12 research outputs found

    Design and Simulation of an Efficient Quaternary Full-Adder Based on Carbon Nanotube Field Effect Transistor

    Get PDF
    The essential reason for implementing multilevel processing systems is to reduce the number of semiconductor elements and hence the complexity of system. Multilevel processing systems are realized much easier by carbon nanotube field effect transistors (CNTFET) than MOSFET transistors due to the CNTFET transistors' adjustable threshold voltage capabilities. In this paper, an efficient quaternary full-adder based on CNTFET technology is presented which consists of two half adder blocks, a quaternary decoder and a carry generator circuit. In the proposed architecture, the base-two and base-four circuit design techniques are combined to take the full advantages of both techniques namely simple implementation and low chip area occupation of the entire proposed quaternary full-adder. The proposed structure is evaluated using the Stanford 32nm CNTFET library in HSPICE software. The simulation results for the proposed full-adder structure utilizing a supply voltage of 0.9 volts, reveals the power consumption, propagation delay and energy index equal to 2.67 μW, 40 ps, and 10.68 aJ, respectively

    Multiple-valued logic: technology and circuit implementation

    Get PDF
    Title from PDF of title page, viewed March 1, 2023Dissertation advisors: Masud H. Chowdhury and Yugyung LeeVitaIncludes bibliographical references (pages 91-107)Dissertation (Ph.D.)--Department of Computer Science and Electrical Engineering. University of Missouri--Kansas City, 2021Computing technologies are currently based on the binary logic/number system, which is dependent on the simple on and off switching mechanism of the prevailing transistors. With the exponential increase of data processing and storage needs, there is a strong push to move to a higher radix logic/number system that can eradicate or lessen many limitations of the binary system. Anticipated saturation of Moore's law and the necessity to increase information density and processing speed in the future micro and nanoelectronic circuits and systems provide a strong background and motivation for the beyond-binary logic system. During this project, different technologies for Multiple-Valued-Logic (MVL) devices and the associated prospects and constraints are discussed. The feasibility of the MVL system in real-world applications rests on resolving two major challenges: (i) development of an efficient mathematical approach to implement the MVL logic using available technologies and (ii) availability of effective synthesis techniques. The main part of this project can be divided into two categories: (i) proposing different novel and efficient design for various logic and arithmetic circuits such as inverter, NAND, NOR, adder, multiplexer etc. (ii) proposing different fast and efficient design for various sequential and memory circuits. For the operation of the device, two of the very promising emerging technologies are used: Graphene Nanoribbon Field Effect Transistor (GNRFET) and Carbon Nano Tube Field Effect Transistor (CNTFET). A comparative analysis of the proposed designs and several state-of-the-art designs are also given in all the cases in terms of delay, total power, and power-delay-product (PDP). The simulation and analysis are performed using the H-SPICE tool with a GNRFET model available on the Nanohub website and CNTFET model available from Standford University website.Introduction -- Fundamentals and scope of multiple valued logic -- Technological aspect of multiple valued logic circuit -- Ternary logic gates using Graphene Nano Ribbon Field Effect Transistor (GNRFET) -- Ternary arithmetic circuits using Graphene Nano Ribbon Field Effect Transistor (GNRFET) -- Ternary sequential circuits using Graphene Nano Ribbon Field Effect Transistor (GNRFET) -- Ternary memory circuits using Carbon Nano Tube Field Effect Transistor (CNTFET) -- Conclusions & future wor

    Novel Ternary Logic Gates Design in Nanoelectronics

    Get PDF
    In this paper, standard ternary logic gates are initially designed to considerably reduce static power consumption. This study proposes novel ternary gates based on two supply voltages in which the direct current is eliminated and the leakage current is reduced considerably. In addition, ST-OR and ST-AND are generated directly instead of ST-NAND and ST-NOR. The proposed gates have a high noise margin near V_(DD)/4. The simulation results indicated that the power consumption and PDP underwent a~sharp decrease and noise margin showed a considerable increase in comparison to both one supply and two supply based designs in previous works. PDP is improved in the proposed OR, as compared to one supply and two supply based previous works about 83% and 63%, respectively. Also, a memory cell is designed using the proposed STI logic gate, which has a considerably lower static power to store logic ‘1’ and the static noise margin, as compared to other designs

    Investigation of Multiple-valued Logic Technologies for Beyond-binary Era

    Get PDF
    Computing technologies are currently based on the binary logic/number system, which is dependent on the simple on and off switching mechanism of the prevailing transistors. With the exponential increase of data processing and storage needs, there is a strong push to move to a higher radix logic/number system that can eradicate or lessen many limitations of the binary system. Anticipated saturation of Moore’s law and the necessity to increase information density and processing speed in the future micro and nanoelectronic circuits and systems provide a strong background and motivation for the beyond-binary logic system. In this review article, different technologies for Multiple-valued-Logic (MVL) devices and the associated prospects and constraints are discussed. The feasibility of the MVL system in real-world applications rests on resolving two major challenges: (i) development of an efficient mathematical approach to implement the MVL logic using available technologies, and (ii) availability of effective synthesis techniques. This review of different technologies for the MVL system is intended to perform a comprehensive investigation of various MVL technologies and a comparative analysis of the feasible approaches to implement MVL devices, especially ternary logic

    Design of Ternary Logic and Arithmetic Circuits Using GNRFET

    Get PDF
    Multiple valued logic (MVL) can represent an exponentially higher number of data/information compared to the binary logic for the same number of logic bits. Compared to the conventional and other emerging device technologies, Graphene Nano Ribbon Field Effect Transistor (GNRFET) appears to be very promising for designing MVL logic gates and arithmetic circuits due to some exceptional electrical properties of the GNRFET, e.g., the ability to control the threshold voltage by changing the width of the GNR. Variation of the threshold voltage is one of the prescribed techniques to achieve multiple voltage levels to implement the MVL circuit. This paper introduces a design approach for ternary logic gates and circuits using MOS-type GNRFET. The designs of basic ternary logic gates like inverters, NAND, NOR, and ternary arithmetic circuits like the ternary decoder, 3:1 multiplexer, and ternary half-adder are demonstrated using GNRFET. A comparative analysis of the GNRFET based ternary logic gates and circuits and those based on the conventional CMOS and CNTFET technologies is performed using delay, total power, and power-delay-product (PDP) as the metrics. The simulation and analysis are performed using the H-SPICE tool with a GNRFET model available on the Nanohub website

    Design of Ternary Operations Utilizing Flow-Based Computing

    Get PDF
    The development of algorithms and circuit designs that exploit devices that have the ability to persist multiple values will lead to alternative technologies to overcome the issues caused by the end of Dennard scaling and slowing of Moore\u27s Law. Flow-based designs have been used to develop binary adders and multipliers. Data stored on non-volatile memristors are used to direct the flow of current through nanowires arranged in a crossbar. The algorithmic design of the flow-based crossbar is fast, compact, and efficient. In this paper, we seek to automate the discovery of flow-based designs of ternary circuits utilizing memristive crossbars

    Technological Solution beyond MOSFET and Binary Logic Device

    Get PDF
    Title from PDF of title page viewed January 31, 2019Thesis advisor: Masud ChowdhuryVitaIncludes bibliographical references (pages 64-70)Thesis (M.S.)--School of Computing and Engineering, University of Missouri--Kansas City, 2018Today’s technology is based on the binary number system-based circuitry, which is the outcome of the simple on and off switching mechanism of the prevailing transistors. Consideration of higher radix number system can eradicate or lessen many limitations of binary number system such as the saturation of Moore’s law. The most substantial potential benefits of higher radix approaches are the decrease of wiring complexity. Excessive scaling of the technologies has led the researchers beyond Binary Logic and MOSFET technology. TFET considered as one of the most promising options for low-power application for beyond MOSFET technologies. Graphene Nano Ribbon, due to its high-carrier mobility, tunable bandgap and its outstanding electrostatic control of device gate becomes ideal choice for channel material of TFET. This paper proposes double gated ultra-thin body (UTB) TFET device model using Graphene nano ribbon as the channel material. In this paper evaluation of the model by performing the comparative analysis with InAs as the channel material in terms of Ec-Ev on and off state and Id-Vg characteristics is presented. The feasibility of multi valued logic system in real-world rests on two serious aspects, such as, the easiness of mathematical approach for implementing the multivalued logic into today’s technology and the sufficiency of synthesis techniques. In this paper, we have focused on the different technology available for implementing multivalued logic especially ternary logic. Ternary logic devices are expected to lead to an exponential increase of the information handling capability, which binary logic cannot support. Memory capacitor or memcapacitor is an emerging device that exhibits hysteresis behavior, which can be manipulated by external parameters, such as, the applied electric field or voltage. One of the unique properties of the memcapacitor is that by using the percolation approach, we can achieve Metal-Insulator-Transition (MIT) phenomenon, which can be utilized to obtain a staggered hysteresis loop. For multivalued logic devices staggered hysteresis behavior is the critical requirement. In this paper, we propose a new conceptual design of a ternary logic device by vertically stacking dielectric material interleaved with layers of graphene nanoribbon (GNR) between two external metal plates. The proposed device structure displays the memcapacitive behavior with the fast switching metal-to-insulator transition in picosecond scale. The device model is later extended into a vertical-cascaded version, which acts as a ternary device.Introduction -- Multi valued logic -- Overview of different MVL technologies -- Graphene memcapacitor based ternary logic device -- Graphene nano ribbon based TFET -- Conclusion and future wor
    corecore