25 research outputs found

    Research status of agricultural robot technology

    Get PDF
    According to the different agricultural production uses, agricultural robots were classified, mainly including agricultural information collection robots, pruning robots, grafting robots, transplanting robots, spraying robots and picking robots. The research status of mainstream agricultural robots at home and abroad were introduced, and their working principles and characteristics were expounded. Finally, the problems existing in the key technologies of existing agricultural robots and their future development directions were put forward

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017

    Micro-climate modelling and engineering design for a horticultural grow-cell prototype

    Get PDF
    This thesis is concerned with controlled environment horticulture, with a particular focus on two practical examples, namely a laboratory scale forced ventilation chamber and a full-sized prototype grow-cell developed in collaboration with an industry partner. The grow-cell belongs to a relatively new category of plant factory in the horticultural industry, for which the motivation is the maximization of production and the minimization of energy consumption. Significantly, the plants are grown under artificial lights and there is recycling of water. The thesis is organized into two main parts. Part A of the thesis takes a systems design approach to identify the engineering requirements of the new grow-cell facility, with the prototype based on a 12 m × 2.4 m × 2.5 m shipping container. Research contributions are made in respect to: (i) the design of a novel conveyor-irrigation system for mechanical movement of plants; (ii) tuning of the artificial light intensity; and (iii) investigations into the environmental conditions inside the grow-cell. In particular, the conveyor-irrigation and lighting systems are optimized by the present author to make the proposed grow–cell more effective and sustainable. In future research, the prototype unit thus developed can be used to investigate production rates, plant quality and whole system operating costs. Nonetheless, preliminary growth trials reported within the thesis, demonstrate that Begonias semperflorens and Impatiens divine can be harvested to the satisfaction of a commercial grower. The prototype has a standard commercial air-conditioning unit to maintain the required temperature and humidity set points. However, data collected by the author from a distributed sensor array demonstrates heterogeneous conditions arising during the growth trials. Hence, the research associated with Part B of the thesis concerns the development of a novel data–based approach for the modelling and control of micro-climate in a building or room, with a particular focus on thermal stratification. In particular, use of statistical clustering techniques are investigated for the partitioning of indoor environment into a number of zones that have a relatively uniform thermal behaviour. The quantitative data-driven approach proposed here, first characterizes the system dynamics using measured data and, secondly, exploits Agglomerative Hierarchical Clustering (AHC) and k-means clustering to determine the thermal zones. The practical utility of the new approach is evaluated using the laboratory example i.e. a 2 m × 1 m × 2 m chamber with two axial fans, a heating element, and an array of thermocouples. In this case, the modelling approach yields Hammerstein type models which are subsequently used for both single and multi–zone control system design. The laboratory facility was used for this research since it was readily available for these closed-loop control experiments. The thesis concludes with recommendations for future developments in the microclimate control unit for the grow–cell, and for further research into the grow–cell concept more generally

    Handheld and robotic phenotyper designs

    Get PDF
    Doctor of PhilosophyDepartment of Biological & Agricultural EngineeringNaiqian ZhangOne of precision agriculture researches currently focuses on the relationship between plant phenotype, genotype, and ambient environment, including critical investigations of a multi-sensor-integrated phenotyping platform and data mining technology for big data. This study examined the designs of two phenotyping platforms and developed machine vision (MV) technology to estimate wheat growth status and count wheat head. The GreenSeeker, an infrared thermometer (IRT), a web camera, and a global positioning system (GPS) receiver were integrated into one handheld phenotyping platform, named as Phenocorn. The Phenocorn allowed simultaneous collection of the normalized difference vegetative index (NDVI) and canopy temperature (CT) with precise assignment of all measurements to plot location by GPS data points. The Phenocorn was tested using a field trial of 10 historical and current elite wheat (Triticum aestivium) breeding lines at the International Maize and Wheat Improvement Center (CIMMYT) in Ciudad Obregon, Mexico, during the 2013 and 2014 growing seasons. Results showed that the NDVI data, PVC (percent vegetation coverage) data, and temperature data obtained by the handheld phenocorn could availably reflect the wheat growing status in the field, and the handheld phenocorn could be used as an instrument to do plant phenotyping information collection. This study also used the modular design method to design the mechanical structures of a robot-based phenotyping platform, named as Phenorobot. Its control system was based on a Controller Area Network (CAN bus). The basic function performances such as steering function, lifter load, and movement features were tested in the laboratory. Proposed design indicators were achieved, demonstrating its potential utilization for field experiments. Image acquisition is one of the main data collection methods for plant phenotyping research. The method for extracting plant phenotyping traits based on MV was explored in this research. Experiments for detecting the wheat development based on the images taken in the field were designed and carried out from March to June 2015, and a method based on color analysis to estimate percent vegetation coverage (PVC) of wheat was developed. A wheat growth model based on the PVC was used for the wheat growth status analysis. In addition, a wheat head counting method was developed and divided into three steps: wheat head image segmentation, leaf debris elimination, and wheat head counting. This paper proposes the first wheat head counting model (WCM) based on the pixels group measurement of wheat heads. Compared to the Joint Points Counting (JPC) method (Liu et al., 2014) and the Wheatear Shape Index (WSI) method (Frédéric et al., 2012), the WCM more accurately counted wheat heads from images taken in the experiments

    Agricultural Structures and Mechanization

    Get PDF
    In our globalized world, the need to produce quality and safe food has increased exponentially in recent decades to meet the growing demands of the world population. This expectation is being met by acting at multiple levels, but mainly through the introduction of new technologies in the agricultural and agri-food sectors. In this context, agricultural, livestock, agro-industrial buildings, and agrarian infrastructure are being built on the basis of a sophisticated design that integrates environmental, landscape, and occupational safety, new construction materials, new facilities, and mechanization with state-of-the-art automatic systems, using calculation models and computer programs. It is necessary to promote research and dissemination of results in the field of mechanization and agricultural structures, specifically with regard to farm building and rural landscape, land and water use and environment, power and machinery, information systems and precision farming, processing and post-harvest technology and logistics, energy and non-food production technology, systems engineering and management, and fruit and vegetable cultivation systems. This Special Issue focuses on the role that mechanization and agricultural structures play in the production of high-quality food and continuously over time. For this reason, it publishes highly interdisciplinary quality studies from disparate research fields including agriculture, engineering design, calculation and modeling, landscaping, environmentalism, and even ergonomics and occupational risk prevention

    Space Station Systems: a Bibliography with Indexes (Supplement 8)

    Get PDF
    This bibliography lists 950 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included

    Flipping All Courses on a Semester:Students' Reactions and Recommendations

    Get PDF
    corecore