitated by managerial structures, here the architects play an active role as initiators, facilitators, mediÂŹators within various civic partnerships instigated by the project. This results into a more effective, quicker and sustainable implementation, and allows for a larger participation of non specialists and ordinary citizen in the co-production of the project. The R-Urban organization involves forms of commoning, ways of ensuring the expanÂŹsion and sustainability of the common pool resources but also ways of being-in-comÂŹmon as a social and ecological practice based on societal values produced by the civil society. R-Urban started to be concretely impleÂŹmented in Colombes, a suburban town in the North West of Paris in 2011 in partnerÂŹship with the Municipality of Colombes within the framework of a EC funded Life+ project, with a component being parallely implemented in Hackney Wick London, in partnership with Public Works. Two hubs – Agrocite and Recyclab- have been built in Colombes and one hub – Wick on Wheels- in London. AgroCitĂ© - a unit of urban agriculture - consists of a micro-experimental farm, community gardens, educational and cultural spaces and devices for energy production, composting and rainwater recycling. RecyLab is a recycling and green building constructed around a series of equipment for the recycling of urban waste and turning them into materials for eco-construction. WOW is a unit of mobile production which operates in Hackney Wick (London, UK) and its surrounding area. This unit encourages collective production in situ, using local materials, resources and knowledge. It is a participatory project, which engages with inhabitants and local artisans to produce, reuse and repurpose. The units operate through local production-distribution cycles and is gradually connected with other urban facilities, helping to increase the capacity of urban resilience in the neighborhood (self-sufficiency, production and recycling to local and regional levels, etc.). R-URBAN is supported by the EU Life + Programme of environmental governance. The project partners are AAA (coordinator) and the City of Colombes (for the two pilot units) and Public Works, London (for a mobile unit). A network of partners is being formed for the dissemination of the R-URBAN strategy on larger scale by including partners from Belgium, Spain, Romania, Germany, etc. R-urban has received the Zumtobel prize for research and iintiative 2012 and has been finalist at the EIB social innovation tournament

    Architecture de communication pour les rĂ©seaux d’instrumentation sans fil

    Get PDF
    Aujourd'hui les réseaux de capteurs sont devenus des systÚmes pouvant atteindre un trÚs grand nombre de noeuds, avec une zone de couverture déterminée et déployés d'une maniÚre plus ou moins dense dans un environnement hétérogÚne dont on mesure ainsi son état global. La problématique de cette thÚse consiste à concevoir une architecture pour les objets communicants à faible consommation en utilisant des antennes « intelligentes » pour l'instrumentation et la mesure. Intégrant une approche pluridisciplinaire, cette architecture couvre les services offerts depuis les couches MAC jusqu'à celles de plus haut niveau. Basés sur une partie matérielle complÚtement reconfigurable (amplificateur de puissance et antennes à base de MEMS RF), les services des couches supérieures sont définis en partie sur circuits numériques pour la couche physique (bande de base) et la couche MAC, et de maniÚre logicielle pour les protocoles de routages adaptés et les services innovants. En résumé, le travail consiste à concevoir un systÚme autonome multi capteurs, d'acquisition et de traitement avec mémorisation, communicant à travers un réseau sans fil. Les principaux problÚmes à résoudre seront : le contrÎle de la topologie, la précision de la synchronisation, la consommation d'énergie. ABSTRACT : Researches in the field of sensor networks show the variety and vastness of applications in which these types of systems are used. One of their main features is the large number (up to hundreds of elements) of sensors that must be distributed in different environments. Another concern consists in making routing decisions in order to reduce the energy consumption. Depending on the application requirements, ensuring synchronous network functionality is currently a challenge. The issue addressed in this thesis is to develop an architecture for smart objects using low-power antennas for structural heald monitoring. Integrating a multidisciplinary approach, this architecture includes services from the MAC layer to those of the highest level. In summary, we will develop an autonomous system ofi sensors, for acquisition and information processing, which communicate via a wireless network. The main problems are: the control of topology, the timing accuracy and the energy consumption

    Techniques de conservation d'énergie pour les réseaux de capteurs sans fil

    Get PDF
    Les progrĂšs technologiques rĂ©alisĂ©s ces derniĂšres annĂ©es ont permis le dĂ©veloppement de nouveaux types de capteurs dotĂ©s de moyens de communication sans fil, peu onĂ©reux et pouvant ĂȘtre configurĂ©s pour former des rĂ©seaux autonomes. Les domaines d'application sont nombreux : domotique, santĂ©, domaine militaire ou bien encore surveillance de phĂ©nomĂšnes environnementaux. Les limites imposĂ©es sont la limitation des capacitĂ©s de traitement, de stockage et surtout d'Ă©nergie. La libertĂ© laissĂ©e Ă  l'implantation est forte et impose de concevoir complĂštement l'infrastructure, les mĂ©canismes et les protocoles en fonction de l'application visĂ©e. Dans cette thĂšse, nous nous sommes tout d'abord focalisĂ©s sur des rĂ©seaux de petites tailles. Nous avons conçu une solution protocolaire "Placide" pour le suivi de la chaĂźne du froid proposĂ©e dans le cadre du projet ANR-CAPTEURS. L'originalitĂ© premiĂšre de la solution repose sur l'absence d'infrastructure et de Station de Base. Elle est composĂ©e de protocoles performants fondĂ©s sur la formation d'un anneau virtuel entre les noeuds, auto-organisants et trĂšs Ă©conomes en Ă©nergie. Le second axe est dĂ©diĂ© Ă  une Ă©tude expĂ©rimentale de la qualitĂ© du lien.L'objectif est double. Nous souhaitions tout d'abord Ă©tayer certaines hypothĂšses effectuĂ©es dans la premiĂšre partie du travail. Il s'agissait ensuite de proposer des protocoles et des algorithmes fondĂ©s sur la qualitĂ© du lien. Nous nous sommes focalisĂ©s sur la variation de la qualitĂ© du lien en fonction de la distance entre les noeuds et de la puissance de transmission. Par la suite, l'impact de la qualitĂ© du lien sur la topologie du rĂ©seau a Ă©tĂ© Ă©tudiĂ©e. Les retours d'expĂ©rience sont importants quant Ă  la comprĂ©hension des facteurs affectant la durĂ©e de vie du rĂ©seau. La derniĂšre contribution concerne l'exploitation de ces observations en proposant des stratĂ©gies de partage decharge. Notre idĂ©e est que des protocoles trĂšs rĂ©duits et des mĂ©canismes simples peuvent ĂȘtre mis en oeuvre pour le routage. Nous illustrons ces principes au travers d'exemples pour lesquels nous montrons la supĂ©rioritĂ© de ces solutions par rapport Ă  des routages de type plus court chemin. ABSTRACT : Technological advances during the last few years allowed the development of new and cheap sensors equiped with wireless communication which can be configured to form autonomous networks. The application areas for wireless sensor networks (WSN) are various: home automations, health care services, military domain, and environment monitoring. The imposed constraints are limited capacity of processing, storage, and especially energy. In addition, implementing WSN solutions is highly open and requires that the infrastructure, the mechanisms and the protocols should be completely designed based on each specific application.In this thesis, we first focused on small networks. We designed « Placide », a protocol stack solution for cold chain monitoring proposed within the ANR-CAPTEURS project. The first originality of this solution is based on the absence of infrastructure and base stations. « Placide » is composed of self-organizing and energy-efficient protocols based on a virtual ring construction between nodes. The second topic is devoted to an experimental study on Link Quality Indicator (LQI). There are two main objectives. Firstly, we want to endorse our precise assumptions of the first part of the work. Secondly, our poposed link quality based protocols and algorithms willbe described. We focused on LQI variations according to distance between nodes and transmission power.Thereafter, the impact of LQI on the network topology has been studied. Feedbacks are important to understand which factors affect the network lifetime. The last contribution relates to the use of these observations by proposing load balancing strategies. Our idea is that very reduced protocols and simple mechanisms can be used in routing protocols. We illustrate these principles through simple examples where we show the superiority of these solutions compared to standard routing like shortest path for example

    Détection et diagnostic des fautes dans des systÚmes à base de réseaux de capteurs sans fils

    Get PDF
    Les pannes sont la rĂšgle et non l'exception dans les rĂ©seaux de capteurs sans fil. Un nƓud capteur est fragile et il peut Ă©chouer en raison de l'Ă©puisement de la batterie ou de la destruction par un Ă©vĂ©nement externe. En outre, le nƓud peut capter et transmettre des valeurs incorrectes en raison de l'influence de l'environnement sur son fonctionnement. Les liens sont Ă©galement vulnĂ©rables et leur panne peut provoquer un partitionnement du rĂ©seau et un changement dans la topologie du rĂ©seau, ce qui conduit Ă  une perte ou Ă  un retard des donnĂ©es. Dans le cas oĂč les nƓuds sont portĂ©s par des objets mobiles, ils peuvent ĂȘtre mis hors de portĂ©e de la communication. Les rĂ©seaux de capteurs sont Ă©galement sujets Ă  des attaques malveillantes, telles que le dĂ©ni de service, l'injection de paquets dĂ©fectueux, entraĂźnant un comportement inattendu du systĂšme et ainsi de suite. En plus de ces dĂ©faillances prĂ©dĂ©finies (c'est-Ă -dire avec des types et symptĂŽmes connus), les rĂ©seaux de capteurs prĂ©sentent aussi des dĂ©faillances silencieuses qui ne sont pas connues Ă  l'avance, et qui sont trĂšs liĂ©es au systĂšme. En revanche, les applications de RCSF, en particulier les applications de sĂ©curitĂ© critiques, telles que la dĂ©tection d'incendie ou les systĂšmes d'alarme, nĂ©cessitent un fonctionnement continu et fiable du systĂšme. Cependant, la garantie d'un fonctionnement correct d'un systĂšme pendant l'exĂ©cution est une tĂąche difficile. Cela est dĂ» aux nombreux types de pannes que l'on peut rencontrer dans un tel systĂšme vulnĂ©rable et non fiable. Une approche holistique de la gestion des fautes qui aborde tous les types de fautes n'existe pas. En effet, les travaux existants se focalisent sur certains Ă©tats d'incohĂ©rence du systĂšme. La raison en est simple : la consommation d'Ă©nergie augmente en fonction du nombre d'Ă©lĂ©ments Ă  surveiller, de la quantitĂ© d'informations Ă  collecter et parfois Ă  Ă©changer. Dans cette thĂšse, nous proposons un Framework global pour la gestion des fautes dans un rĂ©seau de capteurs. Ce framework, appelĂ© IFTF , fournit une vision complĂšte de l'Ă©tat du systĂšme avec la possibilitĂ© de diagnostiquer des phĂ©nomĂšnes anormaux. IFTF dĂ©tecte les anomalies au niveau des donnĂ©es, diagnostique les dĂ©faillances de rĂ©seau, dĂ©tecte les dĂ©faillances d'applications, et identifie les zones affectĂ©es du rĂ©seau. Ces objectifs sont atteints grĂące Ă  la combinaison efficace d'un service de diagnostic rĂ©seau (surveillance au niveau des composants), un service de test d'applications (surveillance au niveau du systĂšme) et un systĂšme de validation des donnĂ©es. Les deux premiers services rĂ©sident sur chaque nƓud du rĂ©seau et le systĂšme de validation des donnĂ©es rĂ©side sur chaque chef de groupe. GrĂące Ă  IFTF, les opĂ©rations de maintenance et de reconfiguration seront plus efficaces, menant Ă  un systĂšme WSN (Wireless Sensor Network) plus fiable. Du point de vue conception, IFTF fournit de nombreux paramĂštres ajustables qui le rendent appropriĂ© aux divers types d'applications. Les rĂ©sultats de simulation montrent que la solution prĂ©sentĂ©e est efficace en termes de coĂ»t mĂ©moire et d'Ă©nergie. En effet, le systĂšme de validation des donnĂ©es n'induit pas un surcoĂ»t de communication. De plus, le fonctionnement des deux services test et diagnostic augmente la consommation d'Ă©nergie de 4% en moyenne, par rapport au fonctionnement du service de diagnostic uniquement.Sensor faults are the rule and not the exception in every Wireless Sensor Network (WSN) deployment. Sensor nodes are fragile, and they may fail due to depletion of batteries or destruction by an external event. In addition, nodes may capture and communicate incorrect readings because of environmental influence on their sensing components. Links are also failure-prone, causing network partitions and dynamic changes in network topology, leading to delays in data communications. Links may fail when permanently or temporarily blocked by an external or environmental condition. Packets may be corrupted due to the erroneous nature of communications. When nodes are embedded or carried by mobile objects, nodes can be taken out of the range of communications. WSNs are also prone to malicious attacks, such as denial of service, injection of faulty packets, leading to unexpected behavior of the system and so on. In addition to these predefined faults or failures (i.e., with known types and symptoms), many times the sensor networks exhibits silent failures that are unknown beforehand and highly system-related. Applications over WSNs, in particular safety critical applications, such as fire detection or burglar alarm systems, require continuous and reliable operation of the system. However, validating that a WSN system will function correctly at run time is a hard problem. This is due to the numerous faults that can be encountered in the resource constrained nature of sensor platforms together with the unreliability of the wireless links networks. A holistic fault management approach that addresses all fault issues does not exist. Existing work most likely misses some potential causes of system failures. The reason is simple : the more elements to monitor, the more information to be collected and sometimes to be exchanged, then the more the energy consumption becomes higher. In this thesis, we propose an Integrated Fault Tolerance Framework (IFTF) that provides a complete picture of the system health with possibility to zoom in on the fault reasons of abnormal phenomena. IFTF detects data anomalies, diagnoses network failures, detects application level failures, identifies affected areas of the network and may determine the root causes of application malfunctioning. These goals are achieved efficiently through combining a network diagnosis service (component/element level monitoring) with an application testing service (system level monitoring) and a data validation system. The first two services reside on each node in the network and the data validation system resides on each cluster head. Thanks to IFTF, the maintenance and reconfiguration operations will be more efficient leading to a more dependable WSN. From the design view, IFTF offers to the application many tunable parameters that make it suitable for various application needs. Simulation results show that the presented solution is efficient both in terms of memory use and power consumption. Data validation system does not incur power consumption (communication overhead). Using testing service combined to diagnosis service incurs a 4 %, on average, increase in power consumption compared to using solely network diagnosis solutions.SAVOIE-SCD - Bib.Ă©lectronique (730659901) / SudocGRENOBLE1/INP-Bib.Ă©lectronique (384210012) / SudocGRENOBLE2/3-Bib.Ă©lectronique (384219901) / SudocSudocFranceF

    RĂ©colte d'Ă©nergie provenant des bus ARINC825 pour les applications en avionique

    Get PDF
    RÉSUMÉ Les avions modernes sont systĂ©matiquement Ă©quipĂ©s d’un certain nombre de systĂšmes qui demandent un grand nombre de capteurs pour leur fonctionnement optimal. Les cĂąbles sont nĂ©cessaires pour procurer l’énergie et transmettre les donnĂ©es vers et Ă  partir de ces capteurs. Le nombre croissant de capteurs demande encore plus de cĂąbles. L’utilisation de plusieurs cĂąbles entraĂźne plus de poids, d’espace et de complexitĂ© causant une consommation supplĂ©mentaire de carburant et donc plus d’émissions de CO2. Par consĂ©quent, le cĂąblage est l’une des principales difficultĂ©s dans les avions et l’industrie d’avionique explore des nouvelles techniques pour rĂ©duire le nombre des cĂąbles pour construire des avions plus lĂ©gers et plus Ă©conomes en carburant. Nous nous intĂ©ressons dans ce mĂ©moire Ă  rĂ©colter de l’énergie dissipĂ©e par les lignes de donnĂ©es prĂ©sentes dans les systĂšmes avioniques. L’énergie rĂ©coltĂ©e serait disposĂ©e pour alimenter les capteurs et actuateurs qui seront branchĂ©s sur ces lignes de donnĂ©es dans les avions. Cette rĂ©colte d’énergie se ferait par le biais d’interface intĂ©grĂ© sur puce. L’approche de rĂ©colte Ă©nergĂ©tique proposĂ©e est basĂ©e sur le protocole d’échange de donnĂ©es par le bus ARINC 825 qui regroupe des pĂ©riodes d’inactivitĂ© (inoccupĂ©) mais maintient des niveaux de tension que nous rĂ©cupĂ©rons comme une source d’alimentation par une chaĂźne de conversion de puissance. Cette interface de rĂ©colte d’énergie proposĂ©e comprend des circuits simples, un temps de stabilisation bas, une ondulation de tension rĂ©duite, une consommation d’énergie faible, une efficacitĂ© Ă©nergĂ©tique haute. Une conception au niveau de transistor est rĂ©alisĂ©e en technologie CMOSP 0.35 ÎŒm (AMS) 3.3 V/5 V et la performance du systĂšme est Ă©tudiĂ©e dans diverses conditions pour amĂ©liorer son efficacitĂ©. Ensuite, le systĂšme est intĂ©grĂ© sur une puce qui a Ă©tĂ© fabriquĂ©e et testĂ©e. Les rĂ©sultats expĂ©rimentaux consistent en une efficacitĂ© globale de 60%, une tension de sortie de 5.02 V, un temps de stabilisation de 3.6 ms et une ondulation de tension de 0.2 V. Le dispositif complĂ©tĂ© fournit une puissance de sortie de 10.08 mW pour l’alimentation des capteurs. Les rĂ©sultats obtenus prouvent que l’interface proposĂ©e pourrait servir Ă  alimenter des capteurs avioniques Ă  partir de l’énergie rĂ©coltĂ© du bus ARINC 825.----------ABSTRACT Modern aircraft are systematically equipped with various systems that require a large number of sensors for their optimum operation. Cables are needed to provide power and transfer data to and from these sensors. The wired connection however, introduces complexity issues to the systems and it is also prone to damage due to wear. The growing numbers of sensors in aircrafts is associated with installation of even more cables. This leads to an enhanced weight of aerial-vehicle wiring and consequently, increased payload capacity, fuel consumption and CO2 emissions. As a result, cabling is one of the major challenges in aircraft and the avionics industry is exploring new techniques to reduce the number of cables to build lighter and more fuel-efficient aircraft. In this study, we are interested in harvesting the dissipated energy through data lines in avionic systems. The harvested energy can potentially be used for feeding the sensors and activators branching off the data lines in aircrafts. The implemented power harvesting approach is based on the data exchange protocol in ARINC 825 field (data) bus and consists of identifying the field bus idle periods are using their voltage level as the power source in the power conversion chain. This proposed energy harvesting interface features simple design of circuit components, short settling time and low-power consumption. A transistor-level design is carried out in CMOSP 0.35 ÎŒm (AMS) 3.3 V/5 V technology and the system performance is investigated under various conditions to improve its efficiency. The system is integrated on a microchip and it is fabricated. The experimental results consist of an overall efficiency of 60%, an output voltage of 5.02 V, a settling time of 3.6 ms and a voltage ripple of 0.2 V. Furthermore, the harvesting device provided an output power of 10.08 mW for feeding the sensors. The results proved that the proposed interface could serve as a powering unit of the avionic sensors through the harvested energy from ARINC 825 bus

    Bilevel optimization of Eco-Industrial parks for the design of sustainable resource networks

    Get PDF
    This work presents a bilevel programming framework for the design of sustainable resource networks in eco-industrial parks (EIP). First, multiobjective optimization methods are explored in order to manage the multi-criteria nature of EIP network design problems. Then, different case studies are modeled in order to minimize and maintain in equilibrium participating plants operating costs while minimizing resource consumption. Thus, the structure of the model is constituted by a bilevel programming framework where the enterprises’ plants play a Nash game between them while being in a Stackelberg game structure with the authority. This structure defines a model which, in order to be solved, has to be transformed into a MOPEC (Multiple Optimization Problems with Equilibrium Constraints) structure. Regarding the case studies, monocontaminant water networks in EIP are studied first, where the influence of plants operating parameters are studied in order to determine the most important ones to favor the symbiosis between plants. The water network is composed of a fixed number of process and water regeneration units where the maximal inlet and outlet contaminant concentrations are defined a priori. The aim is to determine which processes are interconnected and the water regeneration allocation. Obtained results highlight the benefits of the proposed model structure in comparison with traditional multiobjective approaches, by obtaining equilibrate different plants operating costs (i.e. gains between 12-25%) while maintaining an overall low resource consumption. Then, other case studies are approached by using the bilevel structure to include simultaneously energy networks in a multi-leader-multi-follower formulation where both environmental authorities are assumed to play a noncooperative Nash game. In the first case study, economic gain is proven to be more significant by including energy networks in the EIP structure. The second industrial case study explores a supply-demand utility network model where the environmental authority aims to minimize the total equivalent CO2 emissions in the EIP. In all cases, the enterprises’ plants are encouraged to participate in the EIP by the extremely favorable obtained results

    Contribution au dimensionnement et à la gestion par optimisation de systÚmes de stockage d'énergie pour les réseaux électriques ferroviaires

    Get PDF
    Integration of decentralized production and energy storage systems into railwayelectrification networks are considered as a solution in order to improve their electrical andenergetic performances when facing a major traffic increase. This solution shall allow to reducethe investment and exploitation costs of railway networks (less energy consumption, lessreinforcement work on infrastructures) compared to conventional solutions.The work presented in this manuscript aim to define a methodology for optimal sizing andenergetic management of energy production and/or storage systems for a railway network. Theproposed methodology must help engineers while designing future railway networks.A methodology based on a non linear optimization model has been developed. A novelapproach of the modeling of mobile loads and non linear components of the network (feedingsubstations, energy storage systems, braking rheostats) is proposed for optimization process.It allows the computation of the optimal sizing and control law of an energy storage systemimplemented in a railway electrification network.This methodology has been applied to a DC 1500V electrified urban network section. Anenergy storage system has been introduced in order to solve power quality issues and to reduceenergy consumption. The results shows the benefits of the energy storage system and providesindications to choose the better energy storage system technology (batteries, super-capacitors,flywheel) for the considered application.Future developments shall be the extension of our methodology to decentralized productionsystems, AC electrified railway networks and other technological solutions (FACTS, HVB...).L’intĂ©gration de systĂšmes de production dĂ©centralisĂ©s et de stockage d’énergie dansles rĂ©seaux d’électrification ferroviaires est envisagĂ©e comme une solution pour amĂ©liorerles performances Ă©lectriques et Ă©nergĂ©tiques des rĂ©seaux Ă©lectriques ferroviaire qui fontface Ă  une forte augmentation de trafic. Cette solution doit permettre de rĂ©duire les coĂ»tsd’investissement et d’exploitation des rĂ©seaux ferroviaires (moins de consommation, desrenforcements d’infrastructures limitĂ©s) par rapport aux solutions conventionnelles.Ces travaux de thĂšse visent Ă  dĂ©finir une mĂ©thodologie de conception optimale et de gestionĂ©nergĂ©tique des systĂšmes de production et de stockage de l’énergie dans un environnementferroviaire. La mĂ©thodologie proposĂ©e devra constituer pour les ingĂ©nieurs une aide Ă  laconception et au dimensionnement des futurs rĂ©seaux ferroviaires.Une mĂ©thodologie basĂ©e sur des modĂšles d’optimisation non linĂ©aire a Ă©tĂ© dĂ©veloppĂ©e.Elle propose une approche originale du traitement des charges mobiles et des dispositifsnon linĂ©aires du rĂ©seau (sous-stations, moyens de stockage, rhĂ©ostat de freinage) pourl’optimisation. Elle permet de dĂ©terminer le dimensionnement et la loi de pilotage optimauxd’un systĂšme de stockage intĂ©grĂ© Ă  un rĂ©seau d’électrification ferroviaire.La mĂ©thodologie a Ă©tĂ© appliquĂ©e Ă  une section de rĂ©seau urbain Ă©lectrifiĂ©e en 1500Vcontinu. Un systĂšme de stockage d’énergie est alors utilisĂ© pour rĂ©soudre un problĂšme dequalitĂ© d’alimentation et rĂ©duire la consommation Ă©nergĂ©tique. Les rĂ©sultats obtenus montrentles gains apportĂ©s par le stockage et fournissent un guide pour le choix du mode de stockage(batterie, supercondensateur, volant d’inertie) le plus pertinent pour l’application considĂ©rĂ©e.Des perspectives sont finalement ouvertes pour l’extension de notre mĂ©thodologie auxsystĂšmes de production dĂ©centralisĂ©s, aux rĂ©seaux Ă©lectrifiĂ©s en courant alternatifs et auxautres types de solutions technologiques (FACTS, HVB. . . )
    • 

    corecore