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Abstract
The rapid adoption of non-Java JVM languages is impressive: ma-
jor international corporations are staking critical parts of their soft-
ware infrastructure on components built from languages such as
Scala and Clojure. However with the possible exception of Scala,
there has been little academic consideration and characterization
of these languages to date. In this paper, we examine four non-
Java JVM languages and use exploratory data analysis techniques
to investigate differences in their dynamic behavior compared to
Java. We analyse a variety of programs and levels of behavior to
draw distinctions between the different programming languages.
We briefly discuss the implications of our findings for improving
the performance of JIT compilation and garbage collection on the
JVM platform.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Performance attributes; D.3.4 [Programming Languages]:
Processors—Compilers

General Terms Measurement, Performance

Keywords Dynamic analysis; Java virtual machine; JVM byte-
code

1. Introduction
Java is one of the most popular programming languages currently
in use. Much of its success may be attributed to the Java Virtual Ma-
chine (JVM). JVM implementations are available on a wide variety
of platforms, allowing developers to “write once, run anywhere”.
In practice, this means that an application is compiled to bytecode
and this bytecode can be executed on any platform with an avail-
able JVM. The JVM also provides a sandboxed environment for
security, and adaptive optimizations that improve the performance
of applications.

An increasing number of programming language toolchains
produce bytecode that is executable on the JVM. Developers
choose to use these languages for features or programming para-
digms that are not available in Java. Many of these JVM languages
can interoperate with Java, allowing developers to use existing Java
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libraries and reducing the risk of adopting the new language. Non-
Java languages can take advantage of automatic memory manage-
ment and adaptive optimizations provided by the JVM. However,
JVM implementations expect to execute Java bytecode, therefore
the performance of non-Java bytecode may be poor. For instance,
Java uses static typing but there are JVM languages that use dy-
namic typing instead. The JVM introduced support for dynamic
types in Java 7; support for other features, such as tails calls, con-
tinuations and interface injection, is currently in progress1.

The adaptive optimization heuristics and garbage collection
(GC) algorithms used by the JVM are other possible reasons for
the poor performance of non-Java JVM programming languages.
Previous studies [26][25] have shown that the characteristic behav-
ior of Scala is different from that of Java. They suggest that it is
possible to improve Scala’s performance on a JVM based on those
differences. Our work examines the behavior of three other JVM
programming languages; Clojure, JRuby and Jython. All three lan-
guages are dynamically typed and JRuby and Jython in particular
are generally used as scripting languages.

Our static and dynamic analyses reveal that significant amounts
of Java code are used by non-Java languages. We apply exploratory
data analysis methods [12] to data gathered through dynamic pro-
filing of programs written in five JVM languages. Instruction-level
analysis shows that bytecode compiled from non-Java languages
exhibits instruction sequences never or rarely used by Java. We
find differences in method size and stack depths between JVM
languages but no difference in method and basic block hotness.
Heap profiling reveals that non-Java objects are generally smaller
and shorter lived than Java objects. Non-Java languages also make
more use of boxed primitive types than Java. We discuss possi-
ble changes to JVM optimization heuristics based on the observed
behavior of non-Java languages.

1.1 Our Contribution
This empirical investigation makes two key contributions:

• We explore the behavior of benchmarks written in five JVM
programming languages (wider scope than earlier studies). To
the best of our knowledge, the behavior of Clojure, JRuby
and Jython programs has never been previously studied in a
systematic fashion.

• We examine the proportion of Java code used by each non-Java
programming language through static analysis of each program-
ming language’s library and dynamic analysis of a set of bench-
marks. With this information, we can estimate the effectiveness
of custom optimizations for such JVM-hosted languages.

1 e.g. http://openjdk.java.net/projects/mlvm/

http://openjdk.java.net/projects/mlvm/


2. Methodology
In this section, we describe the JVM languages in our study, the
benchmarks written in those languages, the tools we use to profile
them and the analysis techniques we use to identify interesting
behaviors. We will provide the source code, experimental scripts
and raw data from our empirical study via our project repository2.

2.1 JVM Languages
We examine five JVM languages:

Java is the original JVM programming language. It is object-
oriented and statically typed. We use Java program behavior
as the baseline in all our quantitative comparisons.

Clojure [9] is a LISP dialect, with support for advanced con-
currency features, including actors and software transactional
memory. It is a functional language with dynamic typing.

JRuby [14] is a Java-based implementation of the Ruby program-
ming language. It is a dynamic, object-oriented language.

Jython [17] is an implementation of the Python language for the
Java platform. It is a dynamic, object-oriented language.

Scala [15] is a functional and object-oriented programming lan-
guage, with a static typing discipline. It has advanced facilities
for typing and concurrency.

2.2 Program Suite
We searched for suitable examples of applications, representative
of each JVM programming language in our study. We used 10
benchmark programs from the Computer Languages Benchmark
Game3 (CLBG) project. The site compares programming language
performance by implementing a solution to a set of computing
problems in different programming languages. The benchmarks use
the same underlying algorithm, therefore they may ignore program-
ming language features that would enable improved performance
using a different algorithm. The project organizers acknowledge
that the style of each benchmark problem implementation has a sig-
nificant effect on its relative performance. A recent empirical study
of the R scripting language [13] also used the CLBG benchmarks.

The website includes benchmark implementations in four of the
five JVM languages (excluding Jython) outlined in Section 2.1. The
available Python benchmarks were converted from Python v3 to v2
and minor changes were made to remove multiprocessing and fix
output format problems for Jython compatibility. Table 1 outlines
the general characteristics of the 10 CLBG benchmark problems
we use for comparative analysis and their workloads. Three of the
benchmarks use text output from the Fasta benchmark (consisting
of 150,000 randomly generated DNA sequences) as their input.

We supplement the CLBG benchmarks with additional bench-
marks that are representative examples of non-trivial applications
written in the JVM programming languages. The DaCapo Bench-
mark Suite ver. 9.12 for Java [1] and the Scala Benchmark Suite ver.
0.1.0 [26] contain open source applications chosen from a range of
domains. We set the workload size of these benchmark suites to
small, to limit the size of the traces produced by the heap profiler.

We could not find any Clojure, JRuby or Jython benchmark
suites, and there are few individual open source, real-world applica-
tions. We select three examples of applications written in Clojure
and JRuby and use them as benchmarks, combined with suitable
workloads. The examples were chosen because they were com-
monly used, executable from a command line and repeatable with

2 http://www.dcs.gla.ac.uk/~wingli/jvm_language_study
3 http://shootout.alioth.debian.org/

benchmark workload int fp ptr str
Binary-Trees tree depth 13 Y
Fannkuch-Redux sequence length 9 Y
Fasta 150000 sequences Y
K-Nucleotide Fasta output Y Y
Mandelbrot 500 image size Y
Meteor-Contest 2098 solutions Y
N-body 100000 steps Y
Regex-DNA Fasta output Y
Reverse-Complement Fasta output Y
Spectral-Norm 160 approximations Y

Table 1: Description of the Computer Languages Benchmark Game
(CLBG) corpus of programs used in our study, indicating whether
a program mostly manipulates integers, floating-point numbers,
pointers or strings.

the same input.
The Clojure applications we profiled were:

Noir - a web framework written in Clojure. We profile a blog site
created using Noir 1.2.2 that was provided by the Noir website.
We use a Perl script to simulate user interaction with the blog
site as input.

Leiningen - a build automation tool that simplifies download-
ing and building Clojure software. We profile Leiningen 2.1.0
building and packaging the Noir blog site into an executable
uberjar.

Incanter - an R-like statistical computing and graphing tool. Many
of its modules are based on Java libraries, therefore we only
profile the Incanter 1.5.0 core module running its associated
unit tests.

The JRuby applications we profiled were:

Ruby on Rails - a popular web framework, using JRuby to run
on a JVM. We created a blog site using Ruby on Rails 3.2.13
and the Rails website’s tutorial. A Perl script was again used to
interact with the blog site while it was being profiled.

Warbler - an application that packages a Ruby or Ruby on Rails
application into a Java jar or war file. We profile Warbler 1.3.6
as it builds and packages the Ruby on Rails blog site used
previously, into an executable war file.

Lingo - an open-source Ruby application for the automatic index-
ing of scientific texts. We profile Lingo 1.8.3 as it indexes “Alice
in Wonderland” using its standard English dictionary settings.

Jython is mainly used as a scripting language, therefore we
could not find any suitable large applications written in this lan-
guage. We had difficulty porting Python applications since the lat-
est Python language specification and libraries are not fully imple-
mented by Jython and therefore we only profile the CLBG Python
(Jython) benchmarks.

2.3 Data Generation
We gather data from the benchmarks using two profilers, as shown
in Figure 1. The first profiler we use is a modified version of JP2
2.1 [23] to collect information about the bytecode instructions and
methods used by each benchmark. The original version of JP2
records method and basic block execution counts; our version also
records the bytecode instructions within each basic block. Only 198
of the 202 bytecodes are recorded distinctly since bytecodes simi-
lar to LDC, JSR and GOTO are aggregated. The data produced by JP2
is non-deterministic. However, using 3 sets of traces, we found that
the figures recorded for bytecodes and methods executed display a

http://www.dcs.gla.ac.uk/~wingli/jvm_language_study
http://shootout.alioth.debian.org/
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Figure 1: Schematic diagram of profiling data generation and anal-
ysis techniques.

standard deviation of less than 0.2%.
The second profiler we use is Elephant Tracks (ET) 0.6 [21, 22],

a heap profiler that provides information about object allocations
and deaths. Some benchmarks failed to complete using ET; possi-
bly due to the high overhead or instrumentation used by the profiler.
Neither JP2 or ET provide complete coverage of all the classes used
by a JVM language. JP2 instruments each method used, therefore
there is no record of classes that are only accessed by their fields.
ET has a known bug where objects in the constant pool have no
allocation record. However, these problems occur infrequently.

We start by compiling the source code of each benchmark to
JVM bytecode using the canonical compiler for its language. The
exception is Jython, which uses high-level language interpretation.
Table 5 details whether each benchmark is compiled to bytecode
ahead-of-time (AOT), just-in-time (JIT) or interpreted. The JVM
language toolchain versions we use are Java 1.6 30, Clojure 1.3.0,
JRuby 1.6.7, Jython 2.5.3 and Scala 2.9.2. We execute the compiled
bytecode (or run the Jython interpreter) using the Java HotSpot 64-
bit Server VM 1.6.0 30, running on Linux kernel v3.2.0-48, x86 64
build. The traces produced by JP2 and ET are parsed to extract the
desired metrics.

2.4 Analysis Techniques
Figure 1 shows the range of exploratory data analysis techniques
we apply to gain an understanding of the dynamic behavior of the
various programs. We endeavor to follow appropriate past practice
in the community in presenting our results, as indicated in the rest
of this section.

N-gram models: An N -gram is a sequence of N consecutive
JVM bytecode instructions within a single basic block. We consider
the coverage of observed N -grams in relation to the theoretical
maximum– if there are 198 observable bytecode instructions, then
there can be 198N N -gram sequences.

O’Donoghue et al. [16] introduce the concept of N -gram anal-
ysis for Java execution traces. They measure dynamic 2-gram fre-
quencies for a set of Java benchmarks, to identify candidates for
bytecode super-instructions.

Principal Component Analysis: (PCA) [27] is a frequently
used technique for dimension reduction, to aid visualization and
comprehension. PCA works by choosing and combining dimen-
sions that contain the greatest variance. For each individual bench-
mark program, we measure the relative frequency of each JVM
bytecode instruction to produce a 198-vector of values in range
[0, 1] or a 39204-vector of values for 2-grams. We apply PCA to
reduce the number of dimensions from 198 or 39204 to 4.

Sewe et al. [26] use this approach to characterize Scala and Java
programs. Blackburn et al. [1] apply PCA to dynamic processor-
level metrics to visualize Java benchmark diversity.

Boxplots: We use boxplots to summarize distributions of data
for measurements on methods and objects. The following conven-
tions are used for all boxplots in this paper. Each box denotes the
interquartile range, with the median marked by a thick black stroke.
The boxplot whiskers mark the 9th and 91st percentiles; values out-
side this range are considered outliers. The absolute value reported
to the right of each box is the maximum recorded observation for
that program. The use of boxplots to summarize static and dynamic
characteristics of Java programs is becoming common practice, e.g.
[7, 34].

Heat maps: We use heat maps to compare object lifetimes be-
tween JVM languages. Darker shadings indicate a higher propor-
tion of objects within a lifetime range. The left of the heat map
represents objects with a short lifetime while the right represents
longer lived objects.

Dufour et al. [6] use relative frequencies to compare dynamic
metrics values across Java benchmarks.

3. Results
3.1 Java vs. Non-Java Code
All non-Java JVM languages use Java classes to a certain extent.
This may be exhibited (a) statically, in terms of the proportion
of shipped bytecode classes that are compiled from Java source
code, and (b) dynamically, in terms of the proportion of executed
methods that are compiled from Java source code. The proportion
of Java used by each non-Java programming language will have an
impact on the effectiveness of any language-specific optimization
that we might propose.

A static analysis of the language libraries distributed with each
non-Java JVM language reveals the proportion of the library code
that is implemented in Java. Each class in the library is classified
using the extension of the corresponding source file. If this source
file information is not stored in the class metadata, we locate and
classify the source file manually via source code inspection.

Table 2 shows that the proportion of Java code within the Clo-
jure and Scala libraries is exceeded by non-Java code. However,
the proportion of Java code within the JRuby and Jython libraries
exceeds the amount of non-Java code by a significant factor. This
suggests that JRuby and Jython may not benefit greatly from op-
timizations based on differences between Java and non-Java pro-
gramming language behavior. To verify whether this is the case,
we separate Java and non-Java bytecodes, methods and objects by
filtering the dynamic traces obtained from the profiling tools, using
the same method we used to classify the classes in the language
libraries. This allows us to explore the behavior of the non-Java
language methods and objects in isolation.

Table 5 details run-time statistics for the profile traces of all our
benchmark programs. The table shows that some benchmarks (e.g.
Clojure and Scala Regex-Dna) never execute a high percentage of
non-Java bytecode due to their reliance on Java library classes.

The data in Table 5 shows that the proportion of Java code ex-
ecuted at run-time is similar to the results of the static analysis.
JRuby and Jython, as expected, use a small proportion of instruc-
tions, methods and objects produced from JRuby or Jython source
code. The Clojure CLBG benchmarks use less Java than the three
application benchmarks, indicating that Clojure applications are
more likely to depend on Java components. For instance, the Noir
blog uses Jetty, a web server written in Java, while the Clojure com-
piler used by Leiningen is implemented in Java. Scala is the only
non-Java JVM language that uses a significant proportion of in-
structions, methods and objects implemented in its own language.



Java Non-Java
Language Classes Methods Instructions Classes Methods Instructions
Clojure 1.3.0 696 (24%) 3887 (33%) 146333 (24%) 2171 (76%) 7813 (67%) 455567 (76%)
JRuby 1.6.7 5167 (65%) 37877 (87%) 1987564 (98%) 2767 (35%) 5874 (13%) 47130 (2%)
Jython 2.5.3 4002 (68%) 45813 (86%) 1592392 (96%) 1852 (32%) 7641 (14%) 63015 (4%)
Scala 2.9.2 140 (3%) 1195 (1%) 25840 (3%) 5230 (97%) 100616 (99%) 866451 (97%)

Table 2: The number (respectively, proportion) of classes, methods and instructions from Java and non-Java source files within non-Java
programming language libraries.

The results indicate that non-Java JVM languages are heavily
dependent on Java, therefore any efforts to tune the adaptive op-
timizations or garbage collection algorithms used by a JVM must
take care not to degrade Java performance. The results also indi-
cate that observed differences in the behavior between non-Java
JVM languages and Java will only be of use to Scala and, to a
lesser extent, Clojure. Java is a necessary part of non-Java JVM
languages and therefore we also look at unfiltered data in our in-
struction, method and object level results. This will reveal if the
behavior of non-Java applications, including the Java code that they
use, differs from standard Java applications.

3.2 Instruction-level Results
In this section, we look for differences in the bytecode executed by
the JVM for the 5 JVM languages.

3.2.1 N-gram Coverage
This investigation considers the dynamic N -gram vocabulary ex-
hibited by each language. A use of N -gram g for language L means
at least one of the benchmark implementations in L executes a ba-
sic block containing g at least once.

Table 3 shows that the Java N -gram vocabulary is more diverse
than for non-Java languages. However, it should be noted that
there are 20 Java benchmarks in this study, while there are 13 or
fewer benchmarks for Clojure, JRuby and Jython. Scala has 20
benchmarks, but it still displays a smaller N -gram vocabulary than
Java. Table 4 shows that, despite Java using diverse N -grams, each
non-Java JVM language still uses N -grams not used by the Java
benchmarks. Moreover, these N -grams are executed frequently;
for instance, 58.5% of 4-grams executed by Scala are not found in
bytecode executed by Java. This indicates that a significant amount
of the N -grams used by non-Java JVM languages are, at the very
least, uncommonly used by Java.

3.2.2 Principal Component Analysis
We apply PCA to the bytecode instruction frequencies and 2-gram
frequencies, producing the scatter plots in Figure 2. The unfiltered
1 and 2-gram PCA graphs show that benchmarks belonging to dif-
ferent JVM languages display a low amount of divergence; forming
a single cluster with few outliers. This is likely due to the amount
of Java used by non-Java JVM languages, resulting in similar in-
structions being used. The filtered 1 and 2-gram PCA graphs show
JRuby and Jython benchmarks forming distinct clusters away from
Java, Clojure and Scala. The clustering is most apparent in the fil-
tered 2-gram PCA graph.

The PCA graphs indicate that N -grams produced by the JRuby
compiler and the Jython interpreter are distinct from other JVM
languages in the frequency and type of 1 and 2-grams they use.
Conversely, Java, Clojure and Scala use similar 1 and 2-grams,
even when Java code has been filtered from the Clojure and Scala
N -grams. The PCA graphs indicate that for shorter N -grams, only
the filtered JRuby and Jython show different behavior compared to
Java.

3.3 Method-level Results
This section compares the method sizes, stack depths, method
hotness and basic block hotness between the five JVM languages.

3.3.1 Method Sizes
Method inlining heuristics are generally parameterized on caller/
callee static method size [29], therefore we examine the method
sizes commonly used by different JVM languages. The boxplots
in Figure 3 show the distribution of static method sizes for each
benchmark, measured in terms of bytecode instructions, weighted
by dynamic invocation frequency. The median method size for
CLBG benchmarks written in Java varies considerably compared to
the DaCapo benchmarks. This is not true for the non-Java JVM lan-
guages, whose unfiltered median method sizes show less variation.
The filtered median method sizes for Clojure, JRuby and Jython
show much more variability. However, the results of the dynamic
analysis in Table 5 has shown that these methods represent a small
proportion of the executed methods. Scala shows the most inter-
esting behavior; the median method size is small, typically three
instructions only, for most of its benchmarks.

3.3.2 Stack Depths
Each thread maintains its own stack; we record the thread’s current
stack depth whenever a method entry or exit occurs in an ET
trace. We report the distribution of recorded stack depths for each
benchmark. However, exceptional method exits are not recorded by
ET and method stacks can switch between threads while sleeping,
leading to a small amount of inaccuracy in our results. Figure 4
shows that the median stack depth for the CLBG benchmarks is
less than 50 for all of the JVM languages. However, the median
stack depth is higher for larger applications. In particular, Clojure
and Scala applications display larger stack depths, possibly due to
recursion used by these functional languages.

3.3.3 Method and Basic Block Coverage
We measure method and basic block hotness as per [24] by de-
termining the most frequently executed 20% of methods and basic
blocks and measuring the amount of executed bytecodes that they
cover. The results in Table 5 show that in most cases, the most fre-
quent 20% of methods will cover almost all of the executed byte-
code. One anomaly is the revcomp benchmark for Clojure, Java,
JRuby and Scala, for which there are relatively many frequently ex-
ecuted methods that are small in size. However, the most frequent
20% of basic blocks covers more than 98% of bytecodes executed
for all benchmarks. There is little difference in the method and ba-
sic block hotness between Java and non-Java benchmarks.

3.4 Object-level Results
In this section, we compare object lifetimes, object sizes and the
amount of boxed primitives used by the five JVM languages in our
study.
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Figure 2: PCA scatter plots illustrating variation in bytecode instruction mix across different JVM languages.
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Figure 3: The distribution of method sizes for each benchmark, grouped by language. Boxplots in the right column are based on filtered (i.e.
non-Java) methods only. Methods of size greater than 100 instructions are off the scale.



language filtered? 1-gram 2-gram 3-gram 4-gram
Java No 192 5772 31864 73033
Clojure Yes 118 (0.61) 1217 (0.21) 3930 (0.12) 7813 (0.10)
Clojure No 177 (0.92) 4002 (0.68) 19474 (0.58) 40165 (0.51)
JRuby Yes 54 (0.28) 391 (0.07) 1212 (0.04) 2585 (0.03)
JRuby No 179 (0.93) 4482(0.76) 26373 (0.79) 64399 (0.81)
Jython Yes 48 (0.25) 422 (0.07) 1055 (0.03) 1964 (0.02)
Jython No 178 (0.92) 3427 (0.58) 14887 (0.44) 27852 (0.35)
Scala Yes 163 (0.84) 2624 (0.45) 11979 (0.36) 30164 (0.38)
Scala No 187 (0.97) 3995 (0.68) 19515 (0.58) 45951 (0.58)

Table 3: N-gram coverage for various JVM languages. Number in brackets shows the value relative to Java

language filtered? 1-gram 2-gram 3-gram 4-gram
Clojure Yes 2 193 (0.11) 1957 (0.46) 6264 (0.77)
Clojure No 2 348 (0.05) 4578 (0.23) 15824 (0.43)
JRuby Yes 1 44 (0.02) 399 (0.14) 1681 (0.42)
JRuby No 1 512 (0.01) 7659 (0.08) 30574 (0.26)
Jython Yes 1 38 (0.07) 412 (0.19) 1491 (0.56)
Jython No 1 161 (0.01) 2413 (0.06) 8628 (0.19)
Scala Yes 0 288 (0.03) 4168 (0.27) 18676 (0.69)
Scala No 0 335 (0.02) 4863 (0.23) 21106 (0.59)

Table 4: Number of N -grams used by non-Java benchmarks that are not used by Java benchmarks. For 2 ≤ N ≤ 4 the number in brackets
represents the value relative to total number of filtered or unfiltered N -grams covered by these non-Java N -grams.

3.4.1 Object Lifetimes
The heat maps in Figure 5 show the percentage of objects allocated
within 5% intervals of the total execution time. A black colored
interval indicates that 10% or more of the total objects allocated
are within the lifetime range. We observe that most objects die
young for the DaCapo and Scala benchmark suites and the three
Clojure application benchmarks, following the weak generational
hypothesis [32]. However the lifetimes of objects allocated by
the Java, Scala and Clojure CLBG benchmarks are more varied.
More objects belonging to the Scala benchmark suite die young
compared to the DaCapo benchmarks, confirming previous results
by Sewe et. al [25]. However, more Clojure objects live longer
compared to Java. Unfiltered JRuby and Jython display interesting
behavior; their objects either live for less than 5% of the total
execution time or for the duration of program execution.

3.4.2 Object Sizes
We examine the distribution of object sizes, weighted by their
dynamic allocation frequency. The size of java.lang.Object is
16 bytes for the JVM we use. The boxplots in Figure 6 show that
the object size for most non-Java JVM languages is dominated by
only one or two sizes. This can be seen from the median object size
in the unfiltered JRuby and Jython boxplots and the filtered Clojure
and Scala boxplots. However, the median object size for Java varies
between 24 to 48 bytes. By comparing the unfiltered and filtered
boxplots, we see that Clojure and Scala use smaller objects more
frequently than Java.

3.5 Boxed Primitives
The final metric in our study measures boxing, in terms of the pro-
portion of allocated objects that are used to wrap primitive types.
For Java, Clojure and Scala, we count the number of Java Boolean,
Byte, Character, Double, Float, Integer, Long and Short ob-
jects allocated, as well as BigDecimal and BigInteger. JRuby
and Jython use Java boxed classes and implement their own box-
ing classes. For JRuby, we count RubyBoolean, RubyComplex,
RubyBigDecimal, RubyBigNum, RubyFloat, RubyFixNum, Ruby-

Numeric and RubyRational objects allocated. For Jython, we
count PyBoolean, PyComplex, PyComplexDerived, PyFloat,
PyFloatDerived, PyInteger, PyIntegerDerived, PyLong and
PyLongDerived objects allocated.

The results in Table 5 shows that Java benchmarks use very lit-
tle boxing. However, non-Java benchmarks are more likely to use a
high proportion of boxed primitives. The proportion of boxed prim-
itives used by Clojure is unexpectedly high, even though primitives
can be used in Clojure. Conversely, all primitives must be boxed in
Scala, yet the level of boxing used is lower than for Clojure.

4. Related Work
Many researchers have sought to characterize Java programs. How-
ever to date, large-scale studies based on corpora such as Qualitas
[30] have been restricted entirely to static analysis, e.g. [3, 31].

Dynamic studies of Java programs have generally focused on
one particular aspect such as instruction mix [19] or object demo-
graphics [5, 10]. Stephenson and Holst [28] present an analysis of
multicodes, which are a generalization of bigrams [16] to variable
length dynamic bytecode sequences.

Dufour et al. [6] present a broader dynamic analysis study. They
introduce a range of new metrics to characterize various aspects
of Java program behaviour including polymorphism, memory use
and concurrency. The explicit design rationale for their metrics
is to enable quantitative characterization of a Java program with
relevance to compiler and runtime developers. Sarimbekov et al.
[24] motivate the need for workload characterization across JVM
languages. They propose a suite of dynamic metrics and develop
a toolchain to collect these metrics. Our work relies in part on
earlier incarnations of their tools (e.g. JP2 [23]) and has the same
motivation of JVM-based cross-language comparison.

Radhakrishnan et al. [20] study the instruction-level and method-
level dynamic properties of a limited set of Java benchmarks in or-
der to make proposals about architectural performance implications
of JVM execution. They discuss processor cache configuration
and instruction-level parallelism. Blackburn et al. [1] use various
dynamic analysis techniques including PCA on architecture-level
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JRuby filtered lifetimes are not shown.
Filtered objects account for less than 1%
of total objects for all JRuby benchmarks
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Jython filtered lifetimes are not shown.
Filtered objects account for less than 1%
of total objects for all Jython benchmarks
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Figure 5: Heat maps illustrating distribution of relative object lifetimes for each benchmark, grouped by language. Shorter lifetimes are on
the left, longer lifetimes on the right of each graph. Darker regions denote higher proportions of objects with this lifetime. Heat maps in the
right column are based on filtered (i.e. non-Java) objects only. Heat maps for filtered JRuby and Jython data are not shown due to the small
proportion of allocated objects they represent.
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Figure 6: The distribution of object sizes for each benchmark, grouped by language. Boxplots in the right column are based on filtered
(i.e. non-Java) objects only. Boxplots for filtered JRuby and Jython data are not shown due to the small proportion of allocated objects they
represent.
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Figure 4: The distribution of method stack depths for each bench-
mark, grouped by language.

metrics to demonstrate quantitative differences between two Java
benchmark suites. Their work follows on from earlier PCA-based
workload characterization studies for Java: Chow et al. [2] con-
sider architecture-level metrics, whereas Yoo et al. [33] consider
OS-level metrics. In contrast, we restrict attention to VM-level
metrics in our PCA characterization.

Sewe et al. [25, 26] use a range of static and dynamic analy-
ses to characterize the Java DaCapo benchmark suite in relation to
their own Scala benchmark suite. Their study does not compare the
performance of the two languages, they state “Such a study would
require two sets of equivalent yet idiomatic applications written in
both languages.” Instead, their intent was to study the character-
istics of a number of real-world Java and Scala applications. To
the best of our knowledge, there are no similar academic studies
of other JVM languages like Clojure, JRuby and Jython. We are
aware of the intrinsic difficulties in performing objective compara-
tive studies of programming languages [18]. However in our study
we have attempted to present data in a fair and objective way: some-
times this means we have presented more data (e.g. filtered and
unfiltered) to avoid bias.

Unlike the JVM platform, the .NET common language runtime
(CLR) was originally designed to be an appropriate target archi-
tecture for multiple high-level programming languages. Thus it has
a slightly richer bytecode instruction set. Gough [8] evaluates the
merits of CLR for various high-level languages. Dick et al. [4]
present a simple analysis of the dynamic behavior of .NET byte-
code for a small-scale benchmark suite. Based on their limited anal-
ysis, they discuss the similarities of .NET and JVM bytecode.

Knuth is the pioneer of dynamic characterization of programs.
His empirical study of Fortran [11] was restricted by the available
programs. His code acquisition techniques include ‘recovering’
punch cards from waste bins and ‘borrowing’ user’s programs to
duplicate them while they waited in the compilation queue. While
we acknowledge the limited size of our program corpus, we are
confident (like Knuth) that larger corpora will be easier to collect
and curate in the future.

5. Conclusions
5.1 Summary
The JVM platform now plays host to a variety of programming
languages, but its optimizations are implicitly tuned to the char-
acteristics of Java programs. This paper investigates the behavior
of a sample of programs written in Java, Clojure, JRuby, Jython
and Scala, to determine whether Java and non-Java JVM languages
behave differently. We perform static analysis on the language li-
braries and dynamic analysis on a set of 75 benchmarks written in
those languages. Exploratory data analysis techniques were used
to visually identify interesting behaviors in the data. Static and dy-
namic analysis shows that non-Java JVM languages rely heavily on
Java code (a) for implementing significant parts of their language
runtimes and libraries, and (b) as clients of the Java standard library
classes.

At the instruction-level, non-Java benchmarks produce N -
grams not found within the Java benchmarks, suggesting they do
not share precisely the same instruction-level vocabulary as Java.
Java method sizes are more varied than non-Java method sizes;
Scala in particular has much smaller methods than the other JVM
languages. Clojure and Scala applications exhibit deeper stack
depths than other JVM language benchmarks. However there is
no difference in method and basic block hotness between JVM
languages. The object lifetimes of non-Java JVM languages are
generally shorter than for Java. Filtered Clojure and Scala object
sizes are smaller than they are for Java. Finally, we observe that
non-Java languages use more boxed primitive types than Java.



Our research demonstrates that there are some noticeable dif-
ferences in certain behavior between Java and non-Java JVM
languages. We acknowledge that these observed behaviors may
change as JVM languages mature and as new features are added to
the JVM platform.

5.2 Future Work
The primary goal of this study is not a search for optimization op-
portunities. However, certain results do indicate some interesting
behaviors that differ between Java and non-Java JVM languages.
We plan to investigate whether existing JVM optimizations already
cover these behaviors, and whether deployed JVM heuristics re-
quire re-tuning.

N -gram analysis has shown that Java and non-Java languages
use different N -grams. JIT compilers perform peephole optimiza-
tion, a technique that replaces sequences of bytecode instructions
with shorter or more efficient sequences. We plan to examine exist-
ing JVM peephole optimizations to determine whether they already
cover these diverse N -grams.

The median method sizes for the non-Java JVM languages are
generally smaller and show less variation between benchmarks
than they do for Java. It is therefore worthwhile investigating if the
JVM’s method inlining heuristic requires re-tuning to take advan-
tage of smaller method sizes, especially for Scala.

The unfiltered JRuby and Jython heat maps (Figure 5) show
their object lifetimes are either very short or near immortal.
Garbage collection optimizations might include aggressive nurs-
ery region resizing and predictive object pretenuring.
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language/benchmark compiled bytecodes non-Java methods non-Java method basic block objects non-Java boxed
or executed bytecodes executed methods hotness hotness allocated objects primitive

interpreted % % % % % use %
Java/binarytrees AOT 170105156 0.00 25176723 0.00 99.81 99.99 2651267 0.00 0.00
Java/fannkuchredux AOT 141676329 0.00 1003221 0.00 99.96 99.99 2293 0.00 0.26
Java/fasta AOT 100060247 0.00 2456162 0.00 76.76 99.99 2343 0.00 0.26
Java/knucleotide AOT 1202353259 0.00 49678282 0.00 50.24 99.99 572950 0.00 0.00
Java/mandelbrot AOT 262768004 0.00 78893 0.00 99.97 100.00 2878 0.00 0.21
Java/meteor AOT 330191630 0.00 5431167 0.00 99.48 99.99 262824 0.00 0.00
Java/nbody AOT 171061794 0.00 152240 0.00 99.47 99.98 4698 0.00 0.17
Java/regexdna AOT 3947367657 0.00 226454549 0.00 99.68 100.00 312589 0.00 0.09
Java/revcomp AOT 54864024 0.00 1548046 0.00 6.69 99.97 2868 0.00 9.24
Java/spectralnorm AOT 38870722 0.00 1079088 0.00 99.76 99.94 4785 0.00 0.13
Java/avrora AOT 4043803001 0.00 322511916 0.00 99.32 99.96 991319 0.00 0.12
Java/batik AOT 812845536 0.00 40670592 0.00 74.52 99.75 ET failed to complete trace
Java/fop AOT 149718163 0.00 9541593 0.00 90.68 98.88 ET failed to complete trace
Java/h2 AOT 9653613964 0.00 769997845 0.00 93.64 99.98 25548956 0.00 1.92
Java/javac/sunflow AOT 16635753858 0.00 1077651364 0.00 88.01 99.50 ET failed to complete trace
Java/luindex AOT 123562365 0.00 4524912 0.00 92.91 99.86 112724 0.00 0.01
Java/lusearch AOT 1140089272 0.00 50417227 0.00 99.17 99.96 1272318 0.00 0.00
Java/pmd AOT 54097593 0.00 2366460 0.00 91.24 99.15 133466 0.00 0.26
Java/sunflow AOT 1987247487 0.00 64365743 0.00 99.09 99.98 2422198 0.00 0.03
Java/xalan AOT 887655171 0.00 48845720 0.00 97.35 99.41 1117739 0.00 0.09
Clojure/binarytrees AOT 458013959 50.18 46066179 23.11 99.81 99.93 5519929 48.01 47.82
Clojure/fannkuchredux AOT 949916910 32.01 77452181 1.68 98.21 99.96 258837 0.67 0.79
Clojure/fasta AOT 430594595 40.53 37624799 9.69 90.69 99.93 2641156 45.50 45.64
Clojure/knucleotide AOT 1741954505 23.02 131910496 4.43 80.60 99.97 7165252 4.66 85.27
Clojure/mandelbrot AOT 697889749 62.96 42874651 15.85 99.82 99.94 821435 0.48 70.20
Clojure/meteor AOT 4097931808 28.21 389333271 3.91 99.02 99.98 10199180 9.40 25.69
Clojure/nbody AOT 292196152 66.32 17028481 39.02 99.18 99.90 1239830 0.13 80.85
Clojure/regexdna AOT 4689013910 0.54 226505597 0.02 99.43 99.99 507349 0.43 0.40
Clojure/revcomp AOT 224945319 44.47 18146640 0.55 55.92 99.86 233852 0.57 1.29
Clojure/spectralnorm AOT 152301546 38.49 7716311 0.80 99.38 99.78 259541 3.25 3.23
Clojure/incanter JIT 273986921 4.79 17850648 4.48 96.72 99.03 1635693 1.78 1.33
Clojure/leiningen AOT 1006923598 2.18 57874646 2.32 97.64 99.49 1278616 1.94 1.68
Clojure/noir/blog AOT 1323734731 1.37 21635558 5.04 99.81 99.90 1909561 1.09 1.11
JRuby/binarytrees AOT 3172344964 12.57 354573991 6.27 99.98 99.99 12667277 0.01 0.00
JRuby/fannkuchredux AOT 4684146884 13.34 537414857 3.14 89.65 100.00 3272573 0.04 0.01
JRuby/fasta AOT 5564934530 6.21 617823701 2.41 99.97 99.99 14888989 0.01 32.24
JRuby/knucleotide AOT 11381452118 3.63 1081798483 2.46 99.15 100.00 18740991 0.01 0.00
JRuby/mandelbrot AOT 13483710728 8.53 1654536903 0.80 99.97 99.99 ET failed to complete trace
JRuby/meteor AOT 25990259655 6.26 2455403535 2.72 99.99 100.00 ET failed to complete trace
JRuby/nbody AOT 7054115048 8.78 950461750 0.81 99.97 100.00 30638260 0.00 94.66
JRuby/regexdna AOT 10090042993 0.00 628235221 0.00 99.87 100.00 336937 0.41 0.10
JRuby/revcomp AOT 277284831 1.52 18636289 1.48 76.62 99.92 333311 0.41 0.11
JRuby/spectralnorm AOT 2183551569 9.14 272266633 3.32 99.96 99.99 8515852 0.02 96.21
JRuby/jrails AOT 5197249613 0.47 313574609 1.08 98.24 99.77 ET failed to complete trace
JRuby/lingo JIT 12322206926 2.36 1110460420 1.73 98.88 99.88 ET failed to complete trace
JRuby/warbler JIT 7943627729 1.33 526990999 1.02 99.22 99.84 ET failed to complete trace
Jython/binarytrees int. 6116792936 7.77 481948160 2.21 99.84 99.99 27183665 0.04 19.42
Jython/fannkuchredux int. 4429512501 4.99 452006371 0.00 94.81 99.98 20308641 0.01 1.72
Jython/fasta int. 7361689841 6.92 758276792 0.98 99.21 99.98 11091087 0.19 44.00
Jython/knucleotide int. 10899263124 3.79 1142232229 0.00 95.75 99.99 40776401 0.03 32.48
Jython/mandelbrot int. 6260601597 5.58 645681679 0.01 94.31 99.99 20477645 0.01 95.81
Jython/nbody int. 6656716672 7.91 899402775 0.00 91.93 99.99 33011071 0.00 82.28
Jython/regexdna int. 7144141615 0.03 432717385 0.02 86.18 99.97 136423507 0.02 0.19
Jython/revcomp int. 1164263231 0.20 78797100 0.04 92.18 99.81 3090414 0.05 3.64
Jython/spectralnorm int. 2061855998 5.75 225838375 1.37 96.72 99.96 16063707 0.05 57.64
Scala/binarytrees AOT 116374550 98.60 8209028 98.56 99.67 99.92 2666944 99.37 0.40
Scala/fannkuchredux AOT 292713859 99.59 27164782 99.67 99.96 99.99 6612 5.05 15.62
Scala/fasta AOT 247153292 81.63 29521359 66.34 79.92 99.99 3621 4.97 14.50
Scala/knucleotide AOT 2743126868 92.52 279800678 91.54 96.91 99.99 4329096 32.82 65.83
Scala/mandelbrot AOT 281828727 99.48 12620894 99.27 99.93 99.98 19299 57.46 5.72
Scala/meteor AOT 38201494343 97.60 4688797729 95.62 99.99 100.00 2340559 98.48 0.88
Scala/nbody AOT 307725221 99.67 41360373 99.86 99.60 99.99 5920 2.57 6.05
Scala/regexdna AOT 3681464412 14.54 246469635 36.78 99.93 100.00 6555923 26.30 0.01
Scala/revcomp AOT 69607945 98.85 3079180 98.42 14.09 99.97 3181 5.85 7.17
Scala/spectralnorm AOT 44336176 97.61 1110874 94.41 99.75 99.92 6546 9.21 5.44
Scala/apparat AOT 5473129320 69.78 782465549 59.90 99.38 99.89 8828083 69.63 0.45
Scala/kiama AOT 96747090 44.44 8744873 72.05 95.47 99.41 534871 60.45 1.64
Scala/scalac AOT 841758028 50.77 86270143 77.48 97.11 99.82 4384353 59.82 1.09
Scala/scaladoc AOT 1009919955 56.19 111072697 76.91 97.16 99.82 4283738 62.97 0.71
Scala/scalap AOT 50006991 23.40 3387070 53.31 94.23 99.45 166594 43.44 1.52
Scala/scalariform AOT 665331715 76.76 102056949 88.80 94.47 99.25 5121304 82.18 4.53
Scala/scalatest AOT 867200843 30.23 61964606 67.16 99.90 99.96 3503330 46.58 0.13
Scala/scalaxb AOT 371552561 47.38 35445090 72.17 94.64 99.54 1432529 52.82 21.09
Scala/specs AOT 721279181 20.13 49903727 55.97 99.76 99.90 3872916 41.33 0.90
Scala/tmt AOT 44096213851 79.66 4757318965 80.30 97.88 100.00 110104114 9.14 74.64

Table 5: Summary of dynamic metrics obtained, each benchmark occupies a single row in the table.
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