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ABSTRACT 
Through introducing two piecewise-linear triangular wave functions in a three-dimensional spiral chaotic Colpitts 
oscillator model, a four-dimensional grid multiscroll hyperchaotic system is constructed. Interestingly, by adjusting a 
build-in parameter in a variable of one triangle wave function, the control of the gradient of the multiscroll grid is 
achieved. Whereas by deploying the zero points of the two triangular wave functions to extend the saddle-focus 
equilibrium points with index-2 in phase space the scroll numbers do not only increase along with the number of 
turning points, but they can also generate arbitrary multiples of products. The basic dynamical behaviors of the 
proposed four-dimensional multiscroll hyperchaotic system are analyzed. Finally, the hardware experimental circuit is 
designed and the interrelated circuit implementation is realized. The experimental results are in agreement with both 
theoretical analyses and numerical simulations, which verify the feasibility of the design methods. 
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1. Introduction 

In recent decades, chaos theory has been 
extensively researched in many fields, such as 
secure communication, synchronization, binary 
signals transmission and so on [1–3]. Given that 
chaos can be exploited for potential engineering 
applications, it is important to develop techniques 
for designing chaotic attractors with complicated 
topological structures and complex shapes [4]. 
Compared with one-direction (1-D) multiscroll 
chaotic attractors, the grid multiscroll chaotic 
attractors have become a research hotspot in recent 
years because of the scrolls in the grid multiscroll 
chaotic attractors present in two- or multidirection 
distribution plane, and stereo or multidimension grid 
shape in phase space [5], which makes the chaotic 
dynamic behavior more complex. 
  
At present, different kinds of grid multiscroll chaotic 
attractors are generated by introducing different 
piecewise-linear (PWL) functions into Chua’s circuit, 
Jerk system, Colpitts oscillator, piecewise 
generalized Lorenz system families, and other mode 
frameworks, and is no longer a very difficult task [6–
13, 15–17]. For example, Muñoz-Pacheco et al. [7] 
introduced the guidelines to synthesize two-direction 

 
 
(2-D) n × m-grid scroll chaotic systems based on 
saturated functions with multisegments. Lü et al. 
introduced the hysteresis and saturated functions 
series approaches for generating 1-D n-scroll, 2-D n 
× m-grid scroll, and three-direction (3-D) n × m × p-
grid scroll chaotic attractors, with rigorously 
mathematical proof [8] and physical realization [9] for 
the chaotic behaviors. As is well known, the intrinsic 
dynamics of the generalized Lorenz system families 
are confined in the positive half space with respect to 
the vertical axis because of a limiting threshold effect. 
In order to break such a threshold effect, Yu et al. 
[10] introduced a piecewise Lorenz system equipped 
with a staircase function and an even symmetric 
PWL function, which could generate various grid 
multiwing butterfly multiscroll chaotic attractors 
without requiring any external forcing. Compared with 
the general chaotic systems, hyperchaotic systems 
can generate multiple positive Lyapunov exponents, 
implying that their dynamics are expanded in several 
different directions simultaneously. It means that 
hyperchaotic systems have more complex dynamical 
behaviors that can be used to improve the security of 
chaotic communication systems. In 2010, Bao et al. 
[11] constructed a four-dimensional multiscroll 
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hyperchaotic system. By introducing two triangular 
functions, the system could generate (2M+1) × 
(2N+1)-scroll chaotic and hyperchaotic attractors. 
The scroll numbers could increase along with the 
number of turning points, but the gird of the 
multiscroll could only generate odd multiples of 
products by the introduced triangular functions and 
could not produce arbitrary multiples of products. 
 
In the aforementioned literatures on grid multiscroll 
chaotic attractor generation, the authors are all 
concerned with the generation research of standard 
vertical grid shape in phase space. In order to further 
improve the complicated topological structures and 
complex shapes of chaotic attractors. Recently, the 
oblique grid multiscroll chaotic attractors began to 
attract the attention among researchers. Yu et al. [12] 
proposed an approach for generating three-
dimensional oblique grid multiscroll chaotic attractors 
via triangular wave series. The triangular wave series 
developed here can adjust the swings, widths, 
equilibrium points, breakpoints, and slopes so as to 
generate a large number of scrolls with adjustable 
sizes and shapes. Zhou et al. [13] constructed an 
oblique grid multiscroll chaotic system by using 
triangular wave series and step function sequence. 
However, it can be seen that the gradient of the 
multiscroll grid cannot be adjusted continuously, and 
the oblique grid multi-scroll attractors proposed 
above are not hyperchaotic attractors. 
 
In this paper we propose a new approach for oblique 
grid multiscroll hyperchaos generation. Through 
introducing two PWL functions in a four-dimensional 
linear system and deploying the zero points of the 
introduced PWL functions, the saddle-focus 
equilibrium points with index-2 in phase space can be 
extended. The scroll numbers do not only increase 
along with the number of turning points, but they can 
also generate arbitrary multiples of products. 
Whereas an internal parameter is selected in a 
variable of one triangle wave function by adjusting 
the built-in parameter, the distribution of equilibrium 
points is changed and then the control of the gradient 
of the multiscroll grid is achieved. The dynamical 
behaviors of oblique grid multiscroll hyperchaotic 
system are further investigated, including equilibrium 
points, the function relation between the built-in 
parameter and the grid gradient, Lyapunov

 exponents spectrum and bifurcation diagram. Based 
on analyses of theory and numerical simulation, the 
hyperchaotic circuit is designed and the hardware 
experimentation is realized. The experimental results 
are in agreement with both theoretical analyses and 
numerical simulations. 
 
The rest of this paper is organized as follows. In 
Section 2, a simple grid multiscroll hyperchaotic 
system is proposed based on a three-dimensional 
Colpitts oscillator mode. The basic dynamical 
behaviors of the new system are then investigated in 
Section 3. In Section 4, a block circuit diagram is 
constructed for hardware implementation of the 
oblique grid multiscroll hyperchaotic attractors. 
Conclusions are finally drawn in Section 5. 

2. Grid multiscroll hyperchaotic system 
 
This section introduces a simple four-dimension 
grid multiscroll hyperchaotic system based on a 
three-dimensional spiral chaotic Colpitts oscillator 
model. The numerical simulations of vertical grid 
multiscroll chaotic attractors and oblique grid 
multiscroll hyperchaotic attractors are also given. 
 
2.1 Chaotic system mathematical model 
 
Because the three-dimensional spiral chaotic 
Colpitts oscillator [14] is simple in structure and 
easy to realize, different kinds of multiscroll chaotic 
attractors based on its model have proposed by 
many researchers in recent years [11, 15, 16].  
 
In this paper we have made some improvements on 
the basis of [11] and [14] in two aspects.Firstly, by 
introducing two PWL triangular wave functions into 
the three-dimensional spiral chaotic Colpitts oscillator 
model, a simple four-dimension hyperchaotic system 
is constructed. The two PWL functions can generate 
(2M+1)-scroll and (2N+2)-scroll respectively, then by 
combining both functions in different ways, which 
makes it possible to create arbitrary multiples of 
products grid multiscroll chaotic and hyperchaotic 
attractors.Secondly, an internal parameter is selected 
in a variable of one triangle wave function. By 
adjusting the built-in parameter, the distribution of 
equilibrium points is changed and then the control of 
the gradient of the multiscroll grid is achieved. The 
system dimensionless state equation is given by 
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where ,  are control parameters assuming that 

,  > 0 and x, y, z, u are the state variables. 
Here, parameter  determines the dynamical 
behavior of System (1), whereas parameter  is 
the built-in parameter which can control the 
gradient of the multiscroll grid. nM(y- u) and nN(u) 
are two triangular wave functions, and M, N = 0, 
1, 2, …. We use n1,2

K( ) to express as the general 
triangular wave functions, the mathematical 
expression as follows [17]: 
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where a = 0.02 and k is positive integer and  is 
variable. It is easy to verify that triangular wave 
functions n1,2

K( ) can create 2M+1-scroll and 2N+2-
scroll, respectively, for M, N = 0, 1, 2, …. Figure 1 
shows the phase portrait of triangular wave 
functions series with k = 2. It is noticed that 
triangular wave functions series (2) and (3) are 
PWL functions and have better analytical properties 
such as the existence of solution and stability. From 
Figure 1, it is very easy to determine the zero 
points of each linearity range, hence by deploying 
the zero number points of triangular wave functions 
n1,2

K( ), the scroll numbers of chaotic attractors 
which generated by System (1) can be controlled 
and then System (1) can generate arbitrary 
multiples of products grid scroll. 

System (1) can be also described as  
 

,x Ax B                 (4) 
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And by following this structure the stability of the 
system may be explained as in Reference [18]. Then 
we can get that this system is an unstable dissipative 
system (UDS) and present scrolls depending on the 
conditions of the equilibrium points [19]. 
 

 
 

Figure 1. The Phase Portrait of Triangular 
Wave Functions n1,2

K( ).(a) n1
K( ), (b) n2

K( ). 
 
2.2 Vertical grid multiscroll chaotic attractors 
 
It has been shown that parameters  and  are 
very important, that one can determine and control 
the system’s dynamical behavior and the gradient 
of the multiscroll grid, respectively. According to 
Formulas (2) and (3), System (1) can generate 
vertical grid multiscroll chaotic attractors when  = 
0.95 and  = 0 as follows. 
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Let both nM(y) and nN(u) be n1
K( ). System (1) can 

generate (2M+1) × (2N+1) couple of vertical grid 
multiscroll chaotic attractors. The 3 × 3 and 5 × 5-
grid multiscroll attractor are described as the two 
examples in Figures  2(a) and 2(d). 
 
Let nM(y) and nN(u) be n1

K( ) and n2
K( ) 

respectively. The chaotic system can generate 
(2M+1) × (2N+2) couple of vertical grid multiscroll 
attractors, and the 3 × 4-grid multiscroll attractors 
is depicted as an example in Figure 2(b). 
 
Let nM(y) and nN(u) be n2

K( ) and n1
K( ) 

respectively. The chaotic system can generate 
(2M+2) × (2N+1) couple of vertical grid multiscroll 
attractors, and the 4 × 5-grid multiscroll attractors 
is depicted as an example in Figure  2(c). 
 
From Figure 2, it can be seen that all the attractors 
present standard vertical grid shape in phase 
space. The Lyapunov exponents spectrum of 3 × 
3-grid scroll attractors includes L1 = 0.2949, L2 = 0, 
L3 = -0.5820 and L4 = -0.7177. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3 Oblique grid multiscroll hyperchaotic attractors 
 
When  = 2.75,  varies. Let nM(y) and nN(u) be 
n2k( ), System (1) can generate (2M+2) × (2N+2) 
couple of grid multiscroll hyperchaotic attractors. 
Figure 3 shows 4 × 4-grid multiscroll hyperchaotic 
attractors when = 0, 0.35, 0.7, 1, respectively. It 
can be observed that the attractors present 
oblique grid shape in phase space and the 
gradient  of the grid increases as parameter  
increases. Simultaneously, it can be seen that 
compared with chaotic attractors, each scroll of 
the hyperchaotic attractors connects a whole 
plane gradually, implying that the hyperchaotic 
attractors are separated in more directions. It 
means that the hyperchaotic system has more 
complex dynamical behaviors. The Lyapunov 
exponents spectrum of 4 × 4-grid scroll attractors 
when  = 1 includes L1 = 0.7707, L2 = 0.7441, L3 
= 0 and L4 = -2.5175. Having two positive 
Lyapunov exponents, it is obvious that the system 
is a hyperchaotic system when  = 2.75. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. The Projections of the Four-Dimensional Chaotic Attractors in y-u Plane. 
(a) 3 × 3 Scrolls,(b) 3 × 4 Scrolls, (c) 4 × 5 Scrolls, (d) 5 × 5 Scrolls. 
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3. Basic dynamical behaviors 
 
In this section, the basic dynamical behaviors of the 
oblique grid multiscroll hyperchaotic attractors are 
further investigated. 
 
3.1 Distribution of index-2 equilibrium points 
 
In order to obtain the system equilibrium points, let 
the right-hand side of System (1) equal to zero. We 
can obtain x = -y, z = 0, nM(y- u) = 0. This 
suggests that the system equilibrium points are 
entirely up to the zero points of the PWL functions 
nM(y- u) and nN(u). If nM(y- u) = n2

M(y- u) and 
nN(u) = n2

N(u), System (1) has (2M+2) × (2N+2) 
equilibrium points Sij = (i, 0, j) which are on y - u 
plane, where z = 0, i = 0, 2, … , 2M and j = 0, 
2, … , 2N. Note that the equilibrium points in u 

axis are easily obtained by n2
N(u) = 0, whereas the 

equilibrium points in y-axis are determined by 
n2

N(u) = 0 and n2
M(y- u) = 0 together. Let M = N = 

1, then the 4 × 4 couple of grid multiscroll 
attractors in y - u plane can be obtained as shown 
in Figure 4, where “•” denotes the equilibrium 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
points of index-2. Thus, the number of the 
equilibrium points of index-2 is 4 × 4. Each 
equilibrium point can generate one scroll, therefore 
the number of scroll is 4 × 4. 
 
According to Formulas (1)-(3), the Jacobi matrix of 
the equilibrium points Sij of index-2 can be obtained 
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Figure 3. The Projections of 4 × 4 Hyperchaotic Attractors in y-u Plane. 
(a)  = 0, (b)  = 0.35, (c)  = 0.7, (d)  = 1. 
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Because the derivative of the absolute value 
function is the sign function, it is easy to get 

* * * * * * 1M M Nn y n u n u  for scroll equilibrium 

points Sij. When  = 1, System (1) are linearized 
near the equilibrium points, and the corresponding 
characteristic equation is 
 

4 3 2

2

1 3 0.5 7 3

1.5 0,

        

(7) 
 

 
 

Figure 4. The Distribution of Index-2  
Equilibrium Points. 

 
Note that the coefficients of Equation (5) are all 
positive numbers when  > 0. Thus, as long as  > 
0, then f( ) > 0. According to Routh-Hurwitz 
stability criterion, the sufficient and necessary 
condition for holding the system stability is  > 
0.5444. Hence, when  > 0.5444, System (1) is 
unstable. At this time, Equation (5) has two 
negative eigenvalues (or one pair of complex 
conjugate eigenvalues with negative real parts) 
and one pair of complex conjugate eigenvalues 
with positive real parts, this means that System (1) 
undergoes a Hopf bifurcation at  = 0.5444. 
Moreover, all equilibrium points are two-
dimensionally unstable equilibrium points when  > 
0.5444, called equilibrium points with index-2.

When  = 0.5444, the four eigenvalues of the scroll 
equilibrium points of System (1) are 1,2  0.3360  
2.5639i, 3  -0.7268 and 4  -0.9453. 
 
3.2 Function relation between parameter  and the 
grid gradient 
 
From the analyses in the previous subsections, we 
know that the equilibrium points in the y-axis are 
mainly determined by n2

N(u) = 0 and n2
M(y- u) = 0 

together and the shape of the grid is directly 
decided by the distribution of the scroll equilibrium 
points. From Figure 4, it is very easy to draw the 
function relation between the control parameter  
and the grid gradient  which is  = arctan . The 
function relation illustrates the grid gradient  is in 
proportion to the parameter , which means 
implementation of the scroll grid gradient  direct 
control. 
 
3.3 Lyapunov exponents spectrum and bifurcation 
diagram 
 
To further prove the existence of chaos and 
hyperchaos in System (1), taking 4 × 4 scrolls 
chaotic attractors as an example. When  = 1, the 
Lyapunov exponents spectrum is obtained as 
shown in Figure 5. Whereas  increases, the 
system undergoes some representative dynamical 
routes, such as stable fixed points, Hopf 
bifurcation, chaos and hyperchaos, which are 
summarized as follows: 
 

(1) when 0 <  < 0.5444, L1, 2, 3, 4 < 0, the 
system is stable. 

 
(2) when  = 0.5444, L1, 2 = 0, L3, 4 < 0, System 

(1) has a Hopf bifurcation at this point.  
 
(3) when 0.544 <  < 1.712, L1 > 0, L2 = 0, L3, 4 

< 0, System (1) is chaotic. 
 
(4) when 1.712   < 5, L1, 2 > 0, L3  0, L4 < 0, 

System (1) evolves from the chaos state to the 
hyperchaos state. The bifurcation diagram of 
parameter  is also found as shown in Figure 6, with 
increasing parameter , several chaos area gradually 
migrate in close together and finally form an integer. 
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Figure 5. Lyapunov Exponents Spectrum  
of Parameter . 

 

 
 

Figure 6. Bifurcation Diagram of Parameter . 
 
4. Circuit design and experimental results  
 
In this section, the oblique grid scroll hyperchaotic 
attractors are obtained by circuit design and 
experimental results, respectively. The operational 
amplifiers and associated circuitry perform the 
basic operations of addition, subtraction, and 
integration. All the operating amplifiers are of type 
TL082CP and their saturation value is |Vsat| = 13.5 
V. The voltage of power supply is E = 15 V. 
 
4.1 Circuit design of triangular wave functions 
 
According to Formulas (2) and (3), let k = 1. The 
triangular wave functions n1,2

K( ) are designed as 
shown in Figure 7. In Figure 7, Rv = 13.5 K  is the 
resistance for voltage-current conversion, RE is a 

balance resistance under the additional voltage VE, 
with RE = 1 K , VE = 1 V. The parameter q is 
determined by R1, R2 and their conjoint amplifier, q 
= R1 × |Vsat| / R2 = 0.02. For |Vsat| = 13.5 V, we 
choose R1 = 300 , R2 = 200 K . R1, R2 and linear 
resistance R are used for producing positive slope 
line of the triangular wave, whereas linear 
resistance R is used also for producing negative 
slope line of the triangular wave. 
 
When the input be , and the output can be n1

1( ) 
or -n1

1( ) in Figure 7(a). The same, if the input be 
, and the output is n2

1( ) or -n2
1( ) in Figure 7(b).

 

 

 

 

 
Figure 7. Circuit Design of Two Triangular Wave 

Functions n1,2
K( ) When k = 1. (a) n1

1( ), (b) n2
1( ). 
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4.2 Circuit design of the oblique grid multiscroll 
hyperchaotic system based on dimensionless 
state equation 

 
Figure 8 illustrates the oblique grid multiscroll 
hyperchaotic circuit based on dimensionless state 
equation. The time constant of the integrator is 
determined by R0C0, which can change the spectrum 
range of the chaotic signal. Let R0 = 1 K  and C0 = 
33 nF. In Figure 8, we also design the circuit of (y-
u), where Ra is an exactly adjustable resistor, used 

to adjust control parameter . The value of control 
parameter  of System (1) is 1.75 in Figure 8. 

 
4.3 Experimental results 

 
In this subsection, the vertical and oblique grid 
multiscroll hyperchaotic attractors are experimentally 
confirmed via oscilloscope observations. To assist 
readers, a circuit implementation of the multiscroll 
hyperchaotic attractors is shown in Figure 9, based 
on the circuit diagrams and circuit implementation 

shown in Figures 7, 8 and 9, we have performed the 
following real physical experiments. 

Let the input signal in Figure 7(b) be u, the output 
is n21( ) connected to the input signal n21(u) in 
Figure 8. Whereas, if we let the input signal in 
Figure 7(b) be y, the output is -n21( ), connected 
to the input signal -n21(y) in Figure 8. And then we 
get the standard 4 × 4 vertical grid multiscroll 
hyperchaotic chaotic attractors. Figure 10(a) 
shows the oscilloscope-observed result.  
 
If let the input signal in Figure 7(b) be (y- u), the 
output is -n21( ), connected to the input signal -
n21(y- u) in Figure 8. And then we can get the 4 × 
4 oblique grid multiscroll hyperchaotic chaotic 
attractors when Ra equal to 3.5 K , 7 K  and 10 
K , respectively. Figures 10(b)-(d) show the 
oscilloscope-observed results. From above 
analyses, the experimental results are in 
agreement with numerical simulations. 

 
 

Figure 8. Circuit Design of Vertical and Oblique Grid Multiscroll Hyperchaotic  
System Based on the Dimensionless State Equation. 
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Figure 9. Circuit Implementation of (a) Two Triangular Wave Functions and  
(b) Grid Multiscroll Hyperchaotic Attractors. 

 
 

 
 

Figure 10. Experimental Observations of 4 × 4-Scroll Hyperchaotic Attractors, x = 2.0 V/div, y = 2.0 V/div.  
(a) Vertical Grid Scroll, (b) Oblique Grid Scroll With Ra = 3.5 K , (c) Oblique Grid Scroll  

With Ra = 7 K , (d) Oblique Grid Scroll With Ra = 10 K .
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5. Conclusions  
 
This paper has developed a nonlinear modulating 
function approach for oblique grid multiscroll 
hyperchaotic attractors based on third-order spiral 
chaotic Colpitts oscillator model. By introducing 
two triangle wave functions and adjusting a built-in 
parameter, the proposed hyperchaotic system 
does not only generate arbitrary multiples of 
products scroll numbers but it can also create 
oblique grid multiscroll chaotic attractors. 
Moreover, the basic dynamical behaviors are also 
investigated, confirming the chaotic nature of the 
presented system. Based on dimensionless state 
equations and module-based method, the success 
of the design has been demonstrated by circuit 
experiment. Theoretical analysis and experimental 
results confirm the effectiveness and feasibility of 
the presented scheme. 

References 
 
[1] A. Ashraf and A. Abdulnasser, “On the design of 
chaos-based secure communication systems,” 
Communications in Nonlinear Science and Numerical 
Simulation, vol. 16, no. 9, pp. 3721–3737, 2011. 
 
[2] J. L. Mata-Machuca et al., “Chaotic Systems 
Synchronization Via High Order Observer Design,” 
Journal of Applied Research and Technology, vol. 9, no. 
1, pp. 57–68, 2011. 
 
[3] C. Posadas-Castillo et al., “Experimental realization 
of binary signals transmission based on synchronized 
Lorenz circuits,” Journal of Applied Research and 
Technology, vol. 2, no. 2, pp. 127–137, 2004. 
 
[4] G. Grassi et al., “Multi-wing hyperchaotic attractors 
from coupled Lorenz systems,” Chaos, Solitons & 
Fractals, vol. 41, no. 1, pp. 284–291, 2009. 
 
[5] C. Zhang and S. Yu, “Generation of grid multi-scroll 
Chua’s chaotic attractors with combination of hysteresis 
and step series,” Acta Physica Sinica, vol. 58, no. 1, pp. 
120–130, 2009.  
 
[6] R. N. Perez, “Measurement of Chua chaos and its 
applications,” Journal of Applied Research and 
Technology, vol. 6, no. 1, pp. 45–53, 2008. 
 
[7] J. M. Muñoz-Pacheco and E. Tlelo-Cuautle, 
“Automatic synthesis of 2D-n-scrolls chaotic systems by 
behavioral modeling,” Journal of Applied Research and 
Technology, vol. 7, no. 1, pp. 5–14, 2009. 

[8] J. Lü et al., “Design and analysis of multiscroll chaotic 
attractors from saturated function series,” IEEE 
Transactions on Circuits and Systems I: Regular Papers, 
vol. 51, no. 12, pp. 2476–2490, 2004. 
 
[9] J. Lü et al., “Experimental verification of multi-
directional multi-scroll chaotic attractors,” IEEE 
Transactions on Circuits and Systems I: Regular Papers, 
vol. 53, no. 1, pp. 149–165, 2006. 
 
[10] S. Yu et al, “Design and Implementation of Grid 
Multiwing Butterfly Chaotic Attractors From a 
Piecewise Lorenz System,” IEEE Transactions on 
Circuits and Systems II: Express Briefs, vol. 57, no. 
10, pp. 803–807 2010. 
 
[11] B. Bao et al., “Generation of multi-scroll hyperchaotic 
attractor based on Colpitts oscillator mode,” Acta Physica 
Sinica, vol. 59, no. 3, pp. 1540–1548, 2010. 
 
[12] S. Yu, “Circuit implementation for generating three-
dimensional multi-scroll chaotic attractors via triangular 
wave series,” Acta Physica Sinica, vol. 54, no. 4, pp. 
1500–1509, 2006. 
 
[13] W. Zhou et al., “Study and hardware implementation 
of n×m-scroll chaotic attractors,” Chinese Journal of 
Quantum Electronics, vol. 26, no. 6, pp. 715–721, 2009. 
 
[14] G. Maggio et al., “Nonlinear analysis of the Colpitts 
oscillator and applications to design,” IEEE Transactions 
on Circuits and Systems I: Fundamental Theory and 
Applications, vol. 46, no. 9, pp. 1118–1130, 1999. 
 
[15] B. Bao et al., “Multi-scroll chaotic attractors from a 
modified colpitts oscillator model,” International Journal of 
Bifurcation and Chaos, vol. 20, no. 7, pp. 2203–2211, 2010. 
 
[16] B. Bao et al., “Three-dimensional mult-scroll 
Colpitts chaotic system and its digital hardware 
implementation,” Journal of Circuits and Systems, vol. 
16, no. 1, pp. 69–73, 2011.  
 
[17] X. Luo et al., “Implementation of a novel two-
attractor grid multi-scroll chaotic system,” Chinese 
Physics B, vol. 19, no. 7, pp. 070510, 2010. 
 
[18] E. Campos-Cantón et al., “Multiscroll attractors by 
switching systems,” Chaos, vol. 20, pp. 013116, 2010. 
[19] E. Campos-Cantón et al., “Attractors generated from 
switching unstable dissipative systems,” Chaos, vol. 22, 
pp. 033121, 2012. 
 
 


	Grid Multiscroll Hyperchaotic Attractors Based on Colpitts Oscillator Mode with Controllable Grid Gradient and Scroll Numbers

