6 research outputs found

    Синтез енергоефективного закону управління розгоном автомобіля

    Get PDF
    We have established the laws of change in the vehicle acceleration time at the existing step transmission of ICE, when implementing the total traction force, boundary for the drive wheels adhesion to the road, and during implementation of the proposed rational law for acceleration control. To model ICE speed characteristics, we applied the empirical dependence by S.R. Leyderman. The analytical expressions obtained allow us to implement such a change in vehicle acceleration depending on its speed that makes it possible to ensure maximum dynamism at minimal engine power consumption, taking into consideration a nonlinear change in external resistance. The maximum acceleration, which is possible to implement using the rational dynamic characteristic, can reach 7 m/s2. Based on the dependences obtained, it is possible to determine effective work of ICE required to accelerate a vehicle at different gears. An analysis of calculation results revealed that the transition from lower to higher gears is accompanied by a sharp decrease in engine energy expenditure required to accelerate the vehicle.It was established that for the case of hybrid vehicles, acceleration using the electric drive, rather than accelerating at lower gears of the mechanical drive, makes it possible to reduce energy losses by 20 % (for a four-cylinder internal combustion engine). Energy preservation is accomplished by reducing the fluctuation of traction force, as well as the possibility of a step-free change in motion speed.Определена рациональная динамическая характеристика автомобиля, позволяющая разгон при минимальных затратах энергии двигателя. Определены законы изменения времени разгона автомобиля при реализации предельной по сцеплению ведущих колес с дорогой суммарной тяговой силы и при реализации предложенного рационального закона управления ускорением. Проведена оценка эффективной работы ДВС при разгоне на различных передачах автомобиляВизначена раціональна динамічна характеристика автомобіля, що дозволяє розгін при мінімальних витратах енергії двигуна. Визначено закони зміни часу розгону автомобіля при реалізації граничної по зчепленню ведучих коліс з дорогою сумарної тягової сили й при реалізації запропонованого раціонального закону управління прискоренням. Проведена оцінка ефективної роботи ДВЗ при розгоні на різних передачах автомобіл

    Синтез енергоефективного закону управління розгоном автомобіля

    Get PDF
    We have established the laws of change in the vehicle acceleration time at the existing step transmission of ICE, when implementing the total traction force, boundary for the drive wheels adhesion to the road, and during implementation of the proposed rational law for acceleration control. To model ICE speed characteristics, we applied the empirical dependence by S.R. Leyderman. The analytical expressions obtained allow us to implement such a change in vehicle acceleration depending on its speed that makes it possible to ensure maximum dynamism at minimal engine power consumption, taking into consideration a nonlinear change in external resistance. The maximum acceleration, which is possible to implement using the rational dynamic characteristic, can reach 7 m/s2. Based on the dependences obtained, it is possible to determine effective work of ICE required to accelerate a vehicle at different gears. An analysis of calculation results revealed that the transition from lower to higher gears is accompanied by a sharp decrease in engine energy expenditure required to accelerate the vehicle.It was established that for the case of hybrid vehicles, acceleration using the electric drive, rather than accelerating at lower gears of the mechanical drive, makes it possible to reduce energy losses by 20 % (for a four-cylinder internal combustion engine). Energy preservation is accomplished by reducing the fluctuation of traction force, as well as the possibility of a step-free change in motion speed.Определена рациональная динамическая характеристика автомобиля, позволяющая разгон при минимальных затратах энергии двигателя. Определены законы изменения времени разгона автомобиля при реализации предельной по сцеплению ведущих колес с дорогой суммарной тяговой силы и при реализации предложенного рационального закона управления ускорением. Проведена оценка эффективной работы ДВС при разгоне на различных передачах автомобиляВизначена раціональна динамічна характеристика автомобіля, що дозволяє розгін при мінімальних витратах енергії двигуна. Визначено закони зміни часу розгону автомобіля при реалізації граничної по зчепленню ведучих коліс з дорогою сумарної тягової сили й при реалізації запропонованого раціонального закону управління прискоренням. Проведена оцінка ефективної роботи ДВЗ при розгоні на різних передачах автомобіл

    기동성 및 횡 안전성을 위한 역삼륜형 퍼스널 모빌리티 차량의 인휠 모터 제어기 설계

    Get PDF
    학위논문 (석사)-- 서울대학교 대학원 : 공과대학 기계항공공학부, 2019. 2. 이경수.본 논문에서는 역삼륜형 퍼스널 모빌리티 차량의 동역학 모델 분석하였으며 이를 기반으로 기동성 및 횡 안정성 개선을 위한 인 휠 모터 제어기를 설계하였다. 퍼스널 모빌리티 차량의 동역학 모델링은 제어기를 설계하기에 앞서 시스템의 성능을 분석하기 위해 설계 및 사용되었다. 특히 모델링을 활용하여 다양한 주행 시나리오 기반으로 시뮬레이션 단계에서 동역학 특성을 검증하였다. 동역학적 특성을 기반으로 목표 요속도를 종 속도에 대한 함수식으로 설계하였다. 목표 요 속도를 추종하기 위한 요 모멘트가 제어기에서 생성되며 본 모멘트를 시스템에 가하여 회전 기동성 및 횡 안정성을 진행 속도에 따라 개선하고자 한다. 목표 요 모멘트는 차분 토크 지령으로 각 모터에 전달되며, 이 외에도 종방향 전복 방지 로직과 바퀴 과도슬립 방지 로직에 의해 각 모터의 토크 지령이 추가 처리된다. Matlab/Simulink를 활용하여 특정 주행 시나리오에서 제어기의 성능을 시뮬레이션 단계에서 검증하였다. 또한 설계된 제어기를 실차에 적용한 뒤 다양한 종 속도, 노면 조건 및 주행 시나리오에 따라 실차 실험이 진행되었다. 실차 실험 결과 저속에서 회전 반경이 급격히 줄어 기동성이 상승되었다. 또한 고속에서는 횡 가속도가 마찰 한계 값 미만으로 제한되어 횡 안정성 역시 확보되었다. 종 방향 전복 방지 및 바퀴 과도 슬립 방지 로직 역시 본 논문에서 설계된 제어기를 통해 성능이 검증되었다.This study proposes dynamic analysis and in-wheel motor control algorithm of three wheeled personal mobility vehicle considering maneuverability and lateral stability. A dynamic modeling of personal mobility vehicle is used to understand the characteristics of system, which presents strategy of motor control algorithm. Dynamic characteristics are demonstrated based on various driving scenario simulation. Considering dynamic characteristics, desired yaw rate is designed as a function of longitudinal velocity. Tracking desired yaw rate generates additional yaw moment which satisfies the purpose of improvement of maneuverability and stability along with longitudinal velocity. This additional yaw moment is distributed as differential torque command to each front right and left motor. Differential torque command is processed by torque saturation logic to prevent pitchover and longitudinal wheel slip. Numerical simulation results are presented with some specific driving scenario using Matlab/Simulink package to analyze controllers performance. Also, after embedding motor control algorithm into test vehicle, various vehicle tests are performed to verify the performance of designed controller at different speed, road condition, and driving scenario. According to test results, radius of curvature is significantly reduced at low longitudinal speed, which implicates the improvement of maneuverability. Also, lateral acceleration is upper bounded to prevent lateral instability of vehicle at high speed. Pichover and longitudinal slip is also prevented by in-wheel motor control algorithm.Contents Abstract i List of Figures v Nomenclature vii Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Overview 2 Chapter 2 Modeling of personal mobility vehicle 3 2.1 Driving mechanism 4 2.2 Brush tire model 4 2.3 Wheel dynamics 7 2.4 Body dynamics 8 Chapter 3 In-wheel motor control algorithm 11 3.1 Overall control scheme 11 3.2 Yaw rate controller 12 3.3 Torque vectoring 19 3.4 State estimator 22 Chapter 4 Simulation results 25 4.1 Base models dyanmic characteristics 26 4.2 Controller performance verification 30 Chapter 5 Vehicle test results 34 5.1 Yaw rate controller verification 34 5.2 Wheel slip mitigation verification 40 5.3 Pitchover mitigation verification 42 5.4 Wheel acceleration estimator verification 43 Chapter 6 Conclusions 44 Bibliography 45 국문초록 48Maste

    Appying Markovian jump linear system solutions in the Vehicle-following problem

    Get PDF
    Orientador: Alim Pedro de Castro GonçalvesDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Este trabalho tem como objetivo apresentar soluções de controle para o problema de seguimento de veículos. Foram apresentadas três principais soluções de controle, todas utilizando teoria de controle de sistemas sujeitos a saltos markovianos. A primeira e a segunda soluções propostas utilizam controladores por realimentação de saída de ordem completa e a terceira solução é uma estrutura que utiliza filtros observadores de estado e controladores por realimentação de estado simultaneamente. A diferença entre a primeira e a segunda soluções é a maneira como controlador lida com a ocorrência de falha de transmissão de medidas através da rede. A terceira solução foi proposta com o objetivo de adicionar robustez a incertezas paramétricas ao projetos de controle, visto que isso não pode ser realizado com os controladores por realimentação de saída utilizados na primeira e segunda soluções. Todos os projetos são obtidos por meio de desigualdades matriciais lineares e todos os controladores e filtros são da classe H1. E por fim é apresentada uma análise em relação à sensibilidade ao atraso fixo. Com os resultados obtidos pela análise dos testes de comportamento da norma H1 e simulações Monte Carlo, podemos afirmar que para os casos de estudo os controladores projetados com teoria de controle de sistemas sujeitos à saltos markovianos são superiores ao controlador clássico H1. A comparação entre a primeira e a segunda soluções mostra que, para um ruído específico, a segunda abordagem é mais confiável para o caso sem adição do atraso fixo, para o caso com atraso o inverso ocorre. A terceira abordagem apresenta resultados superiores à primeira e à segunda para o caso sem atraso, entretanto, ela é mais sensível ao atraso fixoAbstract: This work has as objective to propose controller solutions for the vehicle following problem. Three distinct control solutions were introduced, all of them use the Markovian Jump Linear Systems framework. The first and the second solution are based on a dynamic output feedback controller and the third solution is composed by a filter and state feedback controller. The primary difference between the first and second solution is the controller behavior when a network failure occurs. The third solution was proposed on order to add robustness to parametric uncertanties in the control design. All the controllers were obtained through optimization programs constrainedby Linear Matrix Inequalities and also all the controllers are within the H1 class. The sensibility of the proposed solution to the addition of fixed delay was also analysed. With the results obtained through H1 norm test and the Monte Carlo simulation, we can state that, for our case of study, the controllers designed using the Networked Control System always have an greater or equal performance when compared to those that do not take the transmission packet losses into consideration. The comparison between the first and the second solution has shown that the second solution is more reliable without the fixed delay. On the other handn for the case where the fixed delay in included the opposite occurs. The third solution had a better performance when compared to the other two is the case without the fixed delay, however, when the delay in added the performance is drastically affected, since the third solution has a higher sensibility to the fixed delayMestradoAutomaçãoMestre em Engenharia ElétricaCAPE

    Integrated Vehicle Stability Control and Power Distribution Using Model Predictive Control

    Get PDF
    There is a growing need for active safety systems to assist drivers in unfavorable driving conditions. In these conditions, the behavior of the vehicle is different than the linear response during everyday driving. Even experienced drivers usually lose control of the vehicle in such situations and that often results in a car accident. Stability control systems have been developed over the past few decades to assist drivers in keeping the vehicle under control. Most of these control systems are comprised of separate modules, each responsible for one task such as yaw rate tracking, sideslip control, traction control or power distribution. These objectives may be in conflict in some driving situations. In such cases, individual controllers fight over priority and produce conflicting control commands, to the detriment of the vehicle performance. In addition, in most stability control systems, transferring the controller from one vehicle to another with a different driveline and actuator configuration requires significant modifications in the controller and major re-tuning to obtain a similar performance. This is a major disadvantage for auto companies and increases the controller design and tuning costs. In this thesis, an integrated control system has been designed to address vehicle stability, traction control and power distribution objectives at the same time. The proposed controller casts all of these objectives in a single objective function and chooses control actions to optimize this objective function. Therefore, the output of the integrated controller is not altered by another module and the optimality of the solution is not compromised. Furthermore, the designed controller can be easily reconfigured to work with various driveline configurations such as all-wheel drive, front or rear-wheel drive. In addition, it can also work with various actuator configurations such as torque vectoring, differential braking or any combination of them on the front or rear axles. Moving from one configuration to another does not change the stability control performance and major re-tuning can be avoided. The performance of the designed model predictive controller is evaluated in software simulations with a high fidelity model of an electric Equinox vehicle. The stability and wheel slip control performance of the controller is evaluated in various driving and road conditions. In addition, the effect of integrated power distribution is studied. Experimental tests with two different electric vehicles are also carried out to evaluate the real-time performance of the MPC controller. It is observed that the controller is able to maintain vehicle and wheel stability in all of the driving scenarios considered. The power distribution system is able to improve vehicle efficiency by approximately 1.5% and acts in cooperation with the stability control objectives

    State Estimation and Control of Active Systems for High Performance Vehicles

    Get PDF
    In recent days, mechatronic systems are getting integrated in vehicles ever more. While stability and safety systems such as ABS, ESP have pioneered the introduction of such systems in the modern day car, the lowered cost and increased computational power of electronics along with electrification of the various components has fuelled an increase in this trend. The availability of chassis control systems onboard vehicles has been widely studied and exploited for augmenting vehicle stability. At the same time, for the context of high performance and luxury vehicles, chassis control systems offer a vast and untapped potential to improve vehicle handling and the driveability experience. As performance objectives have not been studied very well in the literature, this thesis deals with the problem of control system design for various active chassis control systems with performance as the main objective. A precursor to the control system design is having complete knowledge of the vehicle states, including those such as the vehicle sideslip angle and the vehicle mass, that cannot be measured directly. The first half of the thesis is dedicated to the development of algorithms for the estimation of these variables in a robust manner. While several estimation methods do exist in the literature, there is still some scope of research in terms of the development of estimation algorithms that have been validated on a test track with extensive experimental testing without using research grade sensors. The advantage of the presented algorithms is that they work only with CAN-BUS data coming from the standard vehicle ESP sensor cluster. The algorithms are tested rigorously under all possible conditions to guarantee robustness. The second half of the thesis deals with the design of the control objectives and controllers for the control of an active rear wheel steering system for a high performance supercar and a torque vectoring algorithm for an electric racing vehicle. With the use of an active rear wheel steering, the driver’s confidence in the vehicle improves due a reduction in the lag between the lateral acceleration and the yaw rate, which allows drivers to push the vehicle harder on a racetrack without losing confidence in it. The torque vectoring algorithm controls the motor torques to improve the tire utilisation and increases the net lateral force, which allows professional drivers to set faster lap times
    corecore