2,035 research outputs found

    Water quality monitoring

    Get PDF
    Capstone Project submitted to the Department of Engineering, Ashesi University in partial fulfillment of the requirements for the award of Bachelor of Science degree in Electrical and Electronic Engineering, May 2022Water quality is one important factor considered in distributing potable water to the population. Bad water quality leads to the spread of diseases to people and livestock. Good water quality, however, promotes healthy living. At Ghana Water Company Limited, water quality is monitored every hour. Often, time is taken to cross-check the values recorded on the water quality parameters, for example pH, to ensure accuracy. Also, staff members have to be available daily to monitor the water quality. A system that monitors the water quality daily every hour ensuring accuracy in its measurement was designed for this project. The system has a database that stores all the parameters measured and a web dashboard to display the data. The web dashboard also displays the data on a graph to show the peaks at different times.Ashesi Universit

    FSA field test

    Get PDF
    The 12 continental remote sites were decommissioned. Testing was consolidated into a five-site network consisting of the four Southern California sites and a new Florida site. 16 kW of new state-of-the-art modules were deployed at the five sites. Testing of the old modules continued at the Goldstone site but as a low-priority item. Array testing of modules is considered. Additional new testing capabilities were added. A battery-powered array data logger is discussed. A final set of failure and degradation data was obtained from the modules

    A fast method for mobile in-situ monitoring of optical properties in aquatic environments

    Get PDF
    In summary, this dissertation presents a fundamental sensor development according to newly formulated sampling theorem (Object Specific Exposure - OSE) from an ocean engineering perspective. It provides a fast method based on a service-oriented optical sensor system that allows reliable statements regarding the state of aquatic (eco-) systems (turbidity and dissolved organic carbon) with feasible sensor effort during the field measurement. The technological approach presented in this thesis helps to increase the informative value of sensor data while reducing the effort for the user.Zusammenfassend stellt diese Dissertation eine grundlegende Sensorentwicklung nach einem neu formulierten Monitoring-Theorem (Object Specific Exposure - OSE) aus meerestechnischer Sicht dar. Vorgestellt wird eine Methode, die auf Basis eines serviceorientierten optischen Sensorsystems Aussagen ĂŒber den Zustand von aquatischen (Öko-) Systemen (TrĂŒbung und Gehalt gelöster organischer Verbindungen) mit geringem methodischen Sensoraufwand im Feld ermöglicht

    Wireless sensor network-based solution for environmental monitoring: water quality assessment case study

    Get PDF
    The challenges of climate change, population growth, demographic change, urbanization and resource depletion mean that the world’s great cities need to adapt to survive and thrive over the coming decades. Slashing greenhouse gas emissions to prevent catastrophic climate change, while maintaining or increasing quality of life, can be a costly and dif cult process. Two factors that directly affect the life quality in the XXI century cities are the water and air quality that can be monitored using the combination of low cost sensing modules, machine to machine (M2M) and internet of things (IoT) technologies. In this context, this study presents a wireless sensor network architecture that combines low cost sensing nodes and a low cost multi- parameters sensing probe for reliable monitoring of water quality parameters of surface waters (lakes, estuaries and rivers) in urban areas. A particular attention is dedicated to the design of the conductivity, temperature and turbidity signal conditioning circuits, highlighting important issues related to linearisation, measuring dynamic range and low-cost implementation by using commercial off-the-shelf components and devices. Several issues related to the wireless sensor network implementation are included in this study, as well as several simulation and experimental results.info:eu-repo/semantics/publishedVersio

    Diwata-2: Earth Observation Microsatellite with a Compact Bus System, ElectronicallyTunable Multi-spectral Imager, and Amateur Radio Communications Capability

    Get PDF
    The microsatellite Diwata-2 was launched into the 600-km Sun-Synchronous Orbit (SSO) last October 29, 2018. It has a low-power, low-complexity, compact bus structure, capable of Earth observation and remote sensing mission through a 5-meter resolution Near-Infrared (NIR) High Precision Telescope (HPT) and a 125-meter resolution Space-borne Multispectral Imager (SMI) with two Liquid Crystal Tunable Filters (LCTF). The LCTF operates as an electronic-based band reconfiguration filter allowing for more than 600-channels of wavelength variation. As a secondary mission, Diwata-2 has full-duplex FM voice communications capability via a non-board module utilizing the amateur radio band at a 5W power requirement from mobile ground users. The structure has a 500-mm cubic external dimension, with JAXA’s Payload Attached Fairing (PAF) rocket interface and deployment mechanism. Deployable solar array panels (DSAP) were also introduced to increase the power generation capabilities of the microsatellite. The importance of detailed structural-mechanical models for finite-element analysis allowed for accurate structural simulation results. The observed accuracy is within 5-Hz for the first two modes compared to the actual vibration test results. Lastly, strict management of in-flight procedures allowed for consistent satellite performance, while modification of satellite maneuver based on imaging observation results improved target pointing accuracy to within 5-km

    The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks

    No full text
    The challenge of improving water quality is a growing global concern, typified by the European Commission Water Framework Directive and the United States Clean Water Act. The main drivers of poor water quality are economics, poor water management, agricultural practices and urban development. This paper reviews the extensive role of non-point sources, in particular the outdated agricultural practices, with respect to nutrient and contaminant contributions. Water quality monitoring (WQM) is currently undertaken through a number of data acquisition methods from grab sampling to satellite based remote sensing of water bodies. Based on the surveyed sampling methods and their numerous limitations, it is proposed that wireless sensor networks (WSNs), despite their own limitations, are still very attractive and effective for real-time spatio-temporal data collection for WQM applications. WSNs have been employed for WQM of surface and ground water and catchments, and have been fundamental in advancing the knowledge of contaminants trends through their high resolution observations. However, these applications have yet to explore the implementation and impact of this technology for management and control decisions, to minimize and prevent individual stakeholder’s contributions, in an autonomous and dynamic manner. Here, the potential of WSN-controlled agricultural activities and different environmental compartments for integrated water quality management is presented and limitations of WSN in agriculture and WQM are identified. Finally, a case for collaborative networks at catchment scale is proposed for enabling cooperation among individually networked activities/stakeholders (farming activities, water bodies) for integrated water quality monitoring, control and management

    Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    Get PDF
    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we multiplex and transmit four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam, we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the higher-rate link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the lower rates, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.Comment: 26 pages, 5 figure

    Wireless Sensor Networks for Oceanographic Monitoring: A Systematic Review

    Get PDF
    Monitoring of the marine environment has come to be a field of scientific interest in the last ten years. The instruments used in this work have ranged from small-scale sensor networks to complex observation systems. Among small-scale networks, Wireless Sensor Networks (WSNs) are a highly attractive solution in that they are easy to deploy, operate and dismantle and are relatively inexpensive. The aim of this paper is to identify, appraise, select and synthesize all high quality research evidence relevant to the use of WSNs in oceanographic monitoring. The literature is systematically reviewed to offer an overview of the present state of this field of study and identify the principal resources that have been used to implement networks of this kind. Finally, this article details the challenges and difficulties that have to be overcome if these networks are to be successfully deployed

    Water monitoring and analytic based thingspeak

    Get PDF
    Diseases associated with bad water have largely reported cases annually leading to deaths, therefore the water quality monitoring become necessary to provide safe water. Traditional monitoring includes manual gathering of samples from different points on the distributed site, and then testing in laboratory. This procedure has proven that it is ineffective because it is laborious, lag time and lacks online results to enhance proactive response to water pollution. Emergence of the Internet of Things (IoT) and step towards the smart life poses the successful using of IoT. This paper presents a water quality monitoring using IoT based ThingSpeak platform that provides analytic tools and visualization using MATLAB programming. The proposed model is used to test water samples using sensor fusion technique such as TDS and Turbidity, and then uploading data online to ThingSpeak platform to monitor and analyze. The system notifies authorities when there are water quality parameters out of a predefined set of normal values. A warning will be notified to user by IFTTT protocol
    • 

    corecore