48 research outputs found

    Generating n-Scroll Chaotic Attractors From A Memristor-based Magnetized Hopfield Neural Network

    Get PDF
    © 2023 IEEE. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/TCSII.2022.3212394This brief presents a novel method to generate n-scroll chaotic attractors. First, a magnetized Hopfield neural network (HNN) with three neurons is modeled by introducing an improved multi-piecewise memristor to describe the effect of electromagnetic induction. Theoretical analysis and numerical simulation show that the memristor-based magnetized HNN can generate multi-scroll chaotic attractors with arbitrary number of scrolls. The number of scrolls can be easily changed by adjusting the memristor control parameters. Besides, complex initial offset boosting behavior is revealed from the magnetized HNN. Finally, a magnetized HNN circuit is designed and various typical attractors are verified.Peer reviewe

    Chaotic attractors based on unstable dissipative systems via third-order differential equation

    Get PDF
    "In this paper, we present an approach how to yield 1D, 2D and 3D-grid multi-scroll chaotic systems in R3 based on unstable dissipative systems via third-order differential equation. This class of systems is constructed by a switching control law(SCL) changing the equilibrium point of an unstable dissipative system. The switching control law that governs the position of the equilibrium point varies according to the number of scrolls displayed in the attractor.

    A universal variable extension method for designing multi-scroll/wing chaotic systems

    Get PDF
    © 2023 IEEE. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/TIE.2023.3299020Developing a universal design method to construct different multiscroll/wing chaotic systems (MS/WCSs) has been challenging. This article proposes a general design method for MS // WCSs called the universal variable extension method (UVEM). It is a simple but effective approach that generates one-direction (1-D) and 2-D multiscroll/wing chaotic attractors. Using any double-scroll/wing chaotic system as the basic system, the UVEM is able to construct different MS/WCSs. Employing Chua's chaotic system and Lorenz chaotic system as two examples, we construct two MSCSs (including 1-D and 2-D) and two MWCSs (including 1-D and 2-D), respectively. Theoretical analysis and numerical simulation show that the constructed MS/WCSs not only can generate 1-D and 2-D multiscroll/wing chaotic attractors but also have 1-D and 2-D initial boosting behaviors. This means that the MS/WCSs designed by the UVEM are very sensitive to their initial states, and have better unpredictability and more complex chaotic behaviors. To show the simplicity of UVEM in hardware implementation, we develop a field-programmable gate array-based digital hardware platform to implement the designed MS // WCSs. Finally, a new pseudorandom number generator is proposed to investigate the application of the MS/WCSs. All P-values obtained by the NIST SP800-22 test are larger than 0.01, which indicates that the MS/WCSs designed by UVEM have high randomness.Peer reviewe

    Bidirectional Synchronization of Two Identical Jerk Oscillators with Memristor

    Get PDF
    In this paper, the case of introducing memristor as a coupling component when synchronizing two identical simple chaotic oscillator (3-D Jerk equations) were observed. Also, the numerical simulation of the phase portraits are in good agreement with the MultiSIM and experimental simulations. Due to the complex chaotic dynamics of this oscillator, the realization of the electronic circuit involving two identical Jerk oscillator with memristor as coupling component were synchronized via bidirectional coupling and further applied to secure communication

    Grid Multiscroll Hyperchaotic Attractors Based on Colpitts Oscillator Mode with Controllable Grid Gradient and Scroll Numbers

    Get PDF
    AbstractThrough introducing two piecewise-linear triangular wave functions in a three-dimensional spiral chaotic Colpitts oscillator model, a four-dimensional grid multiscroll hyperchaotic system is constructed. Interestingly, by adjusting a build-in parameter in a variable of one triangle wave function, the control of the gradient of the multiscroll grid is achieved. Whereas by deploying the zero points of the two triangular wave functions to extend the saddle-focus equilibrium points with index-2 in phase space the scroll numbers do not only increase along with the number of turning points, but they can also generate arbitrary multiples of products. The basic dynamical behaviors of the proposed four-dimensional multiscroll hyperchaotic system are analyzed. Finally, the hardware experimental circuit is designed and the interrelated circuit implementation is realized. The experimental results are in agreement with both theoretical analyses and numerical simulations, which verify the feasibility of the design methods

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue

    Nonlinear Resistor with Polynomial AV Characteristics and Its Application in Chaotic Oscillator

    Get PDF
    This paper shows the realization of two terminal devices with an arbitrary polynomial nonlinearity up to the fifth order. The proposed design procedure is completely systematic using minimum of components. The very heart of our conception is four-channel four-quadrant analog multiplier MLT04. The implementation of synthesized nonlinear resistor as a general nonlinearity in chaotic oscillator is also presented and experimentally verified
    corecore