Investigation of Multiple-valued Logic Technologies for Beyond-binary Era

Abstract

Computing technologies are currently based on the binary logic/number system, which is dependent on the simple on and off switching mechanism of the prevailing transistors. With the exponential increase of data processing and storage needs, there is a strong push to move to a higher radix logic/number system that can eradicate or lessen many limitations of the binary system. Anticipated saturation of Moore’s law and the necessity to increase information density and processing speed in the future micro and nanoelectronic circuits and systems provide a strong background and motivation for the beyond-binary logic system. In this review article, different technologies for Multiple-valued-Logic (MVL) devices and the associated prospects and constraints are discussed. The feasibility of the MVL system in real-world applications rests on resolving two major challenges: (i) development of an efficient mathematical approach to implement the MVL logic using available technologies, and (ii) availability of effective synthesis techniques. This review of different technologies for the MVL system is intended to perform a comprehensive investigation of various MVL technologies and a comparative analysis of the feasible approaches to implement MVL devices, especially ternary logic

    Similar works