9 research outputs found

    JVM-hosted languages: They talk the talk, but do they walk the walk?

    Get PDF
    The rapid adoption of non-Java JVM languages is impressive: major international corporations are staking critical parts of their software infrastructure on components built from languages such as Scala and Clojure. However with the possible exception of Scala, there has been little academic consideration and characterization of these languages to date. In this paper, we examine four nonJava JVM languages and use exploratory data analysis techniques to investigate differences in their dynamic behavior compared to Java. We analyse a variety of programs and levels of behavior to draw distinctions between the different programming languages. We briefly discuss the implications of our findings for improving the performance of JIT compilation and garbage collection on the JVM platform

    Selecting a GC for Java Applications

    Get PDF
    Nowadays, there are several Garbage Collector (GC) solutions that can be used in an application. Such GCs behave differently regarding several performance metrics, in particular throughput, pause time, and memory usage. Thus, choosing the correct GC is far from trivial due to the impact that di?erent GCs have on several performance metrics. This problem is particularly evident in applications that process high volumes of data/transactions especially, potentially leading to missed Service Level Agreements (SLAs) or high cloud hosting costs. In this paper, we present: i) thorough evaluation of several of the most widely known and available GCs for Java in OpenJDK HotSpot using different applications, and ii) a method to easily pick the best one. Choosing the best GC is done while taking into account the kind of application that is being considered (CPU or I/O intensive) and the performance metrics that one may want to consider: throughput, pause time, or memory usage

    Portable and Accurate Collection of Calling-Context-Sensitive Bytecode Metrics for the Java Virtual Machine

    Get PDF
    Calling-context profiles and dynamic metrics at the bytecode level are important for profiling, workload characterization, program comprehension, and reverse engineering. Prevailing tools for collecting calling-context profiles or dynamic bytecode metrics often provide only incomplete information or suffer from limited compatibility with standard JVMs. However, completeness and accuracy of the profiles is essential for tasks such as workload characterization, and compatibility with standard JVMs is important to ensure that complex workloads can be executed. In this paper, we present the design and implementation of JP2, a new tool that profiles both the inter- and intra-procedural control flow of workloads on standard JVMs. JP2 produces calling-context profiles preserving callsite information, as well as execution statistics at the level of individual basic blocks of code. JP2 is complemented with scripts that compute various dynamic bytecode metrics from the profiles. As a case-study and tutorial on the use of JP2, we use it for cross-profiling for an embedded Java processor

    Duet Benchmarking: Improving Measurement Accuracy in the Cloud

    Full text link
    We investigate the duet measurement procedure, which helps improve the accuracy of performance comparison experiments conducted on shared machines by executing the measured artifacts in parallel and evaluating their relative performance together, rather than individually. Specifically, we analyze the behavior of the procedure in multiple cloud environments and use experimental evidence to answer multiple research questions concerning the assumption underlying the procedure. We demonstrate improvements in accuracy ranging from 2.3x to 12.5x (5.03x on average) for the tested ScalaBench (and DaCapo) workloads, and from 23.8x to 82.4x (37.4x on average) for the SPEC CPU 2017 workloads

    Speculation Without Regret: Reducing Deoptimization Meta-data

    Get PDF
    Abstract Speculative optimizations are used in most Just In Time (JIT) compilers in order to take advantage of dynamic runtime feedback. These speculative optimizations usually require the compiler to produce meta-data that the Virtual Machine (VM) can use as fallback when a speculation fails. This meta-data can be large and incurs a significant memory overhead since it needs to be stored alongside the machine code for as long as the machine code lives. The design of the Graal compiler leads to many speculations falling back to a similar state and location. In this paper we present deoptimization grouping, an optimization using this property of the Graal compiler to reduce the amount of meta-data that must be stored by the VM without having to modify the VM. We compare our technique with existing meta-data compression techniques from the HotSpot Virtual Machine and study how well they combine. In order to make informed decisions about speculation meta-data, we present an empirical analysis of the origin, impact and usages of this meta-data

    Applying test case prioritization to software microbenchmarks

    Get PDF
    Regression testing comprises techniques which are applied during software evolution to uncover faults effectively and efficiently. While regression testing is widely studied for functional tests, performance regression testing, e.g., with software microbenchmarks, is hardly investigated. Applying test case prioritization (TCP), a regression testing technique, to software microbenchmarks may help capturing large performance regressions sooner upon new versions. This may especially be beneficial for microbenchmark suites, because they take considerably longer to execute than unit test suites. However, it is unclear whether traditional unit testing TCP techniques work equally well for software microbenchmarks. In this paper, we empirically study coverage-based TCP techniques, employing total and additional greedy strategies, applied to software microbenchmarks along multiple parameterization dimensions, leading to 54 unique technique instantiations. We find that TCP techniques have a mean APFD-P (average percentage of fault-detection on performance) effectiveness between 0.54 and 0.71 and are able to capture the three largest performance changes after executing 29% to 66% of the whole microbenchmark suite. Our efficiency analysis reveals that the runtime overhead of TCP varies considerably depending on the exact parameterization. The most effective technique has an overhead of 11% of the total microbenchmark suite execution time, making TCP a viable option for performance regression testing. The results demonstrate that the total strategy is superior to the additional strategy. Finally, dynamic-coverage techniques should be favored over static-coverage techniques due to their acceptable analysis overhead; however, in settings where the time for prioritzation is limited, static-coverage techniques provide an attractive alternative

    Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine

    Get PDF
    In the last decade, virtual machines (VMs) for high-level languages have become pervasive, as they promise both portability and high performance. However, these virtual machines were often designed to support just a single language well. The design of the Java Virtual Machine (JVM), for example, is heavily influenced by the Java programming language. Despite its current bias towards Java, in recent years the JVM in particular has been targeted by numerous new languages: Scala, Groovy, Clojure, and others. This trend has not been reflected in JVM research, though; all major benchmark suites for the JVM are still firmly focused on the Java language rather than on the language ecosystem as a whole. This state of affairs threatens to perpetuate the bias towards Java, as JVM implementers strive to “make the common case fast.” But what is common for Java may be uncommon for other, popular languages. One of these other languages is Scala, a language with both object-oriented and functional features, whose popularity has grown tremendously since its first public appearance in 2003. What characteristics Scala programs have or have not in common with Java programs has been an open question, though. One contribution of this thesis is therefore the design of a Scala benchmark suite that is on par with modern, widely-accepted Java benchmark suites. Another contribution is the subsequent analysis of this suite and an in-depth, VM-independent comparison with the DaCapo 9.12 benchmark suite, the premier suite used in JVM research. The analysis shows that Scala programs exhibit not only a distinctive instruction mix but also object demographics close to those of the Scala language’s functional ancestors. This thesis furthermore shows that these differences can have a marked effect on the performance of Scala programs on modern high-performance JVMs. While JVMs exhibit remarkably similar performance on Java programs, the performance of Scala programs varies considerably, with the fastest JVM being more than three times faster than the slowest
    corecore