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ABSTRACT

The development of algorithms and circuit designs that exploit devices that have the ability to

persist multiple values will lead to alternative technologies to overcome the issues caused by the

end of Dennard scaling [1] and slowing of Mooreś Law [2] [3]. Flow-based designs have been used

to develop binary adders and multipliers [4] [5] [6]. Data stored on non-volatile memristors are

used to direct the flow of current through nanowires arranged in a crossbar. The algorithmic design

of the flow-based crossbar is fast, compact, and efficient [5]. In the following paper, we seek to

automate the discovery of flow-based designs of ternary circuits utilizing memristive crossbars.
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CHAPTER 1: INTRODUCTION

Ternary Based Computing

A digital system using a radix of base 3 may be a more efficient implementation of switching

circuits than a radix of 2 [Alexander, 1964] [7]. The most economical radix is calculated by

finding the relationship of the amount of the equipment required for a certain radix and the digit

capacity of the machine. The resulting minimum radix is the natural base (e = 2.718). Since the

radix needs to be an integer, this value is rounded up to 3 which implies that a ternary computer

might have an advantage over existing binary based systems. When ternary computers were first

proposed, there were no devices in common use that would maintain 3 stable states. The discovery

of the missing circuit element [8] [9] and the subsequent fabrication of the memristor [10] provide

a device to maintain multiple states required for multi-value operations.

In [11], it is stated that ternary computers (base 3) can compete with binary computers (base 2)

in terms of performance, but cost may a more limiting factor. In Table 4.2, there are 18 minterms

required to compute a 1-bit ternary adder. This would require 1.62 times more logic to produce a

ternary computer when compared to a conventional binary computer. Ternary digits (or trits) carry

log23 = 1.58 bits of information.

A design and implementation of 2 bit ternary ALU device in [12] proposed that a ternary system

might have an advantage over existing binary based systems since interconnections and chip area

would be reduced. Although the ternary ALU (T-ALU) described was designed for 2 bit opera-

tions, ALUs could be cascaded resulting in n-bit operations. The functions of the T-ALU include

addition, subtraction, multiplication, comparison, OR, NOR, AND, NAND, and Ex-OR.

The integration of ternary logic gates into conventional binary structures has been researched [13]
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using a carbon nanotube field-effect (CNTFET) circuit. Carbon nanotubes (CNTs) can be used to

implement efficient multiple valued logic (MVL) circuits by varying with multiple threshold volt-

ages [14]. The threshold voltages can be adjusted by adjusting the diameter of the CNT [15] with

a reference point of [16] as Vπ( 3.033eV ) in a SPICE simulation. Based on certain characteristics,

this design methodology was shown to be an alternative to metal oxide semiconductor field effect

transistor (MOSFET) circuits to efficiently produce MLV circuits.

Memristive Systems

In 1971, Leon Chua identified a fourth basic circuit element called the memristor [8]. The funda-

mental circuit elements are current i, voltage v, charge i, and flux ϕ. The memristor is defined as

the relationship between charge and flux (Memristance = Flux/Charge) [17] [18]. When controlled

by charge, the measure of memristance is:

v(t) = M(q(t))i(t) (1.1)

M(q) ≡ dϕ(q)

dq
(1.2)

When controlled by flux, the measure of memductance is:

i(t) = W (ϕ(t))v(t) (1.3)

W (ϕ) ≡ dq(ϕ)

dϕ
(1.4)

2



In 1976, Chua and Kang broadened the definition of memristors as a class of nonlinear dynam-

ical systems called memristive systems [19]. One of the defining properties was a zero-crossing

property where the output was zero when then the input was zero. The output takes the form of a

Lissajous figure which can be correlated to a pinched hysteresis loop [20] or bowtie[10].

In 2015, Chua stated that any two terminal device that produces a hysteresis loop and passes

through the origin is to be considered a memristor [21]. Classes of memristors are defined as ideal,

ideal generic, generic, and extended. In 2018, Biolek et. al. [22] documents other non-memristive

systems that produce pinched hysteresis loops. The question is raised whether the newer classes of

memristors are actually new circuit elements. Chua states that the definition of a memristive system

should be considered a black box since he believes that the internal composition is irrelevant.

In [23], Chua states ”If it’s pinched, it’s a memristor.” which Biolek considers hyperbole. This

paper will focus on ideal memristors and models for general memristive devices [24].

In a presentation titled Fundamentals of Memristors [25], the following equations are presented

for ideal, generalized memristors, and memristive systems [8] [19] [23]. Ideal current controlled

memristors are defined in equation 1.5. The equation for a current controlled generalized mem-

ristive system is 1.6. For time invariant memristive systems, the properties in 1.7 are needed to

maintain a pinched hysteresis loop.

V = R(q) ∗ I (1.5)

V = R(x, I) ∗ I

x̂ = f(x, I)

(1.6)

R(x, I) 6=∞

f(x, 0) = 0

(1.7)
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Figure 1.1: The Berkeley Model and Algorithm Prototyping Platform

In the above equations, the value x represents the inner state variable.

Crossbars and Sneak Paths

Memristive crossbars may be effective to overcome limitation of existing architectures [17]. Cross-

bar networks are organized with a top set of parallel nanowire electrodes perpendicular to a bottom

set of the same. At each point where the wires cross is a memristor that can be turned off and on

directing current flow to connected wires. A crossbar with n rows and m columns can contain up

to nm memristors [4] which results in 2nm connections between each layer of nanowires. Sneak

paths [26] are a problem when undesired paths created by ON memristors allow some current to

flow to the attached set of nanowires.

Sneak paths can also be exploited as in [4] [5] [6] [27] [28] [29]. As an example, nanoscale
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crossbars have been designed for a one-bit Boolean full adder with three input bits (A, B, Cin).

The input bits determine the state of each memristor located where the crossbar wires intersect.

Voltage is applied at the bottom row. The sum and carry-out bits are determined by the sneak

current measured on the top two rows. A Boolean value of zero or False relates a turned-off

memristor. Conversely, a Boolean value of one or True relates to a turned-on memristor. A crossbar

array was fabricated at SUNY Polytechnic Institute using 1kΩ resistors for the ON state and 1MΩ

for the OFF state. A pulse voltage of 100mV and 200mV were applied to the bottom row. The

resulting voltages had a noise margin of 55mV which is a sufficient separation to determine the

Sum and Cout Boolean values.

Multilevel Digital Systems

In [30], mathematical models of memristors are analyzed. Digital circuits based on number sys-

tems other than binary are discussed. One method discussed is Memristor Quantization where

ranges of resistance are divided evenly by N . For ternary options, where N = 3, each memristor

is divided evenly between Roff and Ron with ∆R = (Roff −Ron)/3. Considering HP’s values [9]

of Ron = 100Ω and Roff = 16kΩ, the center values would be approximately {2.5kΩ, 7.5kΩ,

12.5kΩ}. False detection becomes more of an issue with a larger N . A gap between regions is a

necessity [31] for good accuracy. It may also be beneficial to divide regions unequally based on

the probability of results.

Flow-based Computing

Flow-based designs have been used to develop binary adders and multipliers [4] [5] [6]. Data stored

on non-volatile memristors are used to direct the flow of current through nanowires arranged in a

5



crossbar. The algorithmic design of the flow-based crossbar is fast, compact, and efficient [5]. The

data is encoded based on the value of each input, then it is stored in the memristors affecting the

flow of current across each nanowire [27] [28]. Some memristors can by permanently turned ON

or OFF which can relate to literal values in the particular formula [29].
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CHAPTER 2: LITERATURE REVIEW

SPICE Circuit Simulator

In [32] [33], a memristor device model is proposed to simulate the I−V relationship of a memristor

based on changes to a state variable with respect to time. The state variable is a value between 0

and 1 that affects current flow and conductivity of the device. The SPICE sub-circuit in [34] utilizes

the hyperbolic sine function to estimate conductivity beyond a voltage threshold. The parameters

a1 and a2 represent amplitudes based on the direction of the current. The intensity of the threshold

is determined by the parameter b.

I(t) =


a1x(t)sinh(bV (t)) V (t) ≥ 0

a2x(t)sinh(bV (t)) V (t) < 0

The conductance is determined using negative and positive thresholds defined as Ap and Ap.

g(V (t)) =


Ap(e

V (t) − eVp) V (t) > Vp

−An(e−V (t) − eVn) V (t) < −Vn

0 −Vn ≤ V (t) ≤ Vp

The version of SPICE utilized in this study is the open source version Ngspice, a software appli-

cation originally written by Berkeley University, currently maintained by the Ngspice project [35].

Ngspice is simulation software used to test circuit designs prior to the fabrication of a physical cir-

cuit. Ngspice is used with a model circuit designed specifically for testing memristive devices [36].
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Simulated Annealing

Simulated Annealing (SA) can be used to solve optimization problems [37]. The SA algorithm

performs a random walk through the search space looking for the lowest energy. The benefit of

a random walk is the search will not get stuck in local minima while attempting to find the best

solution (i.e. lowest temperature).

SA can be used to find solutions to problems that are considered NP-Hard. One heuristic that can

be used to find an optimal solution is to start with a known path followed by iterative improvement

based on a cost factor. Another method is start with a fully random solution [38]. Minor changes

are made to the path at each step and the cost factor is recomputed.

When annealing occurs in a metal, the rate of the cooling process determines the state of the solid

that is formed. In SA, starting/ending temperatures and a rate of cooling are set. To find an optimal

solution, the temperature should be reduced slowly. For each iteration (or step), the cost factor (or

energy) is computed and returned to the calling algorithm. A set number iterations are performed

for each step so the algorithm can explore an area the for lowest energy.

The following constants were used for Simulated Annealing (SA) in the GNU Scientific Library

(GSL) [39]:

Step 1000000
Iterations 1000
Step Size 1.0
Boltzmann Constant 1.0
Initial Temp 2500.0
Damping Factor 1.002
Minimum Temp 1e-25

The simulated annealing algorithm calculates the probability of taking a step using the Boltzmann
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distribution:

p = e(Ei+1−Ei)/kT

if Ei+1 > Ei and p = 1 when Ei+1 ≤ Ei.

The initial temperature T is set to a high value and is lowered by the damping factor until the

minimum temperature is reached. The GSL implementation of simulated annealed uses callback

functions for energy and step decisions. The energy callback function calculates the cost or best

energy of the current step. If the cost is lower, a step will occur. The GSL function provides a

callback function to output its progress. Upon completion, the best result is returned.

NuSMV

NuSMV is a symbolic model checker based on CMU SMV [40]. NuSMV implements a BDD-

based (Binary Decision Diagram) and SAT-based (Boolean Satisfiability Problem) model checking

capability. NuSMV was used to prove that a solution existed for implementation of the full-adder

using memristive crossbars.

Modified Nodal Analysis

It is well known that Ohm’s Law (V = IR) describes the linear relationship between voltage,

current, and resistance. An ideal memristor is a resistor that changes based on the relationship

between charge and flux over time [41]. At a snapshot in time, a resistive crossbar network can be

analyzed using a modified nodal approach [42].

The following node voltage method can be used to calculate current through a resistive crossbar

network [43]. To apply the node voltage method to a circuit with n nodes (with m voltage sources),

9
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perform the following steps [44].

1. Select a reference node (usually ground).

2. Name the remaining n− 1 nodes and label a current through each passive element and each

current source.

3. Apply Kirchhoff’s current law to each node not connected to a voltage source.

4. Solve the system of n− 1−m unknown voltages.

To solve the system of equations, the matrix formula Ax = z is used where x is a (n+m)x1 matrix

that contains the unknown n node voltages m represents independent current sources. The solution

is found by using an algorithmic MNA formula that takes the inverse of the A matrix multiplied

by the z matrix, x = A−1z [43].

Memristive Device Models

DC analysis of memristive device models can be improved by formatting the simulation algorithms

in a differential equation form [24]. Memristors and other devices that exhibit an i − v hyteresis

require equations that result in a smooth curve on a graph. Memristive algorithms with piece-

wise window functions tend not to be continuous. Popular models were modified to address the

dynamics of the internal state variable and implement functions that are smooth and safe.

The Berkeley Model and Algorithm Prototyping Platform (MAPP) [45] was used to produce MAT-

LAB graphs and to check results. MAPP utilizes ModSpec [46] to describe and prototype new

devices in MATLAB. The MAPP environment is initiated in MATLAB by running startMAPP.

The test function memristorModSpec utilizes two switches, f1 = 1 (shifting between resistor

states) and f2 = 5 (modified Yakopcic model).
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Figure 2.1: University of Berkeley: Yakopcic Model

Figure 2.2: University of Berkeley: 3D Homotopy Analysis
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CHAPTER 3: METHODOLOGY

The research goal is to find an efficient method of simulating ternary operations utilizing memris-

tive crossbars. Initial tests were performed using basinhopping (SciPy) referencing a dictionary

of potential memristor state values. A SPICE call was made for each truth table entry. Based on

the combined results of each SPICE call, the memristor list was randomly perturbed and the cycle

continued until the process timed out or was canceled. The initial program utilized 18 SPICE call

since Cin = 2 was excluded.

The Python program was converted to C++ with the integration of Simulated Annealing (SA) in

the GNU Scientific Library (GSL) [39]. The next step was to develop a flow-based method of

estimating valid circuits to eliminate the need for external systems calls to SPICE or any other

external library. This helped performance greatly although a solution was still elusive. To confirm

we were on the right track, NuSMV was used to prove that a potential solution existed. It was then

that we realized that we weren’t testing the entire truth table for ternary addition. We included

all 27 entries and removed the dictionary in lieu of a full memristor array that also included static

connections. A half-ternary adder was developed that limited the number of truth table entries to

nine which was very fast. A full-ternary adder followed with numerous optimizations for speed

and accuracy.

A significant effort was made toward narrowing the gap of resistances for each state (i.e. on, off,

mid). It was decided to test resistive networks using SPICE and modified nodal analysis in an

attempt to find linear solutions. This research was mildly successful, but the gaps were too tight

given the new resistances and the resulting arrays did not port when tested with memristors. There

were relatively few outliers that, if resolved, will allow for tighter ranges and larger gaps needed

for fabrication.

12



CHAPTER 4: SYNTHESIS OF A TERNARY ADDER

Approximate Synthesis of a One-Bit Adder Using Ternary Logic

In 2014, Velasquez and Jha [17] demonstrated 1-bit addition and other Boolean formulas measur-

ing sneak path voltages on memristive crossbars. The state of each memristor was either Roff or

Ron mapping to 0 or 1 on the truth table shown in Table 4.1. The Boolean formula is for computing

the Sum bit is:

(A ∧ ¬B ∧ ¬Cin) ∨ (¬A ∧B ∧ ¬Cin) ∨ (¬A ∧ ¬B ∧ Cin) ∨ (A ∧B ∧ Cin)

This work shows that an n-ary Boolean function where n = 3 results in 23 = 8 rows in Table 4.1.

A set of memristors are mapped to the values of A, B, and Cin producing the values in the Sum

column. The simulations relate voltage drops to logical values. A drop of 1 volt indicates true and

drops below 0.5 volts indicates the logical value of false. A simulation was run with the current

flowing through the voltage source was 10−4 amperes when the formula was true and less than

10−5 amperes when the formula was false.

Table 4.1: Truth Table: Binary Addition

A B Cin Cout Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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Table 4.2: Truth Table: Ternary Addition (partial)

A B Cin Cout Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 0 2
0 2 0 0 2
0 2 1 1 0
1 0 0 0 1
1 0 1 0 2
1 1 0 0 2
1 1 1 1 0
1 2 0 1 0
1 2 1 1 1
2 0 0 0 2
2 0 1 1 0
2 1 0 1 0
2 1 1 1 1
2 2 0 1 1
2 2 1 1 2

Simulations

A test application was designed to use Ngspice (v.28) to test each possible circuit in the search for

a solution. The program was written in Python (Chakraborty, 2018) simulating solutions of the

ternary adder in Table 4.2 by using Simulated Annealing (SA) [39]. A circuit file was generated

as input to Ngspice, followed by an external program call with subsequent analysis of the output.

This process was repeated for each row of the truth table. The Python program didn’t result in

a solution initially. To speed up the process, a testing program was written in C++ (Pyrich and

Jha, 2018). Some of the processes were faster, but system calls to SPICE were very inefficient.

A different approach was needed to simulate the crossbar and memristor states to search for a

possible solution or approximation.
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It was determined that numerous system calls to SPICE was causing a bottleneck, so the energy

function was refactored to a flow-based design with SPICE calls occurring only when the free

energy equaled zero, indicating a possible design of a crossbar adder. During each SA callback

to the energy function, the memristors on the crossbar were randomly perturbed. A SPICE circuit

was then generated based on the dictionary in Table 4.3.

Table 4.3: Simulated Annealing Dictionary

Memristor Variable Value
0 Constant 0
1 Constant 1
2 Constant 2
3 A truth table
4 A′ (A+1) mod 3
5 ¬A (A+2) mod 3
6 B truth table
7 B′ (B+1) mod 3
8 ¬B (B+2) mod 3
9 Cin truth table

10 C ′in (Cin+1) mod 3
11 ¬Cin (Cin+2) mod 3

Before proceeding with a redesign of the ternary adder application, NuSMV was used to prove that

a memristive crossbar existed (Raj, 2018). The ternary full-adder was used (33 = 27 entries) to

produce the solution in Table 4.4.
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Table 4.4: NuSMV 5x5 design of the sum bit

m 0 1 2
1 0 0 1
2 0 1 0
3 0 0 2
4 0 2 0
5 0 1 2
8 0 2 2
9 1 0 0

12 1 0 2
13 1 2 0
18 2 0 0
19 2 0 1
21 2 0 2

C8 C21

B5 A2 B9 A3 A18

B19 A9 B4 A4 A3

B13 A1 B1 A18 A4

C12 C5

Figure 4.1: Crossbar design for computing the sum bit of ternary addition obtained from NuSMV
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CHAPTER 5: DESIGN OF A TERNARY ADDER

Flow-Based Computing

A flow-based methodology was used to compute memristive crossbars based on the state of the

memristor and resulting sneak paths shown in Table 5.1 [47].

Table 5.1: Crossbar Simulation

Memristor Row Column Result
on on off col = on
on on mid col = on
on mid off col = mid
on mid mid col = mid+
on off on row = on
on mid on row = on
on off mid row = mid
on mid mid row = mid

mid on off col = mid
mid on mid col = mid+
mid mid off col = mid+
mid mid mid col = mid+
mid off on row = mid
mid mid on row = mid+
mid off mid row = mid+
mid mid mid row = mid+

In the previous chapter, it was shown that the SA energy function required a faster method to find

potential circuits. The revised SA energy function estimates current flow based on the state of each

row and column based on the state of the memristor. The state of the memristor is determined by

each row in Table 5.2. For example, if the memristor value is B13, the table entry is 1, 2, 0 which

maps to B = [on,mid, off) where off = 0,mid = 2, on = 1. Note that in the experiments

listed in the chapter on Findings, values are sometimes mapped as off = 0,mid = 1, on = 2 for
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reasons of better performance or separation of output voltage ranges.

Table 5.2: Design of a 1-bit ternary adder

m 0 1 2
1 0 0 1
2 0 1 0
3 0 0 2
4 0 2 0
7 0 1 1
8 0 2 2

13 1 2 0
16 1 2 1
18 2 0 0
21 2 0 2
22 2 2 0

Ternary Adder Algorithm

The SA energy callback function is described in the Ternary Adder search Algorithm 1. The mem

value passed into the ENERGY function from SA is an array of possible memristor values. Flow-

based analysis of each row in the ternary truth table is performed based on each value in the mem

array. The resulting value is read from the last row for Sum and the next to the last row for Cout.

When the energy factor bestenergy = mismatches/num values is zero, a possible design has

been found. A SPICE circuit is prepared for each table entry, storing the values in spiceresults. If

spiceresults match Sum and Cout, the ENERGY function returns success and the program ends,

otherwise the SA procedure continues searching for another possible design.
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Algorithm 1 Ternary Adder
procedure SEARCH

Initialize rows, columns, resistances
Load ternary truth table A,B,Cin
Randomize initial memristor states
Initialize Simulated Annealing (SA)
loop

function ENERGY(mem) . mem suggested memristor array
Simulate Circuit Design
Apply Current to row = 0
Logically Determine Flow Based on Crossbar Design
Read Resulting Voltages for Cout and Sum
Calculate Energy Factor bestenergy
if bestenergy > 0 then

return bestenergy

Prepare SPICE Circuit
Compare SPICE Results to Acceptable Ranges spiceresults
if spiceresults = sum and Cout then

Report Results
return success

else
return continue

Ternary Operations

Binary half-adders have two input bits that produce a Sum and Cout bit [48]. Ternary half-adders

have two ternary inputs that outputs ternary values (0, 1, 2) for Sum and Cout. Since the carry-in

value Cin is excluded for a half-adder, the truth table 5.3 is simplified.

A ternary full-adder has three ternary inputs A, B, and Cin that produce output values of Sum and

Cout based on Table 5.4.

The ternary multiplier has three ternary inputs A, B, and Cin that produces output values of

Product and Cout based on Table 5.5.
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Table 5.3: Truth Table: Ternary Half-Adder

m A B Cin Cout Sum
0 0 0 0 0 0
2 0 1 0 0 1
4 0 2 0 0 2
9 1 0 0 0 1

11 1 1 0 0 2
13 1 2 0 1 0
18 2 0 0 0 2
20 2 1 0 1 0
22 2 2 0 1 1
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Table 5.4: Truth Table: Ternary Full-Adder

m A B Cin Cout Sum
0 0 0 0 0 0
1 0 0 1 0 1
2 0 1 0 0 1
3 0 0 2 0 2
4 0 2 0 0 2
5 0 1 2 1 0
6 0 2 1 1 0
7 0 1 1 0 2
8 0 2 2 1 1
9 1 0 0 0 1

10 1 0 1 0 2
11 1 1 0 0 2
12 1 0 2 1 0
13 1 2 0 1 0
14 1 1 1 1 0
15 1 1 2 1 1
16 1 2 1 1 1
17 1 2 2 1 2
18 2 0 0 0 2
19 2 0 1 1 0
20 2 1 0 1 0
21 2 0 2 1 1
22 2 2 0 1 1
23 2 1 1 1 1
24 2 1 2 1 2
25 2 2 1 1 2
26 2 2 2 2 0
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Table 5.5: Truth Table: Ternary Multiplication

m A B Cin Cout Product
0 0 0 0 0 0
1 0 0 1 0 1
2 0 1 0 0 0
3 0 0 2 0 2
4 0 2 0 0 0
5 0 1 2 0 2
6 0 2 1 0 1
7 0 1 1 0 1
8 0 2 2 0 2
9 1 0 0 0 0
10 1 0 1 0 1
11 1 1 0 0 1
12 1 0 2 0 2
13 1 2 0 0 2
14 1 1 1 0 2
15 1 1 2 1 0
16 1 2 1 1 0
17 1 2 2 1 1
18 2 0 0 0 0
19 2 0 1 0 1
20 2 1 0 0 2
21 2 0 2 0 2
22 2 2 0 1 1
23 2 1 1 1 0
24 2 1 2 1 1
25 2 2 1 1 2
26 2 2 2 2 0
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CHAPTER 6: FINDINGS

Ternary Adder

The initial search for a ternary design was a 4x4 memristive crossbar that outputs its Sum value

on the last row the crossbar and a 6x5 array that outputs Sum on the last row and Cout on the next

to the last row.

An input array of 11 values (0, 1, 2, A,A′,¬A,B,B′,¬B,Cin,¬Cin) is prepared. The values of A

and B are (0, 1, 2) and Cin are (0, 1). This results in a total of 3 ∗ 3 ∗ 2 = 18 possible outcomes.

The voltage values of 0 and 1 are the same as for a binary system as for the ternary design. The

value of 2 maps to a mid-range value on the crossbar and memristor. The goal is to search for a

design that matches the Sum column on Table 4.2. The initial attempt resulted in a best energy of

0.333333 which represents 12 matches and 6 mismatches totaling 18 Sum values.

k 0 1 9 13 16 17
a 0 0 1 2 2 2
b 0 0 1 0 2 2
cin 0 1 0 0 0 1
sum 0 1 2 2 1 2
xbar 0 0 2 2 2 2
diff X X
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Rows: Columns: Best Energy:
4 3 0.333333

Memristor: 1 0 5
5 4 4
7 10 8
0 3 6

k=0 1:1 0:0 5:2
5:2 4:1 4:1
7:1 10:1 8:2
0:0 3:0 6:0

k=1 1:1 0:0 5:2
5:2 4:1 4:1
7:1 10:0 8:2
0:0 3:0 6:0

k=16 1:1 0:0 5:1
5:1 4:0 4:0
7:0 10:1 8:1
0:0 3:2 6:2

k=17 1:1 0:0 5:1
5:1 4:0 4:0
7:0 10:0 8:1
0:0 3:2 6:2

The value k represents the truth table row. In the example above, the approximation was correct

where A = 1, B = 1, and Cin = 0, but was incorrect where A = 2, B = 2, and Cin = 0. A

number of changes were required achieve a better result including changing resistances, simulated

annealing settings, and varying the mid, neg, and constant input values.

The values displayed for each k are in the form x : y. The value x indicates the memristor number

and the value y is the best energy state returned by the GSL simulated annealing function. The

input values are mapped in Table 6.1.
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Table 6.1: Input values to SA function

Item Variable Value
0 Constant 0
1 Constant 1
2 Constant 2
3 A truth table
4 A’ (A+1) mod 3
5 ¬ A (A+2) mod 3
6 B truth table
7 B’ (B+1) mod 3
8 ¬ B (B+2) mod 3
9 Cin truth table
10 ¬ Cin ¬Cin

In some experiments, the adjustment to the constants and variables were randomized. In the table,

A′ and ¬A are adjusted by 1 and 2, respectively. In one randomized version, the values were

flipped (i.e. 2 and 1). In another case, we allowed duplicate values to see if we could achieve a

better result.

The following results were obtained when the randomizer was used for each truth table row. The

result of zero best energy was achieved after running simulated annealing for nearly 500 million

steps. These results were considered an approximation since only a subset of the truth table was

utilized.
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SUCCESS: Rows: Columns: Best Energy:
4 3 0

Memristor: 6 1 3
10 3 9
6 7 3
1 1 1

k=0 6:0 1:0 3:0
10:1 3:0 9:0
6:0 7:1 3:0
1:0 1:0 1:0

k=1 6:0 1:1 3:0
10:0 3:0 9:1
6:0 7:2 3:0
1:1 1:1 1:1

k=16 6:2 1:1 3:2
10:1 3:2 9:0
6:2 7:1 3:2
1:1 1:1 1:1

k=17 6:2 1:2 3:2
10:0 3:2 9:1
6:2 7:1 3:2
1:2 1:2 1:2

The cross reference Table 6.2 was discovered using NuSMV. The search took over 7 hours to com-

plete. Once this table was loaded into the C++ program and a two level lookup was implemented,

simulated annealing started to find simulated designs (i.e. best energy = 0) in 20 minutes. We

then input the potential memristor into our Python-based SPICE checker to verify that the circuit

simulation produced the same result. This method seemed to work well for 4x4 memristors with

no carry-out bit.

Testing for the carry-out value was added resulting in possible solutions for 6x5 crossbars with

some variation simulated in SPICE. The SPICE simulation was migrated to C++ to automate and

speed up the process. The final step was to test for acceptable ranges of output from SPICE.
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Table 6.2: Cross Reference derived from NuSMV

mem 0 1 2
0 0 0 0
1 0 0 1
2 0 1 0
3 0 0 2
4 0 2 0
5 0 1 2
6 0 2 1
7 0 1 1
8 0 2 2
9 1 0 0

10 1 0 1
11 1 1 0
12 1 0 2
13 1 2 0

mem 0 1 2
14 1 1 1
15 1 1 2
16 1 2 1
17 1 2 2
18 2 0 0
19 2 0 1
20 2 1 0
21 2 0 2
22 2 2 0
23 2 1 1
24 2 1 2
25 2 2 1
26 2 2 2

This check was moved to the energy function when the best energy was calculated as zero (i.e.

every value matched to the truth table). The last change was to continue the SA process when the

SPICE checker didn’t fall into a preset acceptable range for each memristor state. This produced

multiple simulations resulting in the selection of memristive crossbar designs that might perform

more efficiently with less potential for error.

In the tests using NuSMV, it was discovered that better results were achieved when using a full 3-bit

truth table containing 33 = 27 rows. When implementing SA, any truth table entry where Cin = 2

was excluded from the energy calculation, so those items would not appear in the final solution.

Figure 6.1 is an example of memristor placement for a 4x4 ternary adder with no carry-out bit.

Once the design in Figure 6.1 was found, it was tested using SPICE. The SPICE column shows the

simulated voltage of the last row given the inputs A, B, and Cin. The resistance and voltage ranges

were varied in testing. The SPICE results can be clearly mapped to the Sum bit in Table 6.3.
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Table 6.3: SPICE: Ternary Adder 4x4 with no carry-out bit

A B Cin Sum SPICE
0 0 0 0 0.000080
0 0 1 1 0.007803
0 1 0 1 0.007828
0 2 0 2 0.200024
0 2 1 0 0.000060
0 1 1 2 0.200339
1 0 0 1 0.007862
1 0 1 2 0.201286
1 1 0 2 0.200028
1 2 0 0 0.000060
1 1 1 0 0.000080
1 2 1 1 0.007823
2 0 0 2 0.200027
2 0 1 0 0.000080
2 1 0 0 0.000060
2 2 0 1 0.007816
2 1 1 1 0.007823
2 2 1 2 0.200336
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A5 A4 C18 A18

A21 B5

B19 C22 B13

A18 A3 C8 A4

Figure 6.1: Crossbar design for 4x4 ternary adder with no carry-out bit
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To implement the carry-out value, the size of the crossbar array was increased to 6x5 and SA

energy function was modified to check for the carry-out bit. The last row is checked for the Sum

bit while the next to the last row is checked for Cout. Figure 6.2 is the design of a crossbar for a

1-bit adder. It is observed that the SPICE results are within acceptable ranges.

Ternary Full-Adder

Based on the success of the initial tests, the next step was to create a ternary full-adder using the

entire ternary truth table as shown in 5.4 and defined in Algorithm 2.
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A3 A4 A18

C21 C8 B16 A3

C8 B3

A22 B18 B18 B2 A3

B1 B7 C1 C2

B13 A8 C18

Figure 6.2: Crossbar design for 1-bit ternary addition

Algorithm 2 Ternary Adder
1: global values
2: a[]← [0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2] . ternary truth table
3: b[]← [0,0,1,0,2,1,2,1,2,0,0,1,0,2,1,1,2,2,0,0,1,0,2,1,1,2,2]
4: c[]← [0,1,0,2,0,2,1,1,2,0,1,0,2,0,1,2,1,2,0,1,0,2,0,1,2,1,2]
5: u[]← [0,0,0,0,0,1,1,0,1,0,0,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,2]
6: s[]← [0,1,1,2,2,0,0,2,1,1,2,2,0,0,0,1,1,2,2,0,0,1,1,1,2,2,0]
7: end global values
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The MAIN procedure in Algorithm 3 calculates an initial array of memristors that is passed to

the GSL Simulated Annealing (SA) function. If the SA function is returned to MAIN, a sub-

optimal solution was found. The best solution is checked with a SPICE sub-circuit and the output

is reported.

Algorithm 3 Ternary Adder- Main
1: procedure MAIN

2: Call random number generator with seed value
3: for i← 1 to rows do
4: for j ← 1 to cols do
5: k← rand mod dict
6: if k ≥ static then
7: mem← (k - static) mod inputs
8: else
9: k = k mod bits

10: initstate[i ∗ cols + j] = k

11: Call gsl siman solve . GSL Simulated Annealing
12: Call OutputReport
13: Call OutputCheck . SPICE Simulation

return ”Suboptimal solution found”

The SA energy callback function in Algorithm 4 is used to check whether an input array of mem-

ristors results in a valid circuit. The function iterates through each row on the truth table using

flow-based analysis based on the value of each memristor. The resulting Sum and Cout values

are determined by the resulting value on the last two rows. A best energy value between 0 and

1 is returned to the calling function. The value is determined by the formula currentenergy ←

mismatchcount / (matchcount + mismatchcount. A value of currentenergy = 0 represents

a potential circuit which is then checked using a SPICE sub-circuit based on the values of each

memristor.

The memristor array that is passed into the energy function is split into two parts, an input variable

(ex. A, B, Cin and truth table position between 0 and 26. Static values of 0, 1, and 2 are also

possible. The state of the memristor is determined by the truth table value
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Algorithm 4 Ternary Adder- GSL SA Energy Function
1: procedure ENERGY(∗memrs)
2: for k← 1 to inputs do
3: Calculate the value of each memristor based on truth table entry k
4: for each i=row and j=column do
5: m←Memristor variable A, B, or Cin
6: sel← Truth table value at row k for variable m
7: val← Numeric part of memristor
8: xbar[i, j]← Value of truth table entry sel, val
9: row[1]←memon . simulate voltage applied to first row

10: loop while changes are occurring to circuit
11: for each i=row and j=column do
12: Estimate current for each row and column using flow-based analysis
13: If memristor state is mem hi, the highest row/column current is used
14: If memristor state is mem mid, the maximum current is mem mid
15: If memristor state is mem low, no changes are made to current at crossbar
16: currentenergy←mismatchcount / (matchcount + mismatchcount)
17: if currentenergy := 0 then
18: Call OutputReport
19: mismatchcount← Call OutputCheck . SPICE Simulation
20: if mismatchcount := 0 then
21: EXIT success
22: Return currentenergy
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The following are successful tests of a ternary adder using resistances of mem hi = 1e + 06,

mem mid = 10000, and mem low = 100. The voltage midpoints of 0.003 and 0.25 were deter-

mined by finding the average delta between each desired result.

Table 6.4: SPICE Simulation: 7x7 Crossbar

ABC-in Sum SPICE-Sum C-out SPICE-C-out
000 0 0.001685 0 0.000230
001 1 0.201411 0 0.000321
010 1 0.200552 0 0.000635
002 2 0.024407 0 0.000295
020 2 0.010261 0 0.001198
012 0 0.001970 1 0.333405
021 0 0.001061 1 0.250621
011 2 0.010826 0 0.000882
022 1 0.080744 1 0.156926
100 1 0.200174 0 0.000603
101 2 0.019225 0 0.000418
110 2 0.010313 0 0.001077
102 0 0.001059 1 0.147804
120 0 0.001115 1 0.199882
111 0 0.001273 1 0.199771
112 1 0.102247 1 0.303276
121 1 0.150553 1 0.150228
122 2 0.005414 1 0.168877
200 2 0.019054 0 0.000645
201 0 0.001162 1 0.333047
210 0 0.001173 1 0.199828
202 1 0.028480 1 0.124897
220 1 0.103217 1 0.057031
211 1 0.044280 1 0.304228
212 2 0.003602 1 0.333539
221 2 0.009425 1 0.358887
222 0 0.000304 2 0.011560
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A9 C1 C12 C2

B5 C4 C1 C9 A1

A7 A19 A2 C1

C2 B18 C1 A2 B1 B9 B7

B19 C2 A1 A12

B2 A7 A1 B1

A2 A9 C11 B13

Figure 6.3: Ternary Adder: 7x7 Crossbar
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Figure 6.4: SPICE Results: 7x7 Ternary Full Adder- SUM

Figure 6.5: SPICE Results: 7x7 Ternary Full Adder- Carry
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In the next 8x8 crossbar test, the values for 1 and 2 were flipped. In this experiment, 1 = mem mid

and 2 = mem hi. Since Cout only has one possible result equal to 2, it was thought that this might

result in a larger tolerance between resulting values. The resistances used were mem hi = 1e+06,

mem mid = 10000, and mem low = 100 and the voltage midpoints were 0.00275 and 0.080.

Table 6.5: Ternary Adder: 8x8 Crossbar (012)

ABC-in Sum SPICE-Sum C-out SPICE-C-out
000 0 0.001170 0 0.000211
001 1 0.010416 0 0.000360
010 1 0.010204 0 0.000454
002 2 0.199779 0 0.001312
020 2 0.201326 0 0.001311
012 0 0.001268 1 0.004581
021 0 0.001674 1 0.003733
011 2 0.199869 0 0.001366
022 1 0.010280 1 0.016106
100 1 0.020008 0 0.000339
101 2 0.204043 0 0.000869
110 2 0.201852 0 0.001334
102 0 0.001887 1 0.005810
120 0 0.001891 1 0.003381
111 0 0.002170 1 0.005224
112 1 0.020407 1 0.005617
121 1 0.020719 1 0.005096
122 2 0.200488 1 0.007451
200 2 0.144609 0 0.001170
201 0 0.001561 1 0.010075
210 0 0.001930 1 0.019376
202 1 0.011755 1 0.017998
220 1 0.010883 1 0.010872
211 1 0.004618 1 0.007216
212 2 0.137306 1 0.024590
221 2 0.196218 1 0.023525
222 0 0.001506 2 0.236781
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A3 A1 A18 A4 A4

A3 B18 B2 A22 C3

C18 C9 B18 C4 B2

C1 B3 C18 C18 C5 B13 C1

B3 C3 B18 B2 C13 B1

B1 B12 C4 B4

C1 A3 A15

A4 B1 A3

Figure 6.6: Ternary Adder: 8x8 Crossbar (012)
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Figure 6.7: SPICE Results: 8x8 Ternary Full Adder (012)- SUM

Figure 6.8: SPICE Results: 8x8 Ternary Full Adder (012)- Carry
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In the following 8x8 crossbar test, the values for 1 and 2 were set back to the original 2 =

mem mid and 1 = mem hi. The resistances used were mem hi = 1e + 06, mem mid = 10000,

and mem low = 100 and the voltage midpoints were 0.003 and 0.038.

Table 6.6: Ternary Adder: 8x8 Crossbar (021)

ABC-in Sum SPICE-Sum C-out SPICE-C-out
000 0 0.001290 0 0.000103
001 1 0.200937 0 0.000295
010 1 0.145380 0 0.000260
002 2 0.011023 0 0.001084
020 2 0.019923 0 0.000427
012 0 0.001611 1 0.208595
021 0 0.001318 1 0.333050
011 2 0.011687 0 0.000300
022 1 0.144542 1 0.156188
100 1 0.115627 0 0.000822
101 2 0.011205 0 0.000605
110 2 0.005918 0 0.001531
102 0 0.001114 1 0.290627
120 0 0.001884 1 0.200131
111 0 0.001762 1 0.199599
112 1 0.143393 1 0.242766
121 1 0.045034 1 0.303812
122 2 0.004108 1 0.245840
200 2 0.005601 0 0.000756
201 0 0.001806 1 0.144311
210 0 0.001360 1 0.143828
202 1 0.145150 1 0.150409
220 1 0.097161 1 0.161720
211 1 0.099343 1 0.160879
212 2 0.004573 1 0.259182
221 2 0.006581 1 0.329366
222 0 0.000130 2 0.029392
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C3 C9 C3 C1 C2

B2 B1 B3 B2 A1

A21 B4 B9 C11

B3 C3 A9 B10 C1 B1

A1 B21 B2 C1 B11 B9

B18 A5 A2 C7 A18

C1 A7 B1

B9 C13 C2 B2 A13

Figure 6.9: Ternary Adder: 8x8 Crossbar (021)
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Figure 6.10: SPICE Results: 8x8 Ternary Full Adder (021)- SUM

Figure 6.11: SPICE Results: 8x8 Ternary Full Adder (021)- Carry
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Ternary Multiplication

The methodology to create a ternary adder can be applied to other operations, including multipli-

cation. A ternary multiplier was designed using truth table 6.7 defined in Algorithm 5.

Algorithm 5 Ternary Multiplication
1: global values
2: a[]← [0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2] . ternary truth table
3: b[]← [0,0,1,0,2,1,2,1,2,0,0,1,0,2,1,1,2,2,0,0,1,0,2,1,1,2,2]
4: c[]← [0,1,0,2,0,2,1,1,2,0,1,0,2,0,1,2,1,2,0,1,0,2,0,1,2,1,2]
5: v[]← [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1,1,2]
6: p[]← [0,1,0,2,0,2,1,1,2,0,1,1,2,2,2,0,0,1,0,1,2,2,1,0,1,2,0]
7: end global values

Table 6.7: Truth Table: Ternary Multiplication

A B Cin Cout Product

0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 0 2 0 2
0 2 0 0 0
0 1 2 0 2
0 2 1 0 1
0 1 1 0 1
0 2 2 0 2
1 0 0 0 0
1 0 1 0 1
1 1 0 0 1
1 0 2 0 2
1 2 0 0 2

A B Cin Cout Product

1 1 1 0 2
1 1 2 1 0
1 2 1 1 0
1 2 2 1 1
2 0 0 0 0
2 0 1 0 1
2 1 0 0 2
2 0 2 0 2
2 2 0 1 1
2 1 1 1 0
2 1 2 1 1
2 2 1 1 2
2 2 2 2 0
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The same tests were run for multiplication as for ternary addition. In the 7x7 crossbar test, the

resistances used were mem hi = 1e + 06, mem7 mid = 10000, and mem low = 100 and the

voltage midpoints were 0.005 and 0.073.

Table 6.8: Ternary Multiplication: 7x7 Crossbar

ABC-in Prod SPICE-Prod C-out SPICE-C-out
000 0 0.000441 0 0.000257
001 1 0.375242 0 0.000342
010 0 0.001200 0 0.000834
002 2 0.010409 0 0.000011
020 0 0.001247 0 0.001006
012 2 0.015699 0 0.000645
021 1 0.334094 0 0.000723
011 1 0.333481 0 0.000613
022 2 0.011033 0 0.000319
100 0 0.000432 0 0.000268
101 1 0.252281 0 0.000380
110 1 0.200764 0 0.000976
102 2 0.010277 0 0.000016
120 2 0.027418 0 0.000849
111 2 0.010495 0 0.001033
112 0 0.001388 1 0.210561
121 0 0.001638 1 0.199815
122 1 0.109146 1 0.122912
200 0 0.000653 0 0.000511
201 1 0.258248 0 0.000463
210 2 0.010434 0 0.000798
202 2 0.010663 0 0.000109
220 1 0.139452 1 0.136182
211 0 0.001248 1 0.200110
212 1 0.166118 1 0.087771
221 2 0.006807 1 0.207492
222 0 0.000136 2 0.019944
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A3 C5 B1 B2

A18 A5 B10 C1 B10 C1

B9 B9 A2 B9 C19 A2

B18 A1 A6 B18 C9 C19

B1 A1 C1 B19 A1 B9

B7 C9

A20 B11 C13 A9 B18

Figure 6.12: Ternary Multiplication: 7x7 Crossbar
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Figure 6.13: SPICE Results: 7x7 Ternary Multiplication- SUM

Figure 6.14: SPICE Results: 7x7 Ternary Multiplication- Carry
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In the 8x8 crossbar test for multiplication, the values for 1 and 2 were again flipped. Cout only has

one possible result equal to 2. The resistances used were mem hi = 1e+ 06, mem mid = 10000,

and mem low = 100 and the voltage midpoints were 0.0029 and 0.080.

Table 6.9: Ternary Multiplication: 8x8 Crossbar (012)

ABC-in Prod SPICE-Prod C-out SPICE-C-out
000 0 0.000544 0 0.000252
001 1 0.019782 0 0.000038
010 0 0.000594 0 0.000204
002 2 0.259399 0 0.000467
020 0 0.000583 0 0.000215
012 2 0.178732 0 0.000906
021 1 0.015880 0 0.000234
011 1 0.015014 0 0.000220
022 2 0.157622 0 0.000881
100 0 0.001189 0 0.000801
101 1 0.020779 0 0.000221
110 1 0.019892 0 0.001898
102 2 0.259852 0 0.000611
120 2 0.149120 0 0.001652
111 2 0.200641 0 0.001424
112 0 0.001164 1 0.004803
121 0 0.001601 1 0.006089
122 1 0.004848 1 0.013958
200 0 0.001017 0 0.000378
201 1 0.016866 0 0.000174
210 2 0.153724 0 0.001317
202 2 0.209636 0 0.000544
220 1 0.019433 1 0.006247
211 0 0.001861 1 0.003981
212 1 0.007555 1 0.010164
221 2 0.143934 1 0.006056
222 0 0.001134 2 0.212312
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C1 C2 A4 C3 A8 C5

A1 B13 A9 B8 A18

A9 A3 B18 B18 C3 A25

A10 A4 C1 B19

A21 C9 B17 A8 B8

B12 B18 C6 C18 B4 A9

B5 C18

A22 B9 C22 B18 A3 C9

Figure 6.15: Ternary Multiplication: 8x8 Crossbar (012)
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Figure 6.16: SPICE Results: 8x8 Ternary Multiplication (012)- SUM

Figure 6.17: SPICE Results: 8x8 Ternary Multiplication (012)- Carry
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In the following 8x8 crossbar test, the values for 1 and 2 were set back to the original 2 =

mem mid and 1 = mem hi. The resistances used were mem hi = 1e + 06, mem mid = 10000,

and mem low = 100 and the voltage midpoints were 0.0048 and 0.0248.

Table 6.10: Ternary Multiplication: 8x8 Crossbar (021)

ABC-in Prod SPICE-Prod C-out SPICE-C-out
000 0 0.000797 0 0.000001
001 1 0.437246 0 0.000536
010 0 0.001138 0 0.000231
002 2 0.010367 0 0.000018
020 0 0.001192 0 0.000203
012 2 0.010767 0 0.000225
021 1 0.369672 0 0.000936
011 1 0.334825 0 0.000884
022 2 0.010741 0 0.000227
100 0 0.000796 0 0.000002
101 1 0.213973 0 0.000590
110 1 0.112541 0 0.000989
102 2 0.007651 0 0.000208
120 2 0.010903 0 0.001311
111 2 0.011178 0 0.001192
112 0 0.000450 1 0.115094
121 0 0.002129 1 0.200214
122 1 0.102857 1 0.078814
200 0 0.000797 0 0.000001
201 1 0.331818 0 0.000551
210 2 0.015180 0 0.001286
202 2 0.010164 0 0.000029
220 1 0.180130 1 0.026985
211 0 0.001965 1 0.200338
212 1 0.103446 1 0.078853
221 2 0.011687 1 0.249980
222 0 0.000581 2 0.019489
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C3 B7 C2 C2

C3 C1 A7 A10 B1

B1 A2 B9 B11

C21 A1 B9 B18 C13 B9 B11

C20 A18 B18 C9 A18 B10 B22

C1 B9 B9 B20 A20 C1 C1

B7

B18 C11 B18 A10 B19 A9

Figure 6.18: Ternary Multiplication: 8x8 Crossbar (021)
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Figure 6.19: SPICE Results: 8x8 Ternary Multiplication (021)- SUM

Figure 6.20: SPICE Results: 8x8 Ternary Multiplication (021)- Carry
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In the previous experiments, acceptable range limits were calculated based on the average SPICE

values of valid flow-based designs. For the following test, the algorithm was altered to include

fixed ranges and multiple SPICE tests to reduce outliers and produce tighter ranges.

This 8x8 ternary adder used the values 1 = mem mid and 2 = mem hi. The resistances used

were mem hi = 1e + 06, mem mid = 10000, and mem low = 100 and the voltage midpoints

were 0.0021 and 0.0805.

Table 6.11: Enhanced Ternary Addition: 8x8 Crossbar (012)

ABC-in Prod SPICE-Prod C-out SPICE-C-out
000 0 0.000182 0 0.000066
001 1 0.007695 0 0.000066
010 1 0.007841 0 0.000031
002 2 0.144499 0 0.000098
020 2 0.200315 0 0.000174
012 0 0.000170 1 0.007994
021 0 0.000155 1 0.004060
011 2 0.200034 0 0.000105
022 1 0.007898 1 0.011768
100 1 0.007810 0 0.000069
101 2 0.202304 0 0.000067
110 2 0.199991 0 0.000109
102 0 0.000168 1 0.007739
120 0 0.000161 1 0.007161
111 0 0.000189 1 0.004050
112 1 0.007804 1 0.011854
121 1 0.007907 1 0.011204
122 2 0.207165 1 0.011880
200 2 0.145351 0 0.000089
201 0 0.000171 1 0.005780
210 0 0.000118 1 0.007887
202 1 0.013365 1 0.032476
220 1 0.014953 1 0.015480
211 1 0.007874 1 0.007903
212 2 0.197981 1 0.016423
221 2 0.210937 1 0.008040
222 0 0.000144 2 0.238636
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C1 B8 C4 B12 B18 C4

A5 B3 B12 B9 B20

A13 C9 C18 B4 C4 C3 A4

A2 C2 B19 B9 B18 B10

C4 A19 A1 C3 C18

C3 A5 C3 C18 C4 C1

B6 A1 C3 B1

B4 B18 B3

Figure 6.21: Enhanced Ternary Adder: 8x8 Crossbar (012)
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Figure 6.22: SPICE Results: 8x8 Enhanced Ternary Adder (012)- SUM
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Figure 6.23: SPICE Results: 8x8 Enhanced Ternary Adder (012)- Carry
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CHAPTER 7: CONCLUSION AND FUTURE WORK

Some goals for future development might include producing circuit designs with a tighter range of

resistances, narrower voltage thresholds, and reducing the occurrence of strays or outliers. Further

modeling of the internal state variable needs to be done prior to fabrication.

Additional memristive crossbar designs that implement a ternary n-bit adder should be a goal.

Full integration of Modified Nodal Analysis to complement SPICE including input, output, wire

resistances, and parasitic voltage loss needs to be addressed.

Refinement of the simulated annealing energy function will result in enhanced performance and

more accurate results. The final process should continue to run to find a solution where all results

are close to the midpoint of each voltage range.
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