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Abstract
Speculative optimizations are used in most Just In Time (JIT) com-
pilers in order to take advantage of dynamic runtime feedback.
These speculative optimizations usually require the compiler to
produce meta-data that the Virtual Machine (VM) can use as fall-
back when a speculation fails. This meta-data can be large and
incurs a significant memory overhead since it needs to be stored
alongside the machine code for as long as the machine code lives.
The design of the Graal compiler leads to many speculations falling
back to a similar state and location. In this paper we present deopti-
mization grouping, an optimization using this property of the Graal
compiler to reduce the amount of meta-data that must be stored
by the VM without having to modify the VM. We compare our
technique with existing meta-data compression techniques from the
HotSpot Virtual Machine and study how well they combine. In or-
der to make informed decisions about speculation meta-data, we
present an empirical analysis of the origin, impact and usages of
this meta-data.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Optimization, Run-time environ-
ments

General Terms Algorithms, Languages, Performance

Keywords java virtual machine; just-in-time compilation; specu-
lative optimization; metadata

1. Introduction
Deoptimization [6, 8] is a concept used in modern VMs that allows
program execution to fall back from an optimized state to a less
optimized state, e.g., from compiled code to interpreted code. The
ability to deoptimize the running program at almost any position
allows the JIT compiler of a VM to perform aggressive optimiza-
tions based on speculative assumptions. If those assumptions turn

[Copyright notice will appear here once ’preprint’ option is removed.]

out to be wrong later, the optimized compiled program falls back
to an unoptimized interpreted execution or a baseline compiler1.

However deoptimization usually imposes memory costs be-
cause it require meta-data to be stored alongside the optimized
machine code. While virtual machines may encode this data in a
way that minimizes these costs, we believe that compilers can also
improve on the amount of meta-data (i.e., deoptimization informa-
tion) they handout to the VM. In this paper, we present deoptimiza-
tion grouping, a VM-independent compiler optimization that helps
reducing the amount of generated deoptimization information with-
out compromising any speculative optimizations performed by the
compiler.

We also want to gather empirical data on reduction of meta-
data overhead using our technique and using existing compression
techniques from the HotSpot VM. In particular, we want to see if
both techniques can be combined constructively. We also collect
empirical data about deoptimization information throughout the
VM: its production by the compiler, its memory overhead while
stored and finally its usage in the VM.

To summarize, the contributions of this paper are:

• An analysis of the origin of deoptimization, its impact on as-
sociated deoptimization information and its usage in the Java
HotSpot VM.

• A VM-independent compiler optimization that reduces the
amount of deoptimization information that needs to be stored
by the VM.

2. Background
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Figure 1: System overview

We implement deoptimization grouping as part of the Graal
OpenJDK project [10] and its Graal compiler. The Graal compiler
is written in Java and is designed to produce highly optimized code.
It can be used to replace the standard compilers of the Java HotSpot
VM.

1 Deoptimizing to a baseline compiler is usually a special case of On Stack
Replacement (OSR).
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Figure 1 shows the overall context of the VM. The Java
HotSpot VM uses mixed-mode execution: all methods are initially
interpreted, and frequently executed methods are scheduled for
just-in-time (JIT) compilation. Thus execution of Java bytecodes
starts in the interpreter, which is slow but has low startup costs
and generates profiling information during interpretation. When a
method has been executed for a certain number of times it is passed
to the compiler, which uses the collected profiling information to
generate optimized machine code for it (Figure 1).

The Java HotSpot VM has two JIT compilers: the Client com-
piler and the Server compiler. The Client compiler [9] aims at fast
compilation speed, while the Server compiler [11] aims at better
optimization at the expense of slower compilation speed. Both use
speculative optimizations and deoptimization.

The Graal compiler is modular and has a clear interface with
the VM such that it can be used in other VMs (e.g., in the Maxine
VM [20]).

2.1 Deoptimization
The Graal compiler produces highly optimized code through exten-
sive use of speculative optimizations. An optimization is specula-
tive when the compiler makes an assumption that it cannot guar-
antee during compilation. Instead, it requires the VM to monitor
the assumption and discard the machine code when the assumption
no longer holds. For example, the compiler can replace a virtual
method call with a static call and then inline a method if there is cur-
rently only one implementation available for it. If later class loading
adds another implementation, the assumption no longer holds and
the code is deoptimized.

Deoptimization can also be triggered by the machine code di-
rectly. For example, if profiling shows that the receiver of a virtual
call is always of a specific type, the compiler can speculate that the
receiver will always be of this type. It inserts a guard to check the
type and can then devirtualize the call. If the type check from the
guard fails, the guard will explicitly trigger a deoptimization and
transfer execution to the interpreter.

To this end, the VM uses deoptimization information generated
by the compiler to reconstruct the state of the interpreter (i.e., the
state of the virtual machine) from the state of the physical machine
running the compiled code. In the Java VM, this state consists of the
contents of the local variables and the operand stack. In the context
of escape analysis [16], where allocations of method-local objects
are eliminated, the deoptimization information also contains the
mapping necessary to reconstruct such objects on the heap. Figure 1
shows that this data is directly associated with the machine code of
a compiled method.

2.2 FrameState Assignment
Deoptimization can only happen at specific points in the program,
e.g., when a guard fails. The corresponding intermediate represen-
tation (IR) nodes [4], called deoptimizing nodes, need deoptimiza-
tion information, which is stored in so-called FrameState nodes in
Graal. These nodes store the method and bytecode index to deopti-
mize to and for each value of the local variables and the expression
stack, they reference the corresponding Static Single Assignment
(SSA) IR node.

The Graal compiler generates FrameState nodes during byte-
code parsing [5]. However, instead of attaching them to deoptimiz-
ing nodes immediately, it rather attaches them first only to nodes
that can have side-effects (see Figure 2a). Note that we define side-
effect as anything that changes a state that is observable by other
threads or that is not fully captured by FrameState nodes. Be-
tween side-effecting nodes the state of the program cannot change
and so all deoptimizing nodes can use the FrameState of their
most recent side-effecting node.

Keeping the FrameState only in side-effecting nodes has the
advantage that deoptimizing nodes can be moved during compiler
optimizations. When a deoptimizing node is moved across a side-
effecting node it takes the FrameState from the new most recent
side-effecting node.

After optimizations and before the IR is passed to the register
allocator, FrameState nodes are detached from the side-effecting
nodes and attached to the proper deoptimizing nodes (see Fig-
ure 2b).
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Figure 2: FrameState assignment: FrameState nodes are trans-
fered from side-effecting nodes to deoptimizing nodes.

3. Deoptimization Grouping
Because of the way in which FrameState assignment is done
in Section 2.2, many deoptimizing nodes will share the same
FrameState. While this means that the frame they deoptimize
to is the same, the low-level deoptimization information that needs
to be stored is not necessarily the same. Indeed, the physical loca-
tions of the values may be different. For example, as illustrated in
Figure 3, two Deoptimize nodes use the same FrameState. At
both Deoptimize nodes, the same SSA values need to be restored
for the locals and the expression stack but they are found in differ-
ent physical registers or stack slots. This is important because the
deoptimization information that needs to be produced by the VM
is the low-level one.

This is the point where deoptimization grouping comes into
play. The idea of deoptimization grouping is to combine all
Deoptimize nodes with the same logical FrameState into a sin-
gle Deoptimize node. This single Deoptimize node will then
result in a single deoptimization site in the generated code which
needs only one low-level translation of this FrameState.

To achieve this, once FrameState nodes have been assigned
to deoptimizing nodes, the compiler groups Deoptimize nodes
which use the same FrameState. As Figure 4 illustrates, for each
group containing more than one Deoptimize node, a control-flow
Merge node is created, followed by a single Deoptimize node. All
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High-level IR Low-level
deoptimization information

ScopeDesc(offset=156):
Test::foo@5 (line 14)
Locals
- l0: stack[0]
- l1: stack[4]

Expression stack
- @0: reg rax

ScopeDesc(offset=173):
Test::foo@5 (line 14)
Locals
- l0: reg rsi
- l1: reg rdx

Expression stack
- @0: reg rax

Figure 3: Low-level representation of the same FrameState used
at two different positions. Note that the locals are in different
physical locations.

previous branches leading to Deoptimize nodes of this group flow
into this new Merge node.
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Figure 4: Merging deoptimization control flow (high-level IR).

Note that this transformation is a pure compiler transformation
and is completely independent of the virtual machine in which this
compiler is used.

With this transformation we expect a slight decrease of the gen-
erated code size because there are less runtime calls for deoptimiza-
tion. But more importantly we expect a more substantial decrease
of the size of deoptimization information.

Note that this transformation only covers cases where there is
explicit control flow leading to a Deoptimize node in the IR.
Currently, this is not the case for all deoptimization in the Graal
IR. There are other deoptimizing nodes such as Invoke nodes or
SafePoint nodes for which the control flow to a potential deopti-
mization is implicit. However it would be possible to add a succes-
sor to those nodes to explicitly represent the deoptimization contin-
uation and thus make them participate in deoptimization grouping.
In the current state, experiments show that about 38% of the final
deoptimization information is associated with a Deoptimize node

and explicit control-flow and are thus amenable to this optimiza-
tion.

4. Related Work
4.1 Deoptimization Information Compression
The HotSpot VM can compress low-level deoptimization informa-
tion while storing it. This is normally done only when some de-
bugging features of the VM are used and thus more deoptimization
information is produced by the compiler. Compression works by
finding common byte sequences in the serialized deoptimization in-
formation and sharing them. In HotSpot, this compression is called
“Debug Information Sharing” [1]. It is done for specific chunks of
serialized meta-data, namely the list of all values of the expression
stack, the list of all values of the locals, the list of all locked moni-
tors and one full frame. This ad-hoc compression is rather effective
(see Section 5.5). Especially, since it separates the expression stack
from the locals it is able to share information at a smaller granular-
ity than the full stack of frames. However, it can not find common
sequences when the values have moved to different physical loca-
tions between two usages of the same FrameState. Also, it has
quadratic complexity since every time a new chunk is recorded, it
needs to compare it with the previous ones. In order to limit the
time taken by this search, HotSpot only looks at the 50 previous
chunks. Comparatively, since Graal maintains skip-lists for some
node types and def-use edges [4], deoptimization grouping has a
linear complexity in terms of Deoptimize nodes.

4.2 Delta encoding
Based on the insight that deoptimization information is the result of
the abstract interpretation of the compiled program, some VMs use
delta encoding for storing deoptimization information. The idea is
that the delta between two instances of deoptimization information
that follow each other in the control-flow should be rather small.
This was described by Schneider and Bolz [14] for RPython. This
is particularly effective for trace compilers where the compilation
unit is essentially linear with side exits.

In RPython, the deoptimization information that is serialized is
split into two parts: “resume data” which corresponds to Graal’s
high-level FrameSate nodes and “backend maps” which give the
low level information by mapping SSA values to their physical
location. This makes the delta encoding more efficient because it
is independent of the physical location of values.

The LuaJIT compiler, like most trace compilers, uses deopti-
mization intensively for trace exits. It stores deoptimization infor-
mation in so-called “snapshots” [12, 13]. Similar to Graal’s han-
dling of FrameState nodes, snapshots are only taken if there has
been a side-effect since the last snapshot or if an exit is likely to
be taken. Similar to RPython, snapshots reference the IR values
and thus are independent of the value’s physical location. Instead
of using backend maps, since LuaJIT keeps the IR in memory, it
looks for special RENAME IR nodes which indicates that the register
allocator moved the value from one physical location to an other.

4.3 Deoptimization Information Size
The SELF VM [8, 19] is an ancestor of the HotSpot VM and con-
tains lot of the infrastructure that was later used for deoptimization
in the HotSpot VM. They report that compared to machine code,
deoptimization information takes almost as much space (1.2×) for
their baseline compiler and almost twice as much space (2.3×) for
their optimizing compiler.

Using the delta encoding described above, the RPython imple-
mentation is able to compress “resume data” (the biggest part of
RPython’s deoptimization information) by up to 82%. After com-
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pression the total deoptimization information takes 2.6× to 5× as
much space than the machine code.

4.4 Meta-data vs. Code
While most systems that support deoptimization do so by using
meta-data, it is also possible to support it by using only code.
Instead of emitting meta-data and calling a centralized deopti-
mization handler to rebuild the deoptimized state, specialized code
which does not need the meta-data can be emitted for each deopti-
mization point.

For example, with the Hotpath VM, Gal et al. [7] have explored
both options and report that using specialized code is better for
performance. However they do not report any findings in terms of
memory overhead.

5. Evaluation
5.1 Methodology
All the data from this section was recorded using Graal VM, a
modified version of the HotSpot VM which supports the Graal
compiler as well as the original compilers. It is based on ver-
sion eff84c561a95 of the GraalVM code repository2 which is ex-
tended with the necessary instrumentation code. We used the Java
library from Oracle’s 1.8.0 JDK. The machine that was used is
based on an Intel Xeon E5-2690 CPU with 96GB of RAM running
Ubuntu 12.04. HotSpot’s “tiered compilation” mode was disabled
to prevent mixing numbers from the Client compiler and from the
Server or Graal compilers.

We used the DaCapo 9.12 [2, 3], the Scala-DaCapo [15],
SPECjvm2008 [18] and SPECjbb2005 [17] benchmark suites. For
DaCapo, Scala-DaCapo and SPECjvm2008 the different bench-
marks of the suites were run separately in distinct VM processes.
We then obtain our results for each suite by summing the numbers.
For SPECjvm2008, the startup benchmarks were not included
because we are not interested in startup performances in this pa-
per. The compiler.sunflow benchmark from SPECjvm2008 and
the eclipse benchmark from DaCapo are not included because of
compatibility issues with Java 8.

The reported numbers are the average of at least 10 runs of
the benchmarks. Each run happens in a different VM process. For
each DaCapo and Scala-DaCapo benchmark, 29 warm-up itera-
tions were used for a total of 30 iterations. For each SPECjvm2008
benchmark, a warm-up time of 60 s and an iteration time of 120 s
was used. For SPECjbb2005, since the machine has 16 logical
CPUs, we used 32 “warehouses”.

The Graal compiler is written in Java and thus compiles itself
along the application in the JVM. Thus, the measurements for Graal
may be slightly polluted by compilation of Graal method’s or the
methods it calls in the Java standard library. To minimize this effect,
we bootstrap the compiler at the start of the VM before running
the application and discard any measurement acquired during this
bootstrap period.

Besides discarding the measurement of Graal’s bootstrap, the
measurement are accumulated during the complete run. This is
important because most compilations happen while the benchmarks
are warming up.

5.2 Deoptimization Information Origin
First, we would like to study where deoptimization information
is coming from and establish a baseline for our evaluation. To
do this, we have added instrumentation code to three compilers:
the Graal compiler and HotSpot’s Client and Server compilers.
The instrumentation reports how many machine code locations

2 http://hg.openjdk.java.net/graal/graal/

have been linked with deoptimization information and why it was
needed.

Table 1 shows how the different compilers use deoptimization
information. At this point, deoptimization grouping or HotSpot’s
debug information sharing are not enabled yet. We divide the total
number of deoptimization information produced in each category
by the number of compiled methods to obtain an average per
method. Note that a compiled method may include more than
one Java method because of inlining. The different categories are
described under Table 1.

Overall the Graal compiler produces more deoptimization in-
formation than the two other compilers. Some of the difference can
be explained by the different typical sizes of the compilation units
due to different inlining policies. Indeed, in Table 2 we can see that
on average, the Graal compiler produces bigger compiled meth-
ods than the Server compiler (1.5× to 2.1× bigger) which in turn
produces larger compiled methods than the Client compiler (1.3×
bigger). Some of the difference can also be explained by the inten-
sive usage of deoptimization for exception handling in the Graal
compiler [4].

5.3 Deoptimization Information Memory Overhead
Deoptimization information needs to be stored and we now want to
study its memory cost. We slight extended existing instrumentation
from the HotSpot VM to gather those statistics. The information is
collected when the result of a compilation is inserted in the VM’s
code cache. This means that it shows how much data has been
generated by the compiler over the complete lifetime of the VM
and not statistics about the content of the code cache at a specific
point in time. Table 2 shows how much memory is used to store
deoptimization information.

We can see that overall, meta-data has a significant overhead:
1.7× to 1.9× the amount of machine code for the Graal compiler,
1.2× to 2.0× for the Server compiler and 1.2× to 1.5× for the
Client compiler. These numbers are similar to the numbers put
forward by Hölzle et al. [8] for the SELF VM. They are much
smaller than those from Schneider and Bolz [14] for RPython, even
when using delta-encoding. However even if Graal uses speculation
more intensively than the Server or Client compiler, it does not
reach the density of guards found with RPython’s tracing JIT.

5.4 Deoptimization Grouping
Using deoptimization grouping allows us to reduce the amount of
low-level deoptimization information that the compiler produces.
To observe the effect of this technique, we collected data about
deoptimization information usage for the Graal compiler with de-
optimization grouping enabled. Table 3 reports those numbers and
show the change as a percentage of the numbers without deop-
timization grouping. The amount of deoptimization information
emitted by the compiler is reduced by about a quarter which con-
firms our intuition that a significant amount of Deoptimize nodes
use the same FrameState nodes.

Benchmark
Grouping

Change
Disabled Enabled

DaCapo 1,197,277 880,136 -26.49%
Scala-DaCapo 928,651 695,735 -27.74%
SPECjvm2008 937,947 694,378 -25.97%
SPECjbb2005 49,148 35,512 -25.08%

Table 3: Effect of deoptimization grouping on deoptimization in-
formation usage in the Graal compiler.

In Table 5, the “Sharing Disabled” section shows the effect of
grouping on the memory overhead of deoptimization information.
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Benchmark Compiled
Methods

Average Low-level Deoptimization Information Produced per Compiled Method
Invokes Exceptions Runtime Calls Speculations Safepoints Total

Graal
DaCapo 32,966 6.83 17.77 2.75 7.84 1.13 36.32
Scala-DaCapo 35,449 5.39 12.19 2.23 5.68 0.70 26.20
SPECjvm2008 21,240 8.90 22.20 3.29 8.39 1.38 44.16
SPECjbb2005 1,069 8.23 22.73 4.18 9.43 1.41 45.98

Server
DaCapo 20,427 4.76 7.54 1.31 2.60 0.39 16.60
Scala-DaCapo 25,540 3.56 5.76 1.52 1.89 0.22 12.95
SPECjvm2008 10,321 4.40 8.92 1.55 2.28 0.41 17.57
SPECjbb2005 531 3.59 7.34 1.77 2.51 0.56 15.78

Client
DaCapo 31,196 4.87 5.40 1.97 0.16 0.42 12.82
Scala-DaCapo 45,970 3.55 3.11 1.67 0.05 0.12 8.49
SPECjvm2008 14,719 3.92 5.07 2.04 0.29 0.50 11.82
SPECjbb2005 709 4.57 5.90 2.68 0.36 0.59 14.09

Table 1: Deoptimization information origin for different benchmarks and compilers. Deoptimization grouping and HotSpot’s debug infor-
mation sharing are disabled. The different origins are categorized as follow: Invokes is for call sites to other Java methods; Exceptions is for
exception handling either explicitly using deoptimization or implicitly through hardware traps; Runtime Calls is for call sites to the runtime
that require deoptimization information; Speculations is for deoptimizations used by speculative optimizations other than for speculative
exception handling; Safepoints is for safepoints used by the VM to preempt execution for GC, deoptimization etc.

Benchmark Compiled
Methods

Average Memory Footprint per Compiled Method (bytes)

Code
Meta-data

Total
Deoptimization Shared Other
Graal

DaCapo 32,965 2,190.1 2,996.5 311.2 482.0 5,993.9
Scala-DaCapo 35,438 1,589.9 2,293.3 298.5 460.9 4,658.1
SPECjvm2008 21,274 2,647.6 3,771.0 426.4 527.2 7,385.7
SPECjbb2005 1,075 2,810.4 3,957.1 386.6 524.2 7,691.7

Server
DaCapo 20,424 1,432.3 1,294.5 76.0 635.2 3,451.0
Scala-DaCapo 25,543 991.1 1,308.4 86.2 581.9 2,981.1
SPECjvm2008 10,321 1,506.0 1,344.5 72.1 639.2 3,574.6
SPECjbb2005 531 1,484.1 1,159.3 63.3 588.2 3,308.3

Client
DaCapo 31,194 1,040.0 747.2 34.1 532.4 2,368.7
Scala-DaCapo 46,102 750.8 674.6 34.8 449.9 1,925.2
SPECjvm2008 14,716 957.1 675.3 29.3 502.2 2,178.4
SPECjbb2005 710 1,177.9 853.2 30.0 508.3 2,584.9

Table 2: Memory footprint in bytes for deoptimization information for different benchmarks and compilers. Deoptimization grouping and
HotSpot’s debug information sharing are disabled. The Shared column is for constants that can be referenced either from deoptimization
information or from the code. The Other column accounts for relocation information as well as other data needed for the VM’s bookkeeping
of the code cache.

We can see that the reduction by a quarter in emitted deoptimization
information translates almost directly into a reduction by a quarter
of the deoptimization meta-data size. It also translates into a slight
decrease in code size as we expected because of the lower number
of runtime call sites to the VM’s deoptimization handler.3 Interest-
ingly, it also leads to a decrease for other meta-data which contains
relocation information for those runtime call sites.

3 The observed decrease in code size is significant, it is outside the 99%
confidence interval.

5.5 Debug Information Sharing
As described in Section 4.1, the HotSpot VM supports a compres-
sion technique for deoptimization information. Table 4 shows the
change in memory usage with sharing enabled. Note that for this
experiment, deoptimization grouping is not enabled such that we
can see the effect of sharing alone.

Debug Information Sharing is very effective at compressing de-
optimization meta-data and results in a 40% to 50% decrease in the
memory needed to store deoptimization meta-data. However since
this sharing is done while deoptimization information is recorded
and after the compilation is finished, it has no influence on any-
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thing else.4 Overall, it results in a 11% to 25% decrease in code
cache occupation and brings the overhead of meta-data down to
between 0.9× and 1.3× for all compilers and to between 1.1× and
1.2× for the Graal compilers in particular.

Benchmark Code
Meta-data

Total
Deopt. Shared Other

Graal
DaCapo -0.7% -47.1% -0.4% -0.2% -23.8%
Scala-DaCapo +0.3% -48.6% +0.4% +0.1% -23.8%
SPECjvm2008 -0.2% -45.4% -0.2% -0.3% -23.3%
SPECjbb2005 -1.7% -48.5% -0.9% -0.9% -25.7%

Server
DaCapo -0.5% -41.7% -0.1% -0.1% -15.8%
Scala-DaCapo -0.2% -50.4% -0.2% -0.1% -22.2%
SPECjvm2008 +0.3% -41.0% +0.2% +0.2% -15.3%
SPECjbb2005 +1.1% -35.4% +0.3% +0.5% -11.8%

Client
DaCapo +0.0% -40.0% +0.0% +0.0% -12.6%
Scala-DaCapo -0.3% -50.3% -0.5% -0.5% -17.9%
SPECjvm2008 +0.1% -37.7% +0.1% +0.1% -11.6%
SPECjbb2005 -0.1% -41.1% -0.1% -0.2% -13.7%

Table 4: Change in memory footprint of deoptimization informa-
tion for different benchmarks and compilers when HotSpot’s de-
bug information sharing feature is enabled. The Total column cor-
responds to the total footprint (code & meta-data). The numbers are
relative to the baseline established in Table 2

5.6 Combining Sharing and Grouping
We now want to study how debug information sharing and deop-
timization grouping work together. Table 5 shows the change in
memory usage of deoptimization information when grouping is en-
abled.

The results show that deoptimization grouping is still able to
reduce code and meta-data size on top of the gains from debug
information sharing. The reduction of footprint for code, shared
and other meta-data is conserved from the situation where sharing
is disabled and grouping further reduces the size of deoptimization
meta-data by 22% to 25%. This is important because it shows that
both techniques can be used together and combine well. Overall,
the overhead of meta-data is now down to between 0.9× and 1.1×
for the Graal compiler.

5.7 Runtime Accesses to Deoptimization Information
Storage of deoptimization information has to trade-off between size
and ease of access. We want to look at how often this deoptimiza-
tion information is accessed at runtime and for which reason. We
have added instrumentation to the HotSpot VM that counts every
access to deoptimization information. These accesses are catego-
rized into different access reasons. Table 6 shows the number of
these accesses for the three compilers. It also shows the runtime of
the benchmarks to put the number of accesses into perspective.

Overall, accesses due to deoptimization are a minority, they rep-
resent at most 0.5% of all accesses. This is interesting because de-
optimization is the only kind of access which needs all of the deop-
timization information. Other accesses only inspect the method and
bytecode index but not the values contained in each frame. We sus-
pect that the method and bytecode index only make up a small part
of the deoptimization information overhead. This means that most

4 The observed variations for the other values are not significant, they lie
within the 99% confidence interval.

Benchmark Code
Meta-data

Total
Deopt. Shared Other

Sharing Disabled
DaCapo -4.3% -25.4% -10.6% -3.8% -15.1%
Scala-DaCapo -3.7% -23.5% -8.5% -2.7% -13.7%
SPECjvm2008 -2.5% -24.7% -11.6% -3.1% -14.4%
SPECjbb2005 -5.3% -27.1% -10.8% -4.0% -16.7%

Sharing Enabled
DaCapo -4.0% -58.7% -10.4% -3.6% -31.6%
SPECjbb2005 -4.7% -60.2% -11.5% -3.6% -33.5%
SPECjvm2008 -3.5% -57.9% -12.1% -3.5% -31.8%
Scala-DaCapo -3.4% -59.7% -8.1% -2.4% -31.3%

Table 5: Change in memory footprint of deoptimization informa-
tion for different benchmarks when Graal’s deoptimization group-
ing feature is enabled. The Total column corresponds to the total
footprint (code & meta-data). The numbers are relative to the base-
line established in Table 2

of the data from deoptimization information could be compressed
more aggressively since it is only rarely decoded.

We can also see that deoptimization happens more often with
the Graal compiler. This confirms that Graal replies more on spec-
ulative optimization than the Server and Client compilers.

Benchmark Time
Accesses

Deopt. Stack-trace Other
Graal

DaCapo 794 s 9,734 277,678,887 28,198,368
Scala-DaCapo 1612 s 28,588 32,286,983 8,635,354
SPECjvm2008 3600 s 31,773 114,096,022 777,256,453
SPECjbb2005 4050 s 448 5 94,801

Server
DaCapo 739 s 1,909 298,273,177 21,217,367
Scala-DaCapo 1711 s 3,252 28,407,976 11,437,794
SPECjvm2008 3600 s 1,371 112,355,484 524,800,317
SPECjbb2005 4050 s 86 0 17,229

Client
DaCapo 1052 s 59 470,958,570 31,239,622
Scala-DaCapo 4884 s 72 61,995,783 2,518,778
SPECjvm2008 3600 s 62 80,820,622 738,751,894
SPECjbb2005 4050 s 1 522 38,075

Table 6: Runtime accesses to deoptimization information. The
Stack-trace category is used when the VM builds a stack-trace for
an exception object. The Other category is used when the VM
walks the stack for the implementation of security or class load-
ing.

6. Future Work
Currently, we do not try to group deoptimizations using FrameState
nodes that are structurally equivalent but have different input SSA
values. While this is not a very common case it can appear as a
result of optimizations that duplicate code such as loop peeling,
unrolling or unswitching. We would need to analyze the costs and
benefits of grouping these deoptimization.

It would also be interesting to analyze the performance and
memory overhead trade-offs associated with using specialized code
instead of meta-data to implement deoptimization. One of the po-
tential advantages of implementing deoptimization through spe-
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cialized code is that it reduces the need for the VM to support
advanced deoptimization features such as scalar-replaced objects,
delayed loads and stores etc. The implementation of these com-
piler optimizations would then be less VM-dependent and better
factored into the compiler.

An other interesting path to explore would be to make all de-
optimization explicit in the Graal IR by adding a special successor
to all the deoptimizing nodes for which deoptimization is currently
implicit. This would make all deoptimizations candidate to deopti-
mization grouping and thus improve the gains of this optimization.

7. Conclusions
In this paper, we have empirically confirmed that the overhead
of machine code meta-data is significant in the HotSpot VM and
in particular the meta-data used for deoptimization. We have first
studied how the HotSpot VM successfully compresses some of the
meta-data associated with deoptimization. Then, we have empiri-
cally confirmed that the compiler can also help when it comes to
reducing the meta-data overhead.

Using deoptimization grouping we were able to reduce this
overhead without having to modify the VM which means that this
improvement will be effective in any VM where the Graal compiler
is used. Furthermore, our compiler optimization combines well
with meta-data compression techniques that can be found in virtual
machines.
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