
Design and Analysis of a
Scala Benchmark Suite for
the Java Virtual Machine
Entwurf und Analyse einer Scala Benchmark Suite für die Java Virtual
Machine
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
genehmigte Dissertation von Diplom-Mathematiker Andreas Sewe aus
Twistringen, Deutschland
April 2013 — Darmstadt — D 17

Fachbereich Informatik
Fachgebiet Softwaretechnik

Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine
Entwurf und Analyse einer Scala Benchmark Suite für die Java Virtual Machine

Genehmigte Dissertation von Diplom-Mathematiker Andreas Sewe aus Twistrin-
gen, Deutschland

1. Gutachten: Prof. Dr.-Ing. Ermira Mezini
2. Gutachten: Prof. Richard E. Jones

Tag der Einreichung: 17. August 2012
Tag der Prüfung: 29. Oktober 2012

Darmstadt — D 17

For Bettina

Academic Résumé

November 2007 – October 2012 Doctoral studies at the chair of Prof. Dr.-Ing. Er-
mira Mezini, Fachgebiet Softwaretechnik, Fachbereich Informatik, Techni-
sche Universität Darmstadt

October 2001 – October 2007 Studies in mathematics with a special focus on com-
puter science (Mathematik mit Schwerpunkt Informatik) at Technische Uni-
versität Darmstadt, finishing with a degree of Diplom-Mathematiker (Dipl.-
Math.)

iii

Acknowledgements

First and foremost, I would like to thank Mira Mezini, my thesis supervisor, for pro-
viding me with the opportunity and freedom to pursue my research, as condensed
into the thesis you now hold in your hands. Her experience and her insights did
much to improve my research as did her invaluable ability to ask the right questions
at the right time. I would also like to thank Richard Jones for taking the time to act
as secondary reviewer of this thesis. Both their efforts are greatly appreciated.

Time and again, I am astonished by the number of collaborators and co-authors
whom I have worked with during these past five years: Mehmet Akşit, Sami Al-
souri, Danilo Ansaloni, Remko Bijker, Walter Binder, Christoph Bockisch, Eric
Bodden, Anis Charfi, Michael Eichberg, Samuel Z. Guyer, Kardelen Hatun, Mo-
hamed Jmaiel, Jannik Jochem, Slim Kallel, Stefan Katzenbeisser, Lukáš Marek,
Mira Mezini, Ralf Mitschke, Philippe Moret, Hela Oueslati, Nathan Ricci, Aibek
Sarimbekov, Martin Schoeberl, Jan Sinschek, Éric Tanter, Petr Tůma, Zhengwei Qi,
Alex Villazón, Dingwen Yuan, Martin Zandberg, and Yudi Zheng.

Others whom I have worked—albeit not written a paper—with are several
talented and enthusiastic students: Erik Brangs, Pascal Flach, Felix Kerger, and
Alexander Nickol; their work influenced and improved mine in various ways.

Still others have helped me realize the vision of a Scala benchmark suite for
the Java Virtual Machine by graciously providing help with the suite’s various pro-
grams, the programs’ input data, or both: Joa Ebert, Patrik Nordwall, Daniel Ram-
age, Bill Venners, Tim Vieira, Eugene Yokota, and the late Sam Roweis. I am also
deeply grateful to the DaCapo group for providing such an excellent foundation on
which to build my Scala benchmark suite.

Of all the aforementioned, there are few to which I want to express my thanks
in particular: Christoph Bockisch and everyone at the Dynamic Analysis group of
the University of Lugano. Together with Michael Haupt, my colleague Christoph
exposed me to the wonderful world of virtual machines in general and Jikes RVM
in particular. He also supported me not only during my Diplom thesis and my first
year at the Software Technology group, but also after he left us for the Netherlands,
to assume a position as assistant professor at the Universeit Twente. Aibek, Danilo,
and Walter from the University of Lugano helped my tremendously in developing
and refining many of the tools needed for the numerous experiments conducted as
part of this thesis. Moreover, they made me feel very welcome on my visit to what
may be the most beautiful part of Switzerland.

v

Here at the Software Technology group, further thanks go to my fellow PhD can-
didates and post-docs for inspiring discussions, over lunch and beyond: Christoph
Bockisch, Eric Bodden, Marcel Bruch, Tom Dinkelaker, Michael Eichberg, Vaidas
Gasiunas, Ben Hermann, Sven Kloppenburg, Roman Knöll, Johannes Lerch, Ralf
Mitschke, Martin Monperrus, Sebastian Proksch, Guido Salvaneschi, Lucas Sa-
tabin, Thorsten Schäfer, Jan Sinschk, and Jurgen van Ham. The quality of my
quantitative evaluations in particular benefited from dozens of discussions I had
with Marcel. I would also like to thank Gudrun Harris for her unfailing support in
dealing with all things administrative and for just making the Software Technology
Group a very pleasant place to work at. And for her excellent baking, of course.

My thanks also go to both the participants of and the reviewers for the Work-
on-Progress session at the 2010 International Conference on the Principles and
Practice of Programming in Java, held in Vienna; their suggestions and encourage-
ment helped to turn a mere position paper into the thesis you now hold in your
hands.

My parents Renate and Kai-Udo Sewe provided valuable support throughout all
my life. Finally, I am indebted to Bettina Birkmeier for her encouragement and
patience—not to mention countless hours of proof-reading.

Funding
Parts of my work have been funded by AOSD-Europe, the European Network of

Excellence on Aspect-Oriented Software Development.1 Other parts of the work
have been funded by CASED, the Center for Advanced Security Research Darm-
stadt,2 through LOEWE, the “Landes-Offensive zur Entwicklung Wissenschaftlich-
ökonomischer Exzellenz.”

1 See http://www.aosd-europe.org/.
2 See http://www.cased.de/.

vi Acknowledgements

http://www.aosd-europe.org/
http://www.cased.de/

Abstract

In the last decade, virtual machines (VMs) for high-level languages have become
pervasive, as they promise both portability and high performance. However, these
virtual machines were often designed to support just a single language well. The
design of the Java Virtual Machine (JVM), for example, is heavily influenced by the
Java programming language.

Despite its current bias towards Java, in recent years the JVM in particular has
been targeted by numerous new languages: Scala, Groovy, Clojure, and others.
This trend has not been reflected in JVM research, though; all major benchmark
suites for the JVM are still firmly focused on the Java language rather than on the
language ecosystem as a whole. This state of affairs threatens to perpetuate the
bias towards Java, as JVM implementers strive to “make the common case fast.”
But what is common for Java may be uncommon for other, popular languages.
One of these other languages is Scala, a language with both object-oriented and
functional features, whose popularity has grown tremendously since its first public
appearance in 2003.

What characteristics Scala programs have or have not in common with Java
programs has been an open question, though. One contribution of this thesis is
therefore the design of a Scala benchmark suite that is on par with modern, widely-
accepted Java benchmark suites. Another contribution is the subsequent analysis
of this suite and an in-depth, VM-independent comparison with the DaCapo 9.12
benchmark suite, the premier suite used in JVM research. The analysis shows
that Scala programs exhibit not only a distinctive instruction mix but also object
demographics close to those of the Scala language’s functional ancestors.

This thesis furthermore shows that these differences can have a marked effect
on the performance of Scala programs on modern high-performance JVMs. While
JVMs exhibit remarkably similar performance on Java programs, the performance
of Scala programs varies considerably, with the fastest JVM being more than three
times faster than the slowest.

vii

Zusammenfassung

Aufgrund ihres Versprechens von Portabilität und Geschwindigkeit haben sich vir-
tuelle Maschinen (VMs) für höhere Programmiersprachen in der letzten Dekade
auf breiter Front durchgesetzt. Häufig ist ihr Design jedoch nur darauf ausgelegt,
eine einzige Sprache gut zu unterstützen. So wurde das Design der Java Virtual
Machine (JVM) zum Beispiel stark durch das Design der Programmiersprache Java
beeinflusst.

Trotz ihrer aktuellen Ausrichtung auf Java hat sich insbesondere die JVM als
Plattform für eine Vielzahl von neuer Programmiersprachen etabliert, darunter Sca-
la, Groovy und Clojure. Dieser Entwicklung wurde in der Forschung zu JVMs bisher
jedoch wenig Rechnung getragen; alle großen Benchmark Suites für die JVM sind
immer noch stark auf Java als Sprache anstatt auf die Plattform als Ganzes fo-
kussiert. Dieser Zustand droht, die systematische Bevorzugung von Java auf lange
Zeit festzuschreiben, da die JVM-Entwickler ihre virtuellen Maschinen für die häu-
figsten Anwendungsfälle optimieren. Was aber häufig für Java ist, muss keinesfalls
häufig für andere populäre Sprachen sein. Eine dieser Sprachen ist Scala, welche
sowohl funktionale als auch objekt-orientierte Konzepte unterstützt und seit ihrer
Veröffentlichung im Jahre 2003 stetig in der Entwicklergunst gestiegen ist.

Welche Charakteristika Scala-Programme mit Java-Programmen gemein haben
ist allerdings eine weitgehend ungeklärte Frage. Ein Beitrag dieser Dissertation
ist daher das Erstellen einer Benchmark Suite für die Programmiersprache Scala,
die mit modernen, etablierten Benchmark Suites für Java konkurrieren kann. Ein
weiterer Beitrag ist eine umfassende Analyse der in der Suite enthaltenen Bench-
marks und ein VM-unabhängiger Vergleich mit den Benchmarks der DaCapo 9.12
Benchmark Suite, die bisher bevorzugt in der Forschung zu JVMs eingesetzt wird.
Diese Analyse zeigt auf, dass Scala-Programme nicht nur den Befehlssatz der JVM
merklich anders nutzen, sondern auch, dass allozierte Objekte eine Lebensdauer-
verteilung aufweisen, die der funktionaler Sprachen nahekommt.

Wie diese Dissertation weiterhin zeigt, haben diese Unterschiede einen deut-
lichen Effekt auf die Geschwindigkeit, mit der Scala-Programme auf modernen
Hochleistungs-JVMs ausgeführt werden. Während verschiedene JVMs sich beim
Ausführen von Java-Programmen als ähnlich leistungsfähig erweisen, sind die Leis-
tungsunterschiede im Falle von Scala-Programmen beträchtlich; die schnellste JVM
ist hierbei mehr als dreimal so schnell wie die langsamste.

ix

Contents

1 Introduction 1
1.1 Contributions of this Thesis . 2
1.1.1 The Need for a Scala Benchmark Suite . 2
1.1.2 The Need for Rapid Prototyping of Dynamic Analyses 3
1.1.3 The Need for VM-Independent Metrics . 4
1.2 Structure of this Thesis . 4

2 Background 7
2.1 The Java Virtual Machine . 7
2.2 The Scala Language . 10
2.3 The Translation of Scala Features to Java Bytecode 11
2.3.1 Translating Traits . 11
2.3.2 Translating First-Class Functions . 14
2.3.3 Translating Singleton Objects and Rich Primitives 16

3 Designing a Scala Benchmark Suite 17
3.1 Choosing a Benchmark Harness . 17
3.2 Choosing Representative Workloads . 17
3.2.1 Covered Application Domains . 19
3.2.2 Code Size . 20
3.2.3 Code Sources . 22
3.2.4 The dummy Benchmark . 24
3.3 Choosing a Build Toolchain . 25

4 Rapidly Prototyping Dynamic Analyses 27
4.1 Approaches . 28
4.1.1 Re-using Dedicated Profilers: JP2 . 29
4.1.2 Re-purposing Existing Tools: TamiFlex . 33
4.1.3 Developing Tailored Profilers in a DSL: DiSL 35
4.2 Discussion . 40

5 A Comparison of Java and Scala Benchmarks Using VM-independent
Metrics 43

5.1 The Argument for VM-independent, Dynamic Metrics 43

xi

5.2 Profilers . 44
5.3 Threats to Validity . 46
5.4 Results . 48
5.4.1 Instruction Mix . 48
5.4.2 Call-Site Polymorphism . 54
5.4.3 Stack Usage and Recursion . 62
5.4.4 Argument Passing . 64
5.4.5 Method and Basic Block Hotness . 70
5.4.6 Use of Reflection . 73
5.4.7 Use of Boxed Types . 76
5.4.8 Garbage-Collector Workload . 77
5.4.9 Object Churn . 82
5.4.10 Object Sizes . 85
5.4.11 Immutability . 86
5.4.12 Zero Initialization . 90
5.4.13 Sharing . 93
5.4.14 Synchronization . 95
5.4.15 Use of Identity Hash-Codes . 99
5.5 Summary . 102

6 An Analysis of the Impact of Scala Code on High-Performance
JVMs 105

6.1 Experimental Setup . 105
6.1.1 Choosing Heap Sizes . 106
6.1.2 Statistically Rigorous Methodology . 110
6.2 Startup and Steady-State Performance . 111
6.3 The Effect of Scala Code on Just-in-Time Compilers 115
6.4 The Effect of Method Inlining on the Performance of Scala Code 122
6.5 Discussion . 136

7 Related Work 139
7.1 Benchmark Suites . 139
7.2 Workload Characterization . 143
7.3 Scala Performance . 147

8 Conclusions and Future Directions 151
8.1 Directions for Future Work . 151

Bibliography 157

xii Contents

List of Figures

3.1 Classes loaded and methods called by the benchmarks 21
3.2 Bytecodes loaded and executed (Scala benchmarks) 23
3.3 Report generated by the dacapo-benchmark-maven-plugin 26

4.1 Sample calling-context tree . 30
4.2 Sample output of JP2 . 31
4.3 Architecture of TamiFlex . 35
4.4 Sample output of TamiFlex . 36

5.1 The top four principal components . 50
5.2 The first and second principal component 51
5.3 The third and fourth principal component 52
5.4 The first four principal components . 53
5.5a Call sites using different instructions (Java benchmarks) 55
5.5b Call sites using different instructions (Scala benchmarks) 56
5.6a Calls made using different instructions (Java benchmarks) 57
5.6b Calls made using different instructions (Scala benchmarks) 58
5.7a Histogram of call-site targets (Java benchmarks) 59
5.7b Histogram of call-site targets (Scala benchmarks) 60
5.8a Histogram of call targets (Java benchmarks) 61
5.8b Histogram of call targets (Scala benchmarks) 62
5.9 Maximum stack heights . 63
5.10a Stack-height distribution (Java benchmarks) 65
5.10b Stack-height distribution (Scala benchmarks) 66
5.11 Distribution of the number of floating-point arguments 67
5.12a Distribution of the number of reference arguments (Java benchmarks) 68
5.12b Distribution of the number of reference arguments (Scala benchmarks) 69
5.13a Method and basic-block hotness (Java benchmarks) 71
5.13b Method and basic-block hotness (Scala benchmarks) 72
5.14 Use of reflective method invocation . 74
5.15 Use of reflective object instantiation . 75
5.16 Use of boxed types . 77
5.17a Survival rates (Java benchmarks) . 79
5.17b Survival rates (Scala benchmarks) . 80
5.18 Allocations and pointer mutations . 83

xiii

5.19 The dynamic churn-distance metric . 84
5.20a Churn distances (Java benchmarks) . 85
5.20b Churn distances (Java benchmarks) . 86
5.21a Object sizes (Java benchmarks) . 88
5.21b Object sizes (Java benchmarks) . 89
5.22a Use of immutable instance fields . 90
5.22b Use of immutable fields . 91
5.23a Use of immutable objects . 92
5.23b Use of immutable classes . 93
5.24a Necessary and unnecessary zeroing (Java benchmarks) 94
5.24b Necessary and unnecessary zeroing (Scala benchmarks) 95
5.25a Shared objects with respect to read accesses 96
5.25b Shared objects with respect to write accesses 97
5.25c Shared types . 98
5.26 Objects synchronized on . 99
5.27a Nested lock acquisitions (Java benchmarks) 100
5.27b Nested lock acquisitions (Scala benchmarks) 100
5.28 Fraction of objects hashed . 101

6.1a Startup execution time (Java benchmarks) 111
6.1b Startup execution time (Scala benchmarks) 112
6.2a Steady-state execution time (Java benchmarks) 113
6.2b Steady-state execution time (Scala benchmarks) 114
6.3a Methods optimized by OpenJDK 6 . 117
6.3b Methods optimized by OpenJDK 7u . 117
6.3c Methods optimized by Jikes RVM . 118
6.4a Steady-state execution time with tuned compiler DNA (Java bench.) . . 122
6.4b Steady-state execution time with tuned compiler DNA (Scala bench.) . 123
6.5a Bytecodes optimized by OpenJDK 6 . 124
6.5b Bytecodes optimized by OpenJDK 7u . 124
6.5c Bytecodes optimized by Jikes RVM . 125
6.6 Bytecodes optimized by Jikes RVM over time 127
6.7a Amount of inline expansion in OpenJDK 6 128
6.7b Amount of inline expansion in OpenJDK 7u 128
6.7c Amount of inline expansion in Jikes RVM 129
6.8a Speedup achieved by tuned inlining over steady state (Java bench.) . . 131
6.8b Speedup achieved by tuned inlining over steady state (Scala bench.) . 132
6.9a Speedup achieved by inlining over startup (Java benchmarks) 134
6.9b Speedup achieved by inlining over startup (Scala benchmarks) 134
6.10a Speedup achieved by inlining over steady state (Java benchmarks) . . . 135

xiv List of Figures

6.10b Speedup achieved by inlining over steady state (Scala benchmarks) . . 136
6.11a Steady-state execution time w.r.t. inlining (Java benchmarks) 137
6.11b Steady-state execution time w.r.t. inlining (Scala benchmarks) 138

7.1 Benchmark suites used for JVM research 140

8.1 The website of the Scala Benchmark Project 152

List of Figures xv

List of Tables

3.1 The 12 benchmarks of the Scala benchmark suite 18

4.1 Approaches to prototyping dynamic analyses 42

5.1 Summary of garbage collection simulation results 78
5.2 Allocations and 1 MiB survival rates (Scala benchmarks) 82
5.3 Categorized median churn distances (Scala benchmarks) 87

6.1 Minimum required heap sizes . 107
6.2 Optimal heap sizes . 109
6.3 Compiler DNA for Jikes RVM . 120
6.4 Time spent in Jikes RVM compiler phases . 121

xvii

List of Listings

2.1a The Logger trait and an implementation of it in Scala 11
2.1b The Logger trait from Listing 2.1a translated into Java 12
2.2a The Decorations trait composed with a class in Scala 12
2.2b The mixin composition of Listing 2.2a translated into Java 13
2.3 Various features of Scala and their translation into Java 15

4.1 XQuery script computing a benchmark’s instruction mix 32
4.2 DiSL class instrumenting object allocations 37
4.3 Runtime class managing the shadow heap 38
4.4 DiSL class instrumenting hash-code calls . 39
4.5 Runtime classes keeping track of per-object hash-code calls 41

5.1 The four categories of “under-the-hood” objects (cf. Listing 2.3) 81

xix

1 Introduction

In recent years, managed languages like Java and C# have gained much popu-
larity. Designed to target a virtual rather than a “real” machine, these languages
offer several benefits over their unmanaged predecessors like C and C++: improved
portability, memory safety, and automatic memory management.

The popularity of the aforementioned languages has caused much expendi-
ture of effort [Doe03] in making them run on their underlying virtual ma-
chines, the Java Virtual Machine (JVM) [LYBB11] and the Common Language
Runtime (CLR) [ECM10], respectively, as fast as their predecessors ran on “real”
ones. This effort lead to significant advances in just-in-time compilation [Ayc03]
and garbage collection [BCM04]. Ultimately, it resulted in virtual machines (VMs)
that are highly optimized, yet portable and mature.

Consequently, these VMs have become an attractive target for a plethora of pro-
gramming languages, even if they, as is the case for the Java Virtual Machine,1

were conceived with just a single source language in mind. As of this writing,
the JVM is targeted by literally dozens of languages, of which Clojure, Groovy,
Python (Jython), Ruby (JRuby), and Scala are arguably the most prominent. Just
as the CLR is a common language runtime, today the JVM can rightly be considered
a joint virtual machine.

Targeting such a mature and wide-spread joint virtual machine offers a num-
ber of benefits to language implementers, not least among them the staggering
amount of existing library code readily available to the language’s users. Alas, just
targeting the JVM does not necessarily result in performance as good as Java’s;
existing JVMs are primarily tuned with respect to the characteristics of Java pro-
grams. The characteristics of other languages, even if compiled for the same target,
may differ widely, however. For example, dynamically-typed source languages like
Clojure, Groovy, Python, and Ruby all suffer because the JVM was built with only
Java and its static type system in mind. The resulting semantics gap causes sig-
nificant performance problems for these four languages, which have only recently
been addressed by Java Specification Request 292 [RBC+11] and the dedicated
invokedynamic instruction [Ros09, TR10] specified therein.

Similar bottlenecks undoubtedly exist for statically-typed source languages like
Scala [OSV10]. For these languages, however, it is much less clear what the bottle-

1 As the name suggests, the Common Language Runtime was conceived as the target of many
languages, albeit with a bias towards imperative and object-oriented ones [Sin03].

1

necks are. In fact, the designers of Scala claim that ”the Scala compiler produces
byte code that performs every bit as good as comparable Java code.”2

In this thesis, I will therefore explore the performance characteristics of Scala
code and their influence on the underlying Java Virtual Machine. My research is
guided by the golden rule of performance optimization: “Make the common case
fast.” But what is common for Java code may be rather uncommon for some other
languages. Thus, the two key questions this thesis will answer are the following:

• “Scala
?
≡ Java mod JVM” [Sew10]. In other words, is Scala code, when

viewed from the JVM’s perspective, similar or dissimilar to Java code?

• If it is dissimilar, what are the assumptions that JVM implementers have
to reconsider, e.g. about the instruction mix or object demographics of pro-
grams?

1.1 Contributions of this Thesis

Answering the aforementioned questions requires a multi-faceted research effort
that has to address several needs: first, the need for a dedicated Scala bench-
mark suite; second, the need for rapidly prototyping dynamic analyses to facilitate
characterization of the suite’s workloads; and third, the need for a broad range
of VM-independent metrics. The contribution of this thesis lies thus not only in
answering the two questions above, but also in the creation of research tools and
infrastructure that satisfies these needs.

1.1.1 The Need for a Scala Benchmark Suite

First and foremost, answering any questions about a language’s performance char-
acteristics requires rigorous benchmarking. Previous investigations into the perfor-
mance of Scala code were mostly restricted to micro-benchmarking. While such
micro-benchmarks are undeniably useful in limited circumstances, e.g. to help
the implementers of the Scala compiler decide between different code-generation
strategies for a language feature [Sch05, Section 6.1], they are mostly useless in
answering the research questions stated above, as micro-benchmarks rarely reflect
the common case. Implementers of high-performance JVMs, however, need a good
understanding of what this common case is in order to optimize for it.

2 See http://www.scala-lang.org/node/25#ScalaCompilerPerformance.

2 1 Introduction

http://www.scala-lang.org/node/25#ScalaCompilerPerformance

Consequently, a new Scala benchmark suite must be developed which is on
par with well-respected Java benchmark suites like the SPECjvm2008 or DaCapo
suites. It must offer “relevant and diverse workloads” and be “suitable for re-
search” [BMG+08]. Alas, the authors of the DaCapo benchmark suite estimated
that to meet these requirements they “spent 10,000 person-hours [...] developing
the DaCapo suite and associated infrastructure” [BMG+08].3 Developing a bench-
mark suite single-handedly4 therefore requires effective tools and infrastructure
to support the design and analysis of the suite. The contributions of this thesis
are thus not restricted to the resulting Scala benchmark suite but encompass also
necessary tools and infrastructure, e.g. the build toolchain used.

1.1.2 The Need for Rapid Prototyping of Dynamic Analyses

A high-quality Scala benchmark suite and the tools to build one are only one prereq-
uisite in answering the research questions. Just as essential are tools to analyze the
individual benchmarks, both to ensure that the developed suite contains a diverse
mix of benchmarks and to compare its Scala benchmarks with the Java benchmarks
from an already existing suite. The former kind of analysis in particular is largely
exploratory; as new candidate benchmarks are considered for inclusion, they are
compared to existing benchmarks using a broad range of metrics. Thus, tools are
needed that allow for rapid prototyping of such analyses.

While Blackburn et al. [BGH+06] resort to modifying a full-fledged Java Vir-
tual Machine, I favour an approach that uses VM-independent tools to collect raw
data. This approach has the distinct advantage that the tools are more likely to
remain applicable to other, newer benchmark suites. This is in stark contrast to the
modifications5 performed by Blackburn et al. While their original results remain
reproducible, new ones cannot be produced. With such VM-dependent tools a com-
parison of a new benchmark suite with an older, established one would therefore
in all likelihood be impossible.

With respect to tool development, this thesis contributes three case studies
using different approaches to rapidly prototype VM-independent dynamic analy-
ses: re-using dedicated profilers [SSB+11], re-purposing existing tools, and de-
veloping tailored profilers in a domain-specific language [ZAM+12]. The first

3 These numbers pertain to the 2006-10 release of the DaCapo benchmark suite; the 9.12 release
is larger still, increasing the number of benchmarks from 11 to 14.

4 While the relevant publication [SMSB11] mentions four authors, the actual development of the
benchmark suite itself laid solely in the hands of the author of this thesis.

5 These modifications consist of two sets of patches, one for Jikes RVM 2.4.5 and one for Jikes
RVM 2.4.6, none of which is directly applicable to newer versions of the virtual machine.

1.1 Contributions of this Thesis 3

and third approach hereby highlight the strength of domain-specific languages,
XQuery [BCF+10] respectively DiSL [MVZ+12], when it comes to concisely de-
scribing one’s metrics. What is common to all three approaches is that they require
significantly less development effort than writing a profiler from scratch—be it a
VM-dependent or VM-independent one.

1.1.3 The Need for VM-Independent Metrics

To answer the two main questions, I need to characterize and contrast Java and
Scala workloads. To do so, a benchmark suite and tools to prototype the desired
dynamic analyses are certainly necessary but not sufficient. What is also needed
is a broad selection of metrics to subject the workloads to. These metrics should
not only cover both code-related and memory-related behaviour, but they should
also be independent of any specific VM. Their VM-independence guarantees that
the characterizations obtained are indeed due to the intrinsic nature of real-world
Java and Scala code, respectively, rather than due to the implementation choices
of a particular VM.

In the area of metrics, the contribution of this thesis consists of several novel,
VM-independent metrics, which are nevertheless all tied to optimizations com-
monly performed by modern JVMs, e.g. method inlining. New metrics are, how-
ever, introduced only in situations not adequately covered by established metrics;
in all other situations, already established metrics have been used to facilitate com-
parison of my results with those of others.

1.2 Structure of this Thesis

The remainder of this thesis is structured as follows:

Background
Chapter 2 provides the necessary background on the Java Virtual Machine, with

a particular focus on its instruction set, namely Java bytecode. The chapter fur-
thermore contains a brief description of the Scala languages and its most relevant
features as well as an outline of those features’ translations into Java bytecode,
insofar as it is necessary to understand the observations made in Chapter 5.

Designing a Scala Benchmark Suite
Next, Chapter 3 describes the design of the Scala benchmark suite developed for

this thesis. It discusses the selection criteria for its constituent benchmarks and the

4 1 Introduction

application domains covered by them. Furthermore, it briefly discusses the build
toolchain developed for the benchmark suite’s creation.

Rapidly Prototyping Dynamic Analyses
The subsequent Chapter 4 describes three approaches to rapidly prototype dy-

namic analyses, which can then be used to measure various performance charac-
teristics of benchmarks: re-using dedicated profilers, re-purposing existing tools as
profilers, and developing tailored profilers in a domain-specific language.

A Comparison of Java and Scala Benchmarks Using VM-independent Metrics
Chapter 5 constitutes the main contribution of this thesis: a detailed comparison

of Java and Scala code using a variety of VM-independent metrics, both established
metrics and novel ones. The novel metrics are furthermore defined precisely. This
chapter encompasses both code- and memory-related metrics.

An Analysis of the Impact of Scala Code on High-Performance JVMs
Unlike the previous chapter, Chapter 6 compares Java and Scala code in terms

of their performance impact on a broad selection of modern Java virtual machines.
Prompted by the results of the comparison, it furthermore contains an in-depth
investigation into the performance problems exhibited by a particular JVM, namely
the Jikes RVM. As this investigation shows, Scala performance of said VM suffers
from shortcomings in the optimizing compiler which cannot be explained solely by
a poorly tuned adaptive optimization system or inlining heuristic.

Related Work
Chapter 7 reviews related work in the areas of benchmark-suite design and work-

load characterization. It furthermore gives an overview of current research on
improving Scala performance, i.e. on lessening the performance impact of Scala
code.

Conclusions and Future Directions
Chapter 8 concludes this thesis and discusses directions for future work made

possible by the benchmark suite developed as part of this thesis. In particular,
it gives an outlook on the next release of the DaCapo benchmark suite, tentatively
called version 12.x, which will apply some of the lessons learned during the genesis
of this thesis.

1.2 Structure of this Thesis 5

2 Background

This chapter provides the background necessary to follow the discussion in the rest
of this thesis in general and in Chapter 5 in particular. First, Section 2.1 introduces
the Java Virtual Machine and its instruction set. Next, Section 2.2 describes the key
features of the Scala language, whereas Section 2.3 sketches how these features are
translated into the JVMs instruction set.

2.1 The Java Virtual Machine

The Java Virtual Machine (JVM) [LYBB11] is an abstract, stack-based machine,
whose instruction set is geared towards execution of the Java programming lan-
guage [GJS+11]. Its design emphasizes portability and security.

Instruction Set
The JVM’s instruction set, often referred to as Java bytecode, is, for the most

part, very regular. This makes it possible to formalize many of its aspects like the
effects individual instructions have on a method’s operand stack [ES11]. At the
simplest level, the instruction set can be split into eight categories:

Stack & Local Variable Manipulation: pop, pop2, swap, dup, dup_x1, dup_x2,
dup2, dup2_x1, dup2_x2, ldc, ldc_w, ldc2_w, aconst_null, iconst_m1,
iconst_0, iconst_1, iconst_2, iconst_3, iconst_4, iconst_5, lconst_0,
lconst_1, fconst_0, fconst_1, fconst_2, dconst_0, dconst_1, bipush,
sipush, iload, lload, fload, dload, aload, iload_0, iload_1, iload_2,
iload_3, lload_0, lload_1, lload_2, lload_3, fload_0, fload_1, fload_2,
fload_3, dload_0, dload_1, dload_2, dload_3, aload_0, aload_1, aload_2,
aload_3, istore, lstore, fstore, dstore, astore, istore_0, istore_1,
istore_2, istore_3, lstore_0, lstore_1, lstore_2, lstore_3, fstore_0,
fstore_1, fstore_2, fstore_3, dstore_0, dstore_1, dstore_2, dstore_3,
astore_0, astore_1, astore_2, astore_3, nop

Arithmetic & Logical Operations: iadd, ladd, fadd, dadd, isub, lsub, fsub, dsub,
imul, lmul, fmul, dmul, idiv, ldiv, fdiv, ddiv, irem, lrem, frem, drem,
ineg, lneg, fneg, dneg, iinc, ishl, lshl, ishr, lshr, iushr, lushr, iand,
land, ior, lor, ixor, lxor, lcmp, fcmpl, fcmpg, dcmpl, dcmpg

7

Type Checking & Coercions: checkcast, instanceof, i2l, i2f, i2d, l2i, l2f, l2d,
f2i, f2l, f2d, d2i, d2l, d2f, i2b, i2c, i2s

Control Flow (intra-procedural): ifeq, ifne, iflt, ifge, ifgt, ifle, if_icmpeq,
if_icmpne, if_icmplt, if_icmpge, if_icmpgt, if_icmple, if_acmpeq,
if_acmpne, ifnull, ifnonnull, goto, goto_w, tableswitch, lookupswitch,
jsr, jsr_w, ret

Control Flow (inter-procedural): invokevirtual, invokespecial, invokestatic,
invokeinterface, ireturn, lreturn, freturn, dreturn, areturn, return,
athrow

Memory Allocation: new, newarray, anewarray, multianewarray

Memory Accesses getstatic, putstatic, getfield, putfield, arraylength,
iaload, laload, faload, daload, aaload, baload, caload, saload,
iastore, lastore, fastore, dastore, aastore, bastore, castore, sastore

Synchronization: monitorenter, monitorexit

As the JVM is a stack machine, a large number of instructions exist to manip-
ulate the operand stack. Many of these simply push a (typed) constant onto the
operand stack. In addition to the operand stack, there exists a set of variables local
to the current method activation. The operand stack and local variables may or
may not be kept in main memory; for performance reasons, an optimizing just-
in-time compiler is often able to keep most operands and variables in hardware
registers. Unlike the virtual machine’s variables, however, these registers are a
scarce resource.

Arithmetic and logical operations mimic the machine instructions offered by
most modern architecture. They deal with both integers and floating-point val-
ues of 32 bit and 64 bit width, represented in the conventional two’s-complement
and IEEE 754 formats, respectively.

Intra-procedural control-flow is covered by instructions for conditional and
unconditional jumps, including multi-way jumps (tableswitch, lookupswitch).
Inter-procedural control-flow covers both method calls and returns (see below)
and the raising of exceptions.

Memory allocation distinguishes between scalar objects and arrays. Despite
the presence of an instruction that seemingly creates multi-dimensional ar-
rays (multianewarray), the JVM lacks true multi-dimensional arrays; instead, they
are represented as array of arrays, with each component array being an object in
its own right.

8 2 Background

Memory accesses also distinguish between reads and writes to a scalar object’s
fields and to an array’s elements. Moreover, there exists a third mode of memory
accesses, namely accesses to static fields, which are not associated with any object
and typically reside at a fixed memory location.

The JVM has built-in support for synchronization; every object can be synchro-
nized on, i.e. serve as a lock. Not every lock and unlock operation is represented
by an explicit instruction, though; synchronized methods implicitly attempt to
acquire the receiver’s lock.

Classfiles
Each Java class is stored in a so-called classfile, which contains the bytecode of

all methods declared by that class1 as well as information about the class’s declared
fields and their default values. Literals referred to from the methods’ bytecode are
kept in a so-called constant pool, which is not directly accessible by the program
itself, but rather serves the purpose of the JVM. Likewise, the symbolic references
representing the names and descriptors of methods, fields, and classes are kept in
the constant pool.

While the Java source language supports nested and inner classes, these are
translated to top-level classes by the Java compiler, javac, and stored in classfiles
of their own. Similarly, interfaces are stored in their own classfiles.

Types
Unlike many other assembly languages, Java bytecode is statically typed. Most

instructions operating on either operand stack or local variables therefore exist in
five flavours, operating on references or primitive values of type int, long, float,
or double, respectively. While the Java source language also knows other int-
like types, e.g. byte and short, at least arithmetic instructions do not distinguish
between them; they always operate on integers of 32 bit width. Instructions to
read from and write to an array, however, do distinguish byte, short, and char,
with boolean values being treated as byte-sized. For the purposes of arithmetic
the boolean type is treated like int, however.

Method Calls
The JVM instruction set has four dedicated instructions for performing method

calls: invokevirtual, invokeinterface, invokespecial, and invokestatic.2

1 Constructors and static initializers are treated as special methods named <init> and <clinit>,
respectively.

2 Java 7 introduced the invokedynamic instruction [LYBB11] to better support dynamically-typed
languages targeting the JVM. As it is used by neither the Java nor Scala benchmarks analyzed
in this thesis, it is not discussed here.

2.1 The Java Virtual Machine 9

The first two instructions are used for dynamically-dispatched calls, whereas the
latter two are used for statically-dispatched ones. The invokevirtual instruction
is used for most method calls found in Java programs [GPW05] (cf. Section 5.4.2);
these calls are polymorphic with respect to the receiver’s type and can be handled
efficiently by a vtable-like mechanism. As the name suggests, the invokeinterface
instruction can be used for calling methods defined in an interface, although for
performance reasons using invokevirtual is preferable if the receiver’s class is
known and not just the interface it implements; in that case, vtables are applica-
ble. In the general case, however, vtables are not applicable to interface meth-
ods, although there exist techniques [ACFG01] which can alleviate much of the
performance cost associated with the more flexible invokeinterface instruction.
The invokespecial instruction is used in three different circumstances, in each of
which the target implementation is statically known: constructor calls, super calls,
and calls to private methods. In contrast to the invokestatic instruction, which
handles calling static methods, invokespecial calls have a dedicated receiver
object.

2.2 The Scala Language

As the JVM specification states, “implementors of other languages are turning to
the Java virtual machine as a delivery vehicle for their languages,” since it provides
a “generally available, machine-independent platform” [LYBB11]. From among the
dozens of other languages, I have selected the Scala language [OSV10] for further
study, as it exhibits some characteristics which may significantly impact execution
on the underlying Java Virtual Machine:

Static typing The Scala language offers a powerful static type system, including a
form of mixin-based inheritance. (To help the programmer harness the type
system’s power, the language provides a local type-inference mechanism.)

First-class functions Scala supports first-class functions and seamlessly integrates
them with the method-centric view of object-oriented languages.

Fully object-oriented In Scala, every value is an object and hence an instance of
a class. This includes integer values (instances of Int) and first-class func-
tions (instances of Function0, Function1, etc.).

Scala can thus be considered a mix of object-oriented and functional language
features. In the following section, I will explore how the aforementioned three
characteristics influence the translation from Scala source code to Java bytecode.

10 2 Background

1 trait Logger {
2 def log(msg: String)
3 }
4

5 class SimpleLogger(out: PrintStream) extends Logger {
6 def log(msg: String) { out.print(msg) }
7 }

Listing 2.1a: The Logger trait and an implementation of it in Scala

Note that other characteristics of the language have little impact on the lan-
guage’s execution characteristics. For example, the language’s syntactic flexibility,
which makes it suitable for the creation of embedded domain-specific languages,
has virtually no impact on the resulting bytecode that is executed by the Java Vir-
tual Machine.

2.3 The Translation of Scala Features to Java Bytecode

In this section, I will outline how the most important features of Scala are com-
piled to Java bytecode.3 This description is based on the translation strategy of
version 2.8.1 of the Scala compiler, which is the version used to compile the bench-
marks from my Scala benchmark suite. That being said, version 2.9.2, as of this
writing the latest stable release, does employ the same translation strategy at least
for the features discussed in this section.

2.3.1 Translating Traits

Consider the simple trait shown in Listing 2.1a, which only declares a method with-
out providing its implementation. Such a trait simply translates into the Java inter-
face shown in Listing 2.1b. The Logger trait is thus completely interoperable with
Java code; in particular, Java code can simply implement it, even though the in-
terface originated as a Scala trait. An implementation of the Logger trait/interface
only needs to provide the missing method implementations. This is exemplified
by the SimpleLogger class in Listing 2.1a and its Java counterpart in Listing 2.1b.
Note how the Scala compiler translates the constructor’s parameter into a final
field; this is just one example of the Scala language’s preference for immutable

3 For the sake of readability, equivalent Java source code rather than bytecode will be shown.

2.3 The Translation of Scala Features to Java Bytecode 11

1 public interface Logger {
2 void log(String msg);
3 }
4

5 public class SimpleLogger implements Logger, ScalaObject {
6 private final out;
7 public SimpleLogger(PrintStream out) { this.out = out; }
8 public void log(String msg) { out.print(msg); }
9 }

Listing 2.1b: The Logger trait from Listing 2.1a translated into Java

1 trait Decorations extends Logger {
2 abstract override def log(msg: String) {
3 super.log("[log] " + msg)
4 }
5 }
6

7 class DecoratedLogger(out: PrintStream) extends SimpleLogger(out)
8 with Decorations

Listing 2.2a: The Decorations trait composed with a class in Scala

data structures (cf. Section 5.4.11). Also note that SimpleLogger implements an
additional marker interface: ScalaObject.

So far, Scala’s traits seem to offer little more than Java interfaces. But unlike
interfaces, traits can also provide implementations for the methods they declare.
In particular, traits can modify the behaviour of the base class they are mixed into.
This makes it possible to write traits like the one shown in Listing 2.2a. Here,
the Decorations trait decorates the output of any Logger it is mixed into. This is
exemplified in the following interaction with the Scala console, scala:

1 > val logger = new SimpleLogger(System.err)
2 > logger.log("Division by zero")
3 Division by zero
4 > val decoratedLogger = new DecoratedLogger(System.err)
5 > decoratedLogger.log("Division by zero")
6 [log] Division by zero

12 2 Background

1 public interface Decorations extends Logger, ScalaObject {
2 void log(String);
3 void Decorations$$super$log(String);
4 }
5

6 public abstract class Decorations$class {
7 public static void $init$(Decorations) { }
8 public static void log(Decorations delegator, String msg) {
9 // invokeinterface

10 delegator.Decorations$$super$log("[log] " + msg);
11 }
12 }
13

14 public class DecoratedLogger extends SimpleLogger
15 implements Decorations, ScalaObject {
16 public void log(String msg) {
17 Decorations$class.log(this, msg); // invokestatic
18 }
19 public final void Decorations$$super$log(String msg) {
20 super.log(msg); // invokespecial
21 }
22 public DecoratedLogger(PrintStream out) {
23 super(out);
24 Decorations$class.$init$(this);
25 }
26 }

Listing 2.2b: The mixin composition of Listing 2.2a translated into Java

The translation of the DecoratedLogger class’s mixin composition with the
Decorations trait is shown in Listing 2.2b. As can be seen, the Java ver-
sion of the DecoratedLogger class implements the Decorations Java interface,
which complements the log method with a second method used internally for
super-calls: Decorations$$super$log. When the user calls the log method,
DecoratedLogger delegates the call first to the Decoration trait’s implementa-
tion class: Decorations$class. As the implementation of the trait’s functional-
ity resides in a static method, this happens using the invokestatic instruction.
The said implementation method in turn delegates back to the DecoratedLogger’s
Decorations$$super$log method, but this time using the invokeinterface in-

2.3 The Translation of Scala Features to Java Bytecode 13

struction. The delegator class can then decide anew to which mixin, if any, to dele-
gate the call. In Listing 2.2a, there is no further trait mixed into DecoratedLogger;
thus, the class’s own implementation, a super-call using invokespecial, is exe-
cuted.

Methods like Decorations$$super$log always transfer control back to the de-
legator, which is the only class that knows about the composition of mixins in its
entirety and can therefore act as a switchboard for the mixins’ super-calls. Now,
Decorations$$super$log is defined in the Decorations interface, which requires
the use of the invokeinterface bytecode instruction since the exact type of the
mixin’s superclass is unknown in the mixin’s implementation class. This alter-
nation of invokestatic and invokeinterface calls is typical of the delegation-
based translation scheme the Scala compiler uses for mixin composition. While the
scheme allows for separate compilation and avoids code duplication [Sch05], when
the same trait is mixed into many classes it produces megamorphic call sites, i.e. call
sites which target many different implementations. This, however, need not be a
performance problem, as the initial call (invokestatic) is likely to be inlined dur-
ing just-in-time compilation. Inlining thereby propagates type information about
the delegator to the delegatee, which the compiler can use in turn to devirtualize
and subsequently inline the previously megamorphic call (invokeinterface). This
propagates the type information further yet. The resulting cascade can thus the-
oretically inline all implementation of the various mixins overriding a method. In
practice, though, the just-in-time compiler’s inlining heuristic limits the maximum
inlining depth (cf. Section 6.4).

2.3.2 Translating First-Class Functions

The Scala compiler converts first-class functions into objects, which are, depending
on the function’s arity, instances of interfaces Function0, Function1, etc. One such
translation is shown in Listing 2.3, where an anonymous function is passed to the
foreachmethod defined in the Scala library. The translation of this function results
in a new class Countdown$$anonfun, whose apply method contains the function’s
body.4 This body refers to variables defined in their enclosing lexical scope; in
Listing 2.3, the function captures the variable xs, for example. The Scala compiler
therefore needs to enclose the captured variable in a heap-allocated box, here of

4 This presentation has been simplifed considerably: The Scala compiler specializes the apply
method [Dra10] and thus generates several variants of it, with and without boxing of the func-
tion’s arguments and return value (an instance of BoxedUnit in this case); these variants have
been omitted.

14 2 Background

1 object Countdown {
2 def nums = {
3 var xs = List[Int]()
4 (1 to 10) foreach {
5 x =>
6 xs = x :: xs
7 }
8 xs
9 }

10 }

1 public final class Countdown {
2 public static List nums() {
3 Countdown$.MODULE$.nums();
4 }
5 }
6

7 public final class Countdown$
8 implements ScalaObject {
9 ...

10 public List nums() {
11 ObjectRef xs =
12 new ObjectRef(...Nil$);
13 ...intWrapper(1).to(10).foreach(
14 new Countdown$$anonfun(xs);
15);
16 return xs.elem;
17 }
18 }
19

20 public final class Countdown$$anonfun
21 implements Function1, ScalaObject {
22 private final ObjectRef xs;
23 Countdown$$anonfun(ObjectRef xs) {
24 this.xs = xs;
25 }
26 public void apply(int x) {
27 xs.elem = xs.elem
28 .$colon$colon(...boxToInteger(x));
29 }
30 }

Listing 2.3: Various features of Scala and their translation into Java

type ObjectRef, whose contents can be updated from within the function object’s
apply method.

This translation roughly corresponds to the function object an experienced Java
programmer would have written by hand in a similar situation, e.g. when regis-
tering a listener or callback. One may safely assume, however, that anonymous
functions are far more common in Scala code than their function-object counter-

2.3 The Translation of Scala Features to Java Bytecode 15

parts are in Java code. The allocation of both function objects and boxes that
contain captured variables may thus significantly influence a Scala program’s ob-
ject demographics (cf. Sections 5.4.8 and 5.4.9).

2.3.3 Translating Singleton Objects and Rich Primitives

In Scala, every value is an object. Moreover, every method is invoked on an in-
stance; there are no static methods as there are in Java. However, Scala has
built-in support for the Singleton pattern using its object keyword, which makes it
easy to emulate non-instance methods using the methods of a Singleton instance.

The translation of such a Singleton object produces two classes; in Listing 2.3,
the classes Countdown and Countdown$, for example. The former offers only static
methods which forward execution to the sole instance of Countdown$ kept in the
MODULE$ field. This instance is created on demand, i.e. on first use, by Countdown’s
static initializer (not shown).

Singleton objects are important in Scala as they often house Factory Methods,
in particular if the Singleton happens to be a class’s companion object [OSV10,
Chapter 4]. Now, each external call of one of the Singleton’s methods in theory
needs to be dynamically dispatched (invokevirtual). In practice, however, these
calls can easily be inlined by the JVM, as the type of the MODULE$ field is precise.
Moreover, as the Singleton is an instance of a final class, the JVM can be sure
that no subclass thereof will be loaded at a later point, which would dilute the
previously precise type information; thus, no guards are needed when inlining.

Another feature of Scala, which illustrates the mind-set that every value is an
object, are the so-called rich primitives. These are objects which wrap the JVM’s
primitives (int, long, etc.) such that one can seemingly invoke methods on them.
Under the hood, there exists an implicit conversion from the primitive to its rich
wrapper, which is automatically applied by the Scala compiler [OSV10, Chapter
16]; in Listing 2.3, the intWrapper method wraps the integer 1 into a RichInt, for
example. These wrapper objects are typically very short-lived and put unnecessary
pressure on the garbage collector (cf. Sections 5.4.8 and 5.4.9) provided that the
JVM cannot determine that the rich primitive is only alive in a very limited scope.

To avoid the creation of wrapper objects like RichInt altogether, an improve-
ment to the Scala language has been proposed (and accepted)5 which removes
most wrapping, replacing the dynamically-dispatched calls on the wrapper object
with statically-dispatched calls to extension methods. But Scala 2.8, on which my
Scala benchmark suite is based, does not implement these value classes yet; they
are expected for the (as of this writing) unreleased Scala 2.10.

5 SIP-15 (Value Classes). See http://docs.scala-lang.org/sips/.

16 2 Background

http://docs.scala-lang.org/sips/

3 Designing a Scala Benchmark Suite

In this chapter, I describe the design of the Scala benchmark suite developed for this
thesis. In particular, I will argue that the resulting suite is well-suited for research.
I accomplish this goal by carefully choosing both the benchmark harness and the
workloads, and by picking a toolchain that ensures build reproducibility.

Parts of this chapter have been published before:

• Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. Da
Capo con Scala: Design and analysis of a Scala benchmark suite for the
Java Virtual Machine. In Proceedings of the 26th Conference on Object-
Oriented Programing, Systems, Languages, and Applications (OOPSLA), 2011.
doi:10.1145/2048066.2048118

3.1 Choosing a Benchmark Harness

Every benchmark suite consists of two components: the actual workloads and an
accompanying benchmark harness, which wraps the workloads and allows re-
searchers to iterate them several times and to time the individual iterations. To
ease adoption, I based the Scala benchmark suite on the latest release (version
9.12, nicknamed “Bach”) of the DaCapo benchmark suite [BGH+06]; the two
suites share a harness. By re-using this core component of a benchmark suite
that not only strives for “ease of use” [BGH+06] but is also immensely popular
among JVM researchers,1 it becomes easy to obtain experimental results for all the
benchmarks in the two suites without any change to one’s experimental setup.

3.2 Choosing Representative Workloads

Table 3.1 lists the 12 Scala benchmarks I added to the 14 Java benchmarks from the
DaCapo benchmark suite. The Scala benchmark suite2 therefore contains almost
as many benchmarks as the current release of the DaCapo benchmark suite and
one more than its previous release (version 2006-10), despite a more limited set

1 According to the ACM Digital Library, the paper describing the benchmark suite has gathered
251 citations (as of 9 August 2012).

2 See http://www.scalabench.org/.

17

http://dx.doi.org/10.1145/2048066.2048118
http://www.scalabench.org/

Benchmark Description References
Input Sizes (#)

actors Trading sample with Scala and Akka actors n/a
Run performance tests (varying number of

transactions)
tiny–gargantuan (6)

apparat Framework to optimize ABC/SWC/SWF files n/a
Optimize (strip, inject, and reduce) various SWC files tiny–gargantuan (6)

factorie Toolkit for deployable probabilistic modeling [MSS09]
Perform Latent Dirichlet Allocation on a variety of

data sets
tiny–gargantuan (6)

kiama Library for language processing [Slo08]
Compile programs written in Obr; execute programs
written in a extension to Landin’s ISWIM language

small–default (2)

scalac Compiler for the Scala 2 language [Sch05, Dra10]
Compile various parts of the scalap classfile decoder small–large (3)

scaladoc Scala documentation tool n/a
Generate ScalaDoc for various parts of the scalap

classfile decoder
small–large (3)

scalap Scala classfile decoder n/a
Disassemble various classfiles compiled with the Scala

compiler
small–large (3)

scalariform Code formatter for Scala n/a
Reformat various source code from the Scala library tiny–huge (5)

scalatest Testing toolkit for Scala and Java n/a
Run various tests of ScalaTest itself small–huge (4)

scalaxb XML data-binding tool n/a
Compile various XML Schemas tiny–huge (5)

specs Behaviour-driven design framework n/a
Run various tests and specifications of Specs itself small–large (3)

tmt Stanford topic modeling toolbox [RRC+09]
Learn a topic model (varying number of iterations) tiny–huge (5)

Table 3.1: The 12 Scala benchmarks selected for inclusion in the benchmark suite,
together with their respective inputs.

18 3 Designing a Scala Benchmark Suite

of well-known Scala programs to choose from. Programs alone, however, do not
make workloads; they also require realistic inputs to operate on. All Scala programs
therefore come bundled with a least two and up to six inputs of different sizes. This
gives rise to 51 unique workloads, i.e. benchmark-input combinations. The DaCapo
benchmark suite offers only 44 such workloads, being limited to at most four input
sizes: small, default, large, and huge.

Compared to the DaCapo benchmarks, the larger number of inputs per bench-
mark gives researchers more flexibility. My Scala benchmark suite is there-
fore better suited for evaluating novel, input-dependent approaches to optimiza-
tion [TJZS10], although admittedly the number of inputs provided is still rather
small for such an approach.3 That being said, a broader range of input sizes is
undeniably useful if the researcher’s experimental budget is tight; sometimes, the
overhead of profiling becomes so high that gathering a profile becomes infeasible
even for the benchmark’s default input size. This has been an issue, e.g. for the
metrics shown in Section 5.4.8. The extra input sizes made it possible to obtain
results for smaller input sizes, where doing so for default input sizes would have
resulted in completely unwieldy profiles.

3.2.1 Covered Application Domains

The validity of any experimental finding produced with the help of a benchmark
suite hinges on that suite’s representativeness. I was thus careful to choose not
only a large number of programs, but also programs from a range of application
domains. Compared to the DaCapo benchmark suite, the Scala benchmark suite
only lacks two application domains covered by its Java counterpart: client/server
applications (tomcat, tradebeans, and tradesoap) and in-memory databases (h2).
In fact, the former domain made its initial appearance only in version 9.12 of the
DaCapo benchmark suite. The earlier version 2006-10 does not cover client/server
applications but does cover in-memory databases (hsqldb).

The absence of client/server applications from the Scala benchmark suite is ex-
plained by the fact that all three such DaCapo benchmarks depend on either a
Servlet container (Apache Tomcat) or an application server (Apache Geronimo).
As no Servlet container or application server written in Scala exists yet, any Scala
benchmark within this category would depend on a Java-based implementation
thereof; this would dilute the Scala nature of the benchmark. In fact, I designed a
benchmark based on the popular Lift web framework [Sew10] but had to discard
it, since the Java-based container dominated its execution profile; the resulting

3 In their study, Tian et al. [TJZS10] used between 9 and 175 inputs per benchmark, with an
average of 51.3.

3.2 Choosing Representative Workloads 19

benchmark was not very representative of Scala code. Likewise, the absence of
in-memory databases is explained by the fact that, to the best of my knowledge, no
such Scala application exists that is more than a thin wrapper around Java code.

While the range of domains covered is nevertheless broad, several benchmarks
occupy the same niche. This was a deliberate choice made to avoid bias from prefer-
ring one application over another in a domain where Scala is frequently used: auto-
mated testing (scalatest, specs), source-code processing (scaladoc, scalariform), or
machine-learning (factorie, tmt). In Chapter 5, I will thus show that the inclusion
of several applications from the same domain is indeed justified; in particular, the
respective benchmarks each exhibit a distinct instruction mix (cf. Section 5.4.1).

3.2.2 Code Size

While covering a broad range of domains increases the trust in a benchmark suite’s
representativeness, it is not enough to make it well-suited for JVM research. The
constituent benchmarks must also be of considerable size and complexity, as micro-
benchmarks often do not reflect the behaviour of larger real-world applications
from a given domain. In this section, I will thus argue that the Scala benchmarks
are indeed of significant size and complexity.

For the DaCapo benchmark suite on which the suite is based, Blackburn et al.
employ the metrics introduced by Chidamber and Kemerer [CK94] to argue that
their suite exhibits “much richer code complexity, class structures, and class hi-
erarchies” [BGH+06] than the older SPEC JVM98 benchmark suite [Cor98]. But
whether the metrics by Chidamber and Kemerer carry over to a hybrid language
like Scala, which combines concepts from object-oriented and functional languages,
is still an open question. While the metrics still are technically applicable, as the
implementation for the Java language4 targets Java bytecode rather than source
code, the results would be heavily distorted by the translation strategy of the Java
compiler; the connection to the original design, as manifested in the Scala source
code, is tenuous at best. Also, comparing the Scala benchmarks with older bench-
marks using the same language is not necessary, as there are no predecessors, with
the exception of a few micro-benchmarks [Hun11, Pha12].5

In the following, I will thus focus on basic but universal metrics of code size, in
particular on the number of classes loaded and methods called. Figure 3.1 relates
these two for both the Java benchmarks from the DaCapo 9.12 benchmark suite
and the Scala benchmarks from the new suite. As can be seen, even relatively sim-
ple Scala programs like scalap, a classfile viewer akin to javap, are made up of

4 See http://www.spinellis.gr/sw/ckjm/.
5 See http://www.scala-lang.org/node/360.

20 3 Designing a Scala Benchmark Suite

http://www.spinellis.gr/sw/ckjm/
http://www.scala-lang.org/node/360

103 104

103.2

103.4

103.6

103.8

104

104.2

104.4

104.6

avrora

batik

eclipse

fop

h2

jython

luindex

lusearch

pmd

sunflow

tomcat

tradebeans tradesoap

xalan

actors
apparat

factorie

kiama

scalac

scaladoc

scalap

scalariform

scalatest

scalaxb

specs

tmt

Classes loaded

#
M
ethod

s
called

Java benchmarks
Scala benchmarks

Figure 3.1: Number of classes loaded and methods called at least once by the Java
and Scala benchmarks, respectively

thousands of classes and methods: for scalap, 1229 classes were loaded and 4357
methods were called at least once. Across all benchmarks, only 4.25 methods per
class were, on average, called during the actual benchmark execution. This num-
ber is slightly lower for Scala programs (4.14) than for Java programs (4.34). This
difference is a consequence of the translation strategy the Scala compiler employs
for anonymous functions, which are translated into full-fledged classes containing
just a few methods (cf. Section 2.3). This fact may have performance ramifica-
tions, as class metadata stored by the JVM can consume a significant amount of
memory [OMK+10].

For the Scala benchmarks, abstract and interface classes on average account
for 13.8 % and 13.2 % of the loaded classes, respectively. For the Java benchmarks,
the situation is similar: 11.3 % and 14.1 %. In case of the Scala benchmarks,

3.2 Choosing Representative Workloads 21

though, 48.4 % of the loaded classes are marked final. This is in stark contrast
to the Java benchmarks, where only 13.5 % are thusly marked. This discrepancy
is in part explained by the Scala compiler’s translation strategy for anonymous
functions: On average, 32.8 % of the classes loaded by the Scala benchmarks rep-
resent such functions. The remaining final classes are mostly Singleton classes
automatically generated by the Scala compiler (cf. Section 2.3.3).

The methods executed by the Scala benchmarks consist, on average, of just 2.9
basic blocks, which is much smaller than the 5.1 basic blocks found in the Java
benchmarks’ methods. Not only do methods in Scala code generally consist of less
basic blocks, they also consist of less instructions, namely 17.3 on average, which
is again significantly smaller than the 35.8 instructions per method of the Java
benchmarks. On average, Scala methods are only half as large as Java methods.

3.2.3 Code Sources

For research purposes the selected benchmarks must not only be of significant size
and representative of real-world applications, but they must also consist primarily
of Scala code. This requirement rules out a large set of Scala programs and li-
braries as they are merely a thin wrapper around Java code. In order to assess
to what extent the benchmarks are comprised of Java and Scala code, respec-
tively, all bytecodes loaded by the benchmarks have been categorized according
to their containing classes’ package names and source file attributes into one of five
categories:

Java Runtime. Packages java, javax, sun, com.sun, and com.oracle; *.java
source files

Other Java libraries. Other packages; *.java source files

Scala Runtime (Java code). Package scala; *.java source files

Scala Runtime (Scala code). Package scala;6 *.scala source files

Scala application and libraries. Other packages, *.scala source files

Runtime-generated classes (proxies and mock classes) were categorized like the
library that generated the class, even though the generated class typically resides
in a different package than the generating library.

6 The package scala.tools was excluded; it contains the Scala compiler and the ScalaDoc tool
that are used as benchmarks in their own right.

22 3 Designing a Scala Benchmark Suite

actors apparat
factorie kiama

scalac scaladoc
scalap scalariform

scalatest

scalaxb
specs

tmt

Java runtime Java libraries Scala runtime (Java)
Scala runtime (Scala) Scala application and libraries

Figure 3.2: Bytecodes loaded and executed by each of the 12 Scala bench-
marks (default input size) stemming from the Java runtime, the Java
libraries, the part of the Scala runtime written in Java, other parts of the
Scala runtime and Scala libraries, or from the Scala application itself

Based on the categorization, the inner circles in Figure 3.2 show how the loaded
bytecodes are distributed among the five categories, with the circles’ areas indi-
cating the relative number of bytecodes loaded by the benchmarks. As can be
seen, all benchmarks contain significant portions of Scala code, albeit for three of
them (actors, factorie, and tmt) the actual application consists only of a rather

3.2 Choosing Representative Workloads 23

small Scala kernel. Still, in terms of bytecodes executed rather than merely loaded,
all but two benchmarks (actors, scalatest) spend at least two thirds of their execu-
tion within these portions, as is indicated by the outer rings. The two exceptional
benchmarks nevertheless warrant inclusion in a Scala benchmark suite: In the case
of the actors benchmark, the Java code it primarily executes is part of the Scala
runtime rather than the Java runtime. In the case of the scalatest benchmark, a
vast portion of code loaded is Scala code.

Like the scalatest benchmark, the specs benchmark is particularly noteworthy
in this respect: While it loads a large number of bytecodes belonging to the Scala
application, it spends most of its execution elsewhere, namely in parts of the Scala
runtime. This behaviour is explained by the fact that the workloads of both bench-
marks execute a series of tests written using the ScalaTest and Specs testing frame-
works, respectively. Although the volume of test code is high, each test is only
executed once and then discarded. This kind of behaviour places the emphasis on
the JVM’s interpreter or “baseline” just-in-time compiler as well as its class meta-
data organization. As such, it is not well-covered by current benchmark suites like
DaCapo or SPECjvm2008, but nevertheless of real-world importance since tests
play a large role in modern software development.

Native method invocations are rare; on average, 0.44 % of all method calls tar-
get a native method. The actors benchmark (1.8 %), which makes heavy use of
actor-based concurrency [KSA09], and the scalatest benchmark (2.1 %), which
uses the Java runtime library quite heavily, are the only notable outliers. These
values are very similar to those obtained for the Java benchmarks; on average
0.49 % of method calls target native methods, with tomcat (2.0 %) and trades-
oap (1.3 %) being the outliers. The actual execution time spent in native code
depends on the used Java runtime and on the concrete execution platform, as none
of the benchmarks analyzed in Chapter 5 contain any native code themselves. Since
we focus on dynamic metrics at the bytecode level, a detailed analysis of the contri-
bution of native code to the overall benchmark execution time is beyond the scope
of Chapter 5, which relies on VM-independent metrics.

3.2.4 The dummy Benchmark

In workload characterization it is often necessary to distinguish the actual workload
from any activity occurring during JVM startup, shutdown, or within the bench-
mark harness. While the harness of the DaCapo benchmark suite offers a dedicated
callback mechanism which can notify a dynamic analysis of the beginning and end
of the actual benchmark iteration, such a callback is sometimes insufficient or at
least inconvenient (cf. Section 5.3). The Scala benchmark suite thus ships with an

24 3 Designing a Scala Benchmark Suite

additional, thirteenth benchmark: dummy. As the name suggests, this benchmark
does not perform any work during a benchmark iteration. Consequently, measur-
ing the JVM’s behaviour running the dummy benchmark can serve as an indicator
of the JVM’s activity during JVM startup, shutdown, and within the benchmark
harness.

3.3 Choosing a Build Toolchain

The entire benchmark suite is built using Apache Maven,7 a build management
tool whose basic tenet rings particularly true in the context of a research bench-
mark suite: build reproducibility. A central artifact repository mirrored many times
worldwide contains the (frozen) code of the benchmarked applications. This en-
sures that the benchmark suite can be built reproducibly in the future, even if some
of the applications are later abandoned by their developers.

To ease the development of benchmarks, I have created a dedicated Maven
plugin, the dacapo-benchmark-maven-plugin. This plugin not only packages a
benchmark according to the DaCapo suite’s requirements (harness, self-contained
dependencies, .cnfmetadata) but also performs a series of integration tests on the
newly-built benchmark. It automatically retrieves but keeps separate all transitive
dependencies of the benchmark and its harness. Finally, the plugin automatically
generates a report providing summary information about a given benchmark and
its inputs. Figure 3.3 shows one such report for the scalac benchmark from the
Scala benchmark suite. Where necessary, these summary reports are accompanied
by further information on the project’s website, e.g. on the selection criteria for the
inputs used.

Just as the benchmark suite, the Maven plugin is Open Source and freely avail-
able for download.8

7 See http://maven.apache.org/.
8 See http://www.plugins.scalabench.org/modules/dacapo-benchmark-maven-plugin/.

3.3 Choosing a Build Toolchain 25

http://maven.apache.org/
http://www.plugins.scalabench.org/modules/dacapo-benchmark-maven-plugin/

Figure
3.3:Reportgenerated

by
the
d
a
c
a
p
o
-
b
e
n
c
h
m
a
r
k
-
m
a
v
e
n
-
p
l
u
g
i
n

26 3 Designing a Scala Benchmark Suite

4 Rapidly Prototyping Dynamic Analyses

The design of a new benchmark suite suitable for research requires an in-depth
analysis of the constituent benchmarks to ensure that they exhibit diverse be-
haviour (cf. Chapters 3 and 5). A benchmark suite containing only very similar
benchmarks not only misrepresents a large fraction of real-world programs that
behave dissimilar, but wastes valuable resources; researchers perform their time-
consuming experiments on many benchmarks where few would suffice. It is thus of
paramount importance to subject the benchmarks to a variety of dynamic analyses
to ensure that they cover a wide range of behaviour.

Alas, developing such analyses is costly. This is all the more a problem as the
design of a new benchmark suite often proceeds in an iterative, exploratory fash-
ion; a candidate benchmark is selected and subjected to analysis, whose outcome
suggests a new candidate or a new metric for which no analysis exists yet. This
happened, for example, when I evaluated a candidate benchmark based on the Lift
web framework; this benchmark had to be rejected as measurements showed too
large an impact of its dependencies, which were written in Java (cf. Section 3.2.3).

In this chapter, I will describe the approaches I have taken to rapidly prototype
the necessary dynamic analyses. Section 4.1 discusses these three approaches, all of
which lessen the researcher’s burden when designing a benchmark suite: re-using
dedicated profilers (Section 4.1.1), re-purposing existing tools (Section 4.1.2), and
developing tailored profilers in a domain-specific language (Section 4.1.3). Sec-
tion 4.2 concludes this chapter with a brief discussion of the three case-studies.

Parts of this chapter have been published before:

• Eric Bodden, Andreas Sewe, Jan Sinschek, and Mira Mezini. Taming re-
flection (extended version): Static analysis in the presence of reflection and
custom class loaders. Technical Report TUD-CS-2010-0066, CASED, 2010

• Eric Bodden, Andreas Sewe, Jan Sinschek, Mira Mezini, and Hela Oueslati.
Taming reflection: Aiding static analysis in the presence of reflection and
custom class loaders. In Proceedings of the 33rd International Conference on
Software Engineering (ICSE), 2011. doi:10.1145/1985793.1985827

• Aibek Sarimbekov, Philippe Moret, Walter Binder, Andreas Sewe, and Mira
Mezini. Complete and platform-independent calling context profiling for
the Java Virtual Machine. Electronic Notes in Theoretical Computer Science,
279(1):61–74, 2011. doi:10.1016/j.entcs.2011.11.006

27

http://dx.doi.org/10.1145/1985793.1985827
http://dx.doi.org/10.1016/j.entcs.2011.11.006

• Aibek Sarimbekov, Andreas Sewe, Walter Binder, Philippe Moret, Martin
Schoeberl, and Mira Mezini. Portable and accurate collection of calling-
context-sensitive bytecode metrics for the Java Virtual Machine. In Proceed-
ings of the 9th Conference on the Principles and Practice of Programming in
Java (PPPJ), 2011. doi:10.1145/2093157.2093160

• Aibek Sarimbekov, Andreas Sewe, Walter Binder, Philippe Moret, and Mira
Mezini. JP2: Call-site aware calling context profiling for the Java Virtual
Machine. Science of Computer Programming, 2012. doi:10.1016/j.scico.
2011.11.003

• Yudi Zheng, Danilo Ansaloni, Lukas Marek, Andreas Sewe, Walter Binder,
Alex Villazón, Petr Tuma, Zhengwei Qi, and Mira Mezini. Turbo DiSL: Par-
tial evaluation for high-level bytecode instrumentation. In Carlo Furia and
Sebastian Nanz, editors, Objects, Models, Components, Patterns, volume 7305
of Lecture Notes in Computer Science, pages 353–368. Springer Berlin / Hei-
delberg, 2012. doi:10.1007/978-3-642-30561-0_24

• Danilo Ansaloni, Walter Binder, Christoph Bockisch, Eric Bodden, Kardelen
Hatun, Lukáš Marek, Zhengwei Qi, Aibek Sarimbekov, Andreas Sewe, Petr
Tůma, and Yudi Zheng. Challenges for refinement and composition of in-
strumentations: Position paper. In Thomas Gschwind, Flavio De Paoli, Volker
Gruhn, and Matthias Book, editors, Software Composition, volume 7306 of
Lecture Notes in Computer Science, pages 86–96. Springer Berlin / Heidel-
berg, 2012. doi:10.1007/978-3-642-30564-1_6

4.1 Approaches

During benchmark-suite design, a multitude of metrics are needed to shed light on
features of the benchmarks as diverse as their use of polymorphism (Section 5.4.2),
their use of reflective method calls (Section 5.4.6), or their use of object alloca-
tions (Section 5.4.8). Most of these metrics are dynamic in nature, i.e. they cannot
be computed based on the benchmark’s source- or bytecode alone. But implement-
ing dynamic analyses (often called profilers) to compute the desired metrics is a
challenging task. Obviously, accuracy is of high priority, although it sometimes is
sufficient to not be completely accurate—if one is aware of the resulting threats
to validity and they are well-understood. Often, performance is also a priority;
while some overhead incurred by profiling is acceptable during benchmark design,
it must not be prohibitively high, i.e. orders of magnitude higher than the actual

28 4 Rapidly Prototyping Dynamic Analyses

http://dx.doi.org/10.1145/2093157.2093160
http://dx.doi.org/10.1016/j.scico.2011.11.003
http://dx.doi.org/10.1016/j.scico.2011.11.003
http://dx.doi.org/10.1007/978-3-642-30561-0_24
http://dx.doi.org/10.1007/978-3-642-30564-1_6

benchmark’s execution time. Such exorbitant execution times (or memory require-
ments) would make it impossible to analyze the benchmark in a reasonable time
frame.

In this chapter I discuss the three approaches to prototyping dynamic analyses
for metric computation used by me during the design of the Scala benchmark suite
and contrast it with a fourth one, namely developing profilers from scratch.

4.1.1 Re-using Dedicated Profilers: JP2

Re-using an existing profiler is an attractive choice, as it frees the benchmark suite’s
designer from developing a profiler from scratch. Often, however, an existing pro-
filer records data that is close to but not exactly what is needed to compute the
desired metrics. It is thus paramount that the profiler produces a detailed log
from which the desired metrics can be derived, possibly offline, i.e. after the actual
profiling run is over.

Case Study
JP2 [SMB+11, SSB+11, SSB+12] is one such profiler, which produces com-

plete and accurate calling-context profiles on any production JVM. In the result-
ing calling-context profile individual calls are distinguished by the context they
occur in, i.e. by the entire call stack that led to the call in question. JP2 thus pro-
duces an extremely detailed view of the program’s inter-procedural control flow.
Moreover and in contrast to its predecessor, the Java Profiler JP [BHMV09], JP2
can keep track of individual call sites [SSB+12] and the execution counts of in-
dividual basic blocks [SSB+11].1 All this information is kept in a calling-context
tree (CCT) [ABL97], an example of which is shown in Figure 4.1.

For this thesis, I modified JP2 by adding a plug-in mechanism that makes it
possible to serialize the collected CCT in multiple formats [SSB+11]. Moreover,
JP2 was modified to store on disk any loaded class files. Both modifications were
straight-forward and left the core of JP2 untouched; in particular, its low-level
bytecode instrumentation routines did not have to be modified.

Together, the CCT and the class files allowed me to derive various metrics. For
example, to derive a benchmark’s instruction mix one needs both a basic block’s
execution count and the list of instructions in that basic block; the former is found
in the CCT, whereas the latter is found in the appropriate class file. From this
information one can in principle easily derive the benchmark’s instruction mix, i.e.

1 These two extensions [SSB+11, SSB+12] were developed in a joint effort by Aibek Sarimbekov
and the author of this thesis.

4.1 Approaches 29

root

Harness.main(String[])1
[1]

Benchmark.run(..)30
[30,1,30,30,30,30,30]

Fop.prepare(String)1
[1,5,4,2,4,1]

@13

Fop.iterate(String)30
[30]

@37

@−1

Figure 4.1: Sample calling-context tree, whose nodes keep the methods’ execution
count (m), the dynamic execution counts for each basic block ([n1,n2,...]),
and the call site (@i) at which the corresponding method was invoked
in its parent context.

the execution frequencies of all bytecode instructions. But how to do this in practice
and with minimal effort?

Ideally, the benchmark designer has a simple, declarative query language at
his disposal to describe the desired metrics in. For this case-study, I have chosen
XQuery [BCF+10], a declarative query language for XML. Of course, this requires
that both the CCT and the loaded class files are available in an XML representation.
Using an appropriate plug-in, I thus serialized the entire CCT in the simple XML ren-
dition of the calling-context tree exemplified in Figure 4.2. Likewise, I converted
all loaded class files into XML by re-using an existing conversion routine from the
ASM bytecode engineering library.2 While the two resulting representations are
verbose, they are easily processable by off-the-shelf XML tools, in particular by an
XQuery processor. Metrics can then simply be expressed as declarative queries with
respect to these two XML representations.

In the following, I will describe this process in detail for readers unfamiliar with
XQuery. Deriving a benchmark’s instruction mix from a JP2 profile will serve as an
example. First, the XML representations of the CCT and the loaded class files need
to be made available to the XQuery processor. In Listing 4.1, this is done by means
of the $cct and $classes variables. How exactly such external data is passed to

2 See http://asm.ow2.org/.

30 4 Rapidly Prototyping Dynamic Analyses

http://asm.ow2.org/

1 <callingContextTree>
2 ...
3 <method declaringClass="LHarness;"
4 name="main" params="[Ljava/lang/String;" return="V">
5 <executionCount>0</executionCount>
6 <executedInstructions>0</executedInstructions>
7 ...
8 <method declaringClass="Lorg/dacapo/harness/Fop;"
9 name="iterate" params="Ljava/lang/String;" return="V">

10 <executionCount>30</executionCount>
11 <executedInstructions>390</executedInstructions>
12 <callSite instruction="2">
13 ...
14 </callSite>
15 ...
16 <basicBlock start="1" end="13">
17 <executionCount>30</executionCount>
18 </basicBlock>
19 </method>
20 ...
21 </method>
22 ...
23 </callingContextTree>

Figure 4.2: Sample output of JP2 using an XML representation of the CCT

the XQuery processor is implementation-defined, but most processors offer a simple
command-line interface for this task.

For benchmarking, it is typically desirable to exclude code executed during JVM
startup and shutdown from one’s measurements. For this purpose, JP2 offers
the option to only profile code in the dynamic extent of a given method. Of-
ten, it is sufficient to simply choose the program’s main method. In the case of
harnessed benchmarks, however, this would include the harness in the measure-
ments as well, which is undesirable. The DaCapo benchmark harness thus offers
a dedicated callback mechanism that makes it possible to exclude not only JVM
startup and shutdown but also the benchmark’s harness; only the benchmark itself
is measured [SMB+11]. While, for technical reasons, code outside the benchmark’s
iterate method still contributes nodes to the CCT, the nodes’ execution count is

4.1 Approaches 31

1 declare variable $cct-xml external;
2 declare variable $cct := doc($cct-xml)/cct:callingContextTree;
3 declare variable $classes-xml external;
4 declare variable $classes := doc($classes-xml)/classes;
5

6 declare variable $benchmark-nodes :=
7 $cct//cct:method[cct:executionCount > 0];
8

9 declare function asm:method($node) {
10 let $internal-name = asm:internal-name($node/@declaringClass)
11 let $class := $classes/class[@name = $internal-name]
12 let $node-desc :=
13 asm:method-descriptor($node/@params, $node/@return)
14 return
15 $class/method[@name eq $node/@name and @desc eq $node-desc]
16 };
17

18 <instructionMix>{
19 for $instruction in $asm:instruction-list
20 return element {$instruction} {
21 sum(for $node in $benchmark-nodes
22 let $body := $asm:method($node)/asm:instructions(.)
23 for $basic-block in $node/cct:basicBlock
24 let $start := $basic-block/@start
25 let $length :=
26 $basic-block/@end - $basic-block/@start + 1
27 let $instructions := subsequence($body, $start, $length)
28 return count($basic-block/cct:executionCount
29 * $instructions[name() eq $instruction]))
30 }
31 }</instructionMix>

Listing 4.1: An XQuery script computing a benchmark’s instruction mix from XML
representations of a CCT and the benchmark’s class files

fixed to 0. This property makes it easy to exclude these nodes with XQuery, as the
definition of the $benchmark-nodes variable in Listing 4.1 shows (Line 6).

Now, for each node in the CCT one needs to identify the corresponding method
in the classfiles’ XML representations. Despite the fact that conversions need
to be applied to both the declaring class’s name (asm:internal-name) and the

32 4 Rapidly Prototyping Dynamic Analyses

method’s parameter and return types (asm:method-descriptor), the actual map-
ping is straight-forward, as illustrated by the asm:method function (Line 9). Once a
node in the CCT, containing a profile of that method’s execution, can be mapped to
its instructions as stored in the class file, the instruction mix can be easily derived
and output in an XML representation, with <instructionMix> as root element.

Note how XQuery allows one to specify the desired metric in an entirely declar-
ative fashion: An instruction’s execution count is the sum of that instruction’s exe-
cution counts per basic block, which are in turn the execution counts of the basic
blocks themselves multiplied with the number of the occurrences of the instruction
in question within a given basic block.

Due to the declarative nature of the query language, the benchmark suite’s de-
signer need not be concerned with efficiency of computation at this stage but can
focus on clarity instead. For example, it is perfectly natural to view the instruction
mix as simply a list of all instructions’ execution counts and write the query accord-
ingly. It is then up to the XQuery processor to discover that it need not traverse the
CCT multiple times3 but can do with only a single traversal.

Note that the accuracy of this offline-processing step only depends on the accu-
racy of its inputs, in particular, on the accuracy of the profiles produced by JP2. But
as JP2 indeed produces a very detailed profile, this is not an issue; in fact, none of
the metrics presented in Section 5.4 required more than two levels of calling con-
text. In other words, a call-graph-based profile would have been sufficient. This is
the main drawback of re-using existing profilers: They may record more informa-
tion than is necessary and thereby incur higher overhead than is feasible during the
exploratory stage of benchmark-suite design; profiling runs that take days rather
than hours or minutes have the potential to tremendously slow down develop-
ment. Nevertheless, the ability to use a declarative query language to prototype
the metrics makes up for this overhead; while the computational cost increases,
development cost decreases.

4.1.2 Re-purposing Existing Tools: TamiFlex

While dedicated profilers come immediately to mind when one wants to perform
workload characterization, other tools may offer similar features, despite having
been developed for a different purpose. If the output of these tools contains the
desired information, the programming effort necessary for re-purposing the tool as
a dynamic analysis is low; all that is required is to extract the information from the
tool’s outputs using the (scripting) language or tool of choice.

3 In this example: 156 times. (ASM distinguishes between 156 different bytecode instructions.)

4.1 Approaches 33

Case Study
In this section, I briefly describe my experience with one such tool, namely

TamiFlex [BSSM10, BSS+11]. TamiFlex was originally conceived to increase the
soundness of static analyses in the presence of language features like reflection
and dynamic class loading. To achieve this goal, TamiFlex follows a very prag-
matic approach of logging both reflective calls made and classes loaded dynami-
cally by the running program. This is done by a Java agent called the Play-Out
Agent. There also exists a corresponding Play-In Agent, which makes it possible
to re-insert offline-transformed classes into another run of the program. Finally,
these two online components are complemented by an offline component called
the Booster [BSS+11], which can transform the logged classfiles to make them
usable by any static analysis, even one that is unaware of TamiFlex’s logs.

Figure 4.3 shows a simplified version of Tamiflex’s overall architecture, excluding
the Booster. This figure also highlights those parts of the tool that I re-purposed
to collect information about the reflective calls made by the benchmarks under
study (cf. Section 5.4.6). As can be seen, only a small part of TamiFlex, the Play-
Out Agent, is needed for this purpose. The resulting profiles (refl.log) are stored
in a simple, textual format, of which Figure 4.4 shows an example.

The log includes events like reflective method invocations and object instantia-
tions, as well as other operations like dynamic class loading or introspection. While
it is easy to derive the desired information on, e.g., the reflective calls made from
such a log, this example also highlights a limitation of re-purposing existing tools:
Some desirable information may be either incomplete or missing completely from
the produced profiles. While the log in Figure 4.4 does identify a reflective call’s
call site (method org.dacapo.harness.Fop.iterate, line 41), this information is
missing two details: Line numbers do not unambiguously identify a call site and
methods are not unambiguously identified using their name alone (lacking their
descriptor). Depending on the metric in question, the resulting loss of accuracy
may or may not be acceptable. For the metrics I present in Section 5.4.6, this loss
of accuracy was indeed minor; reflective call sites are rare in real-world code and
multiple reflective call sites sharing a single source line are rarer still. Together
with the line number a method’s name captures the call site well.

After the online stage of profiling, i.e. running the benchmark together with
the Play-Out Agent, the reflection log can be processed using just a few lines of
code. As TamiFlex serializes its log in a simple, record-based format, processing
it with a scripting language like AWK [AKW88], whose built-in pattern matching
capability is tailored to record-oriented data, is straight-forward. The metrics can
thus be computed in a semi-declarative fashion; pattern matching the input records
is declarative, but aggregating the relevant log entries is not.

34 4 Rapidly Prototyping Dynamic Analyses

Code Sources

forName()

newInstance()

invoke()Pr
og

ra
m

Pr
og

ra
m

Play-Out Agent Play-In Agent

Static Analysis

Class loaderClass loader

all classes

Class loader Class loaderClass loader

all classes

Class loader

Class

Constructor

Method

.class.class.class

refl.log

.class.class.class

Figure 4.3: The (simplified) architecture of TamiFlex [BSS+11] and the parts re-
purposed as a dynamic analysis

4.1.3 Developing Tailored Profilers in a DSL: DiSL

Writing a profiler from scratch is often a measure of last resort. Alas, during the
exploration stage of benchmark-suite design, this is sometimes necessary when the
desired metric requires data not obtainable by re-using existing profilers or by re-
purposing existing tools. In such cases, domain-specific languages can alleviate the
designer’s burden by both abstracting away from low-level details and by providing
a more convenient, expressive syntax to specify the events of interest during the
benchmarks’ execution.

4.1 Approaches 35

1 Array.newInstance;¶
2 java.lang.String[];¶
3 java.util.Arrays.copyOf;2245;;
4 Class.forName;¶
5 org.dacapo.harness.Fop;¶
6 org.dacapo.harness.TestHarness.findClass;281;;
7 Constructor.newInstance;¶
8 <org.dacapo.harness.Fop: void <init>(....Config,java.io.File)>;¶
9 org.dacapo.harness.TestHarness.runBenchmark;211

10 Method.getName;¶
11 <org.apache.fop.cli.Main: void main(java.lang.String[])>;¶
12 java.lang.Class.searchMethods;
13 Method.invoke;¶
14 <org.apache.fop.cli.Main: void startFOP(java.lang.String[])>;¶
15 org.dacapo.harness.Fop.iterate;41

Figure 4.4: Sample output of TamiFlex (refl.log)

Case Study
In the domain of dynamic program instrumentation, DiSL [MVZ+12]4 is one

such language. I successfully applied DiSL to a whole family of dynamic analy-
ses which record per-object profiles. To do so, such analyses typically maintain
a so-called shadow heap; for each “regular” object allocated on the benchmark’s
heap, another object is allocated on the shadow heap. Now, correctly main-
taining a shadow heap is not trivial: First, all object allocations (including ones
of multi-dimensional arrays and reflective ones) need to be instrumented. Sec-
ond, the shadow heap needs to be properly isolated from the benchmark’s regular
heap; shadow objects should only be allocated for regular objects but not for other
shadow objects. Moreover, shadow objects should not keep regular objects alive
longer than necessary.

To spare other developers this effort, I used DiSL to encapsulate the handling
of the shadow heap in a re-usable library.5 Essentially, this library consists of two
parts: the instrumentation logic and the runtime classes. First, I will discuss the
instrumentation logic sketched in Listing 4.2. DiSL allows one to specify instrumen-
tation tasks in (a subset of) plain Java. Each method hereby constitutes a so-called
snippet [MVZ+12, Section 3.1], which is executed after every successful object al-

4 See http://dag.inf.usi.ch/projects/disl/.
5 See http://www.disl.scalabench.org/modules/shadowheap-disl-analysis/.

36 4 Rapidly Prototyping Dynamic Analyses

http://dag.inf.usi.ch/projects/disl/
http://www.disl.scalabench.org/modules/shadowheap-disl-analysis/

1 public class ShadowHeapInstrumentation {
2

3 @AfterReturning(marker=BytecodeMarker.class,
4 args="new,newarray,anewarray")
5 public static void objectAllocated(DynamicContext dc,
6 AllocationSiteStaticContext sc) {
7 Object obj = dc.getStackValue(0, Object.class);
8 String site = sc.getAllocationSite();
9 ShadowHeapRuntime.get().objectAllocated(obj, site);

10 }
11

12 @AfterReturning(marker=BytecodeMarker.class,
13 args="multianewarray")
14 public static void multiArrayAllocated(DynamicContext dc,
15 AllocationSiteStaticContext sc) {
16 Object multiarray = dc.getStackValue(0, Object.class);
17 String site = sc.getAllocationSite();
18 ShadowHeapRuntime.get().multiArrayAllocated(multiarray, site);
19 }
20

21 @AfterReturning(marker = BodyMarker.class,
22 scope = "Object Constructor.newInstance(Object[])")
23 public static void objectAllocatedReflectively(DynamicContext dc,
24 AllocationSiteStaticContext sc) {
25 Object obj = dc.getStackValue(0, Object.class);
26 String site = sc.getReflectiveAllocationSite();
27 ShadowHeapRuntime.get().objectAllocated(obj, site);
28 }
29 ...
30 }

Listing 4.2: DiSL class instrumenting object allocations

location (@AfterReturning). Within the snippet, contexts give access to both the
newly allocated object on the operand stack (DynamicContext) and to a unique
identifier for the allocation site in question (AllocationSiteStaticContext).
While the dynamic context [MVZ+12, Section 3.6] is built into DiSL, the static
context [MVZ+12, Section 3.5] is tailored to the analysis task at hand. Once the
context information is available, control is passed from the snippet to the analysis’

4.1 Approaches 37

1 public abstract class ShadowHeapRuntime<T extends ShadowObject> {
2

3 public abstract T createShadowObject(Object obj, String site);
4

5 public T getShadowObject(Object obj) {
6 return shadowHeap.getUnchecked(obj);
7 }
8

9 public void objectAllocated(Object obj, String site) {
10 T shadowObj = createShadowObject(obj, site);
11 shadowHeap.put(obj, shadowObj);
12 }
13

14 public void multiArrayAllocated(Object array, String site) {
15 if (array.getClass().getComponentType().isArray()) {
16 for (int i = 0; i < Array.getLength(array); i++) {
17 if (Array.get(array, i) != null)
18 multiArrayAllocated(Array.get(array, i), site);
19 }
20 }
21 objectAllocated(array, allocationSite);
22 }
23 ...
24 }

Listing 4.3: Runtime class managing the shadow heap

runtime class (ShadowHeapRuntime) or more precisely to a Singleton thereof. I will
discuss this class, shown in Listing 4.3, next.

The runtime class’s primary responsibility is to maintain a shadow heap that is
isolated from the benchmark’s regular heap. This can be achieved through the care-
ful use of weak references in an appropriate, map-like data structure (not shown).
As the precise nature of the shadow objects varies from analysis to analysis, depend-
ing on the profile recorded per object, a Factory Method (createShadowObject) is
responsible for creating the shadow objects. While interaction with the Single-
ton pattern is not totally seamless [ABB+12], this design allows for re-use of the
shadow-heap functionality by other analyses. Moreover, these concrete analyses
need not concern themselves with the JVM’s rather complex handling of multi-

38 4 Rapidly Prototyping Dynamic Analyses

1 public class HashCodeInstrumentation {
2

3 @Before(marker=BytecodeMarker.class, guard=ObjectHashCode.class,
4 args="invokevirtual,invokeinterface")
5 public static void hashCodeCalled(DynamicContext dc) {
6 Object obj = dc.getStackValue(0, Object.class);
7 HashCodeRuntime.get().hashCodeCalled(obj);
8 }
9

10 @Before(marker=BytecodeMarker.class, guard=ObjectHashCode.class,
11 args="invokespecial")
12 public static void superHashCodeCalled(DynamicContext dc,
13 InvocationStaticContext sc, ClassContext cc) {
14 Object obj = dc.getStackValue(0, Object.class);
15 Class superClass = cc.asClass(sc.thisClassSuperName());
16 HashCodeRuntime.get().superHashCodeCalled(obj, superClass);
17 }
18

19 @Before(marker=BytecodeMarker.class,
20 guard=SystemIdentityHashCode.class, args="invokestatic")
21 public static void identityHashCodeCalled(DynamicContext dc) {
22 Object obj = dc.getStackValue(0, Object.class);
23 HashCodeRuntime.get().identityHashCodeCalled(obj);
24 }
25 }

Listing 4.4: DiSL class instrumenting hash-code calls

dimensional arrays; each subarray is automatically added to the shadow heap as a
shadow object of its own (Lines 14–22).

One concrete analysis that I implemented records how often an object’s hash-
code is computed (cf. Section 5.4.15). This of course necessitates that further
events are covered by the instrumentation, namely the calls to Object.hashCode()
and System.identityHashCode(Object). As Listing 4.4 shows, the resulting
instrumentation logic is simple and need not concern itself with object alloca-
tions at all. Simple guards [MVZ+12, Section 3.8] select the desired method
calls (IdentityHashCode, ObjectHashCode). Like in Listing 4.2, the snippets pri-
marily pass context information to the runtime. The only challenge in implement-
ing these snippets lies in correctly handling super-calls; from an invokespecial

4.1 Approaches 39

instruction alone it is impossible6 to determine the exact target method that will
be invoked at runtime. Thus, information about the super-class of the currently
instrumented class needs to be passed on to the runtime, shown in Listing 4.5, as
well. The shadow object implementation can then use this information to deter-
mine which implementation of Object.hashCode() was meant, i.e. at which level
in the class hierarchy this implementation resides (getHashCodeLevel). At present,
this requires the use of reflection. Unfortunately, reflective class introspection may
trigger further class loading; thus, the profiler could potentially interfere with the
benchmark’s execution. I have not, however, observed this in practice.

Now, the shadow object’s representation shown in Listing 4.5 becomes quite
simple; it is a simple wrapper around a backing array of counters. Other dynamic
analyses developed as part of this thesis (cf. Sections 5.4.11–5.4.12), however, keep
track of information for each of the shadowed object’s fields. As in the case of the
abstract runtime class, which leaves the concrete class of shadow objects unspeci-
fied through the use the Factory Method pattern, I also provide an abstract shadow
object class, which handles the shadow fields in an abstract manner; again, a Fac-
tory Method is responsible for creating the concrete objects, which keep track of
accesses to the shadowed field in question.

Based on my positive experience with TamiFlex’s record-based log-file format, all
tailored profilers I implemented use a similar format (tab-separated values). This
makes processing the profiles with AWK [AKW88] straight-forward again.

4.2 Discussion

In this chapter, I have described my experiences with three approaches to rapidly
prototype the dynamic analyses required while designing a new benchmark suite.
Table 4.1 summarizes these experiences. I now contrast the three case-studies with
an approach using profilers written from scratch. While I have not conducted an ex-
plicit case study, I here draw from experiences in the development of JP2, TamiFlex,
DiSL, and also Elephant Tracks [RGM11] to provide the data for Table 4.1’s last col-
umn. Note, however, that none of these four tools was developed from scratch and
specifically for the purpose of this thesis. In particular, Elephant Tracks played a
role similar to JP2; I simply re-used the profiler by applying offline analyses to the
profiles produced by it.

To assess the programming effort required by the different approaches, one has
to distinguish between customizing the online and offline stages of the profiling

6 In pre-Java 1.0 days, an invokespecial instruction specified the target method statically; the
shown instrumentation does not support this obsolete behaviour (ACC_SUPER flag unset).

40 4 Rapidly Prototyping Dynamic Analyses

1 public class HashCodeRuntime<HashCodeSO> {
2

3 public HashCodeSO createShadowObject(Object obj, String site) {
4 return new HashCodeShadowObject(obj, site);
5 }
6

7 public void hashCodeCalled(Object obj) {
8 if (obj != null && isSaveToProcessEvent())
9 getShadowObject(obj).hashCodeCalled();

10 }
11

12 public void superHashCodeCalled(Object obj, Class<?> clazz) {
13 if (obj != null && isSaveToProcessEvent())
14 getShadowObject(obj).superHashCodeCalled(clazz);
15 }
16 ...
17 }
18

19 public class HashCodeSO implements ShadowObject {
20

21 private String className, site;
22 private int[] hashCodeCalls;
23

24 public synchronized void hashCodeCalled() {
25 hashCodeCalls[hashCodeCalls.length - 1]++;
26 }
27

28 public synchronized void superHashCodeCalled(Class<?> bound) {
29 hashCodeCalls[getHashCodeLevel(bound)]++;
30 }
31 ...
32 }

Listing 4.5: Runtime classes keeping track of per-object hash-code calls

process. For the former stage, the language choice is limited to the implemen-
tation language7 of the profiler itself, which is typically Java or C++, if such a
customization is possible at all. For the latter stage, the language choice is nor-

7 Of course, using, e.g., Scala to customize a profiler written in Java is perfectly feasible.

4.2 Discussion 41

Re-using Re-purposing Developing Profilers
Profilers Existing Tools in a DSL from scratch

Case study JP2 TamiFlex DiSL —

LoC (online) 10 to 100 n/a 100 to 1000 1000 to 10 000
Language Java n/a Java + DiSL Java / C++

Declarativeness imperative n/a semi-decl. imperative

LoC (offline) 10 to 100 1 to 10 1 to 10 depends
Language XQuery AWK AWK depends

Declarativeness declarative semi-decl. semi-decl. depends

Customizabilty low low high high

Table 4.1: Approaches to prototyping dynamic analyses and their trade-offs

mally unlimited, as all profilers produce profiles in either textual or binary formats,
which can then be processed offline. It is thus often possible to use languages which
are at least semi- if not fully declarative, thereby reducing the lines of code (LoC)
needed to express the desired metrics. Depending on the intrinsic complexity of
the recorded data, languages like AWK [AKW88] or XQuery [BCF+10] are good
choices. AWK excels in handling simple, record-based data, whereas XQuery is
needed if the data’s intrinsic structure (e.g. calling-context trees or classfiles) is
more complex. This also explains the slightly larger amount of offline-processing
code that had to be written in the JP2 case study compared to the TamiFlex and
DiSL case studies.

42 4 Rapidly Prototyping Dynamic Analyses

5 A Comparison of Java and Scala Benchmarks Using VM-independent
Metrics

In Chapter 3, I have described the Scala benchmark suite devised for this the-
sis [SMSB11]. In this chapter, I will compare and contrast it with a popular and
well-studied Java benchmark suite, namely the DaCapo 9.12 suite [BGH+06]. First,
Section 5.1 stresses the importance of VM-independent metrics for such an endeav-
our. This section will also motivate the use of dynamic rather than static metrics.
Next, Section 5.2 describes the profilers used to collect these dynamic metrics be-
fore Section 5.3 describes any limitations that might threaten the validity of my
findings. The main part of this chapter, Section 5.4, then presents the results of the
individual analyses. A summary of the findings concludes this chapter.

Parts of this chapter have been published before:

• Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. Da
Capo con Scala: Design and analysis of a Scala benchmark suite for the
Java Virtual Machine. In Proceedings of the 26th Conference on Object-
Oriented Programing, Systems, Languages, and Applications (OOPSLA), 2011.
doi:10.1145/2048066.2048118

• Andreas Sewe, Mira Mezini, Aibek Sarimbekov, Danilo Ansaloni, Walter
Binder, Nathan Ricci, and Samuel Z. Guyer. new Scala() instanceof Java:
A comparison of the memory behaviour of Java and Scala programs. In
Proceedings of the International Symposium on Memory Management (ISMM),
2012. doi:10.1145/2258996.2259010

5.1 The Argument for VM-independent, Dynamic Metrics

Unlike several other researchers [BGH+06, EGDB03], I refrain entirely from using
both the JVM’s built-in profiling logic and the hardware’s performance counters to
characterize the benchmark suites’ workloads. Instead, I rely exclusively on met-
rics which are independent of both the specific JVM and architecture, as it has
been shown that the JVM used can have a large impact on the results, in par-
ticular for short-running benchmarks [EGDB03]. Another, pragmatic reason for
using bytecode-based metrics in particular, which are by their very nature VM-
independent, is that doing so does not obscure the contribution of the source lan-
guage and its compiler as much as using metrics based on machine-code would;

43

http://dx.doi.org/10.1145/2048066.2048118
http://dx.doi.org/10.1145/2258996.2259010

the JVM’s just-in-time compiler therefore cannot influence the measurements’ re-
sults. Also, none of the dynamic analyses employed is based on sampling, as is
often the case for a JVM’s built-in profiling logic [AFG+00]; instead, the profilers I
use capture the relevant events in their entirety. This avoids any measurement bias
introduced by the choice of sampling interval [MDHS10].

All metrics employed in this chapter are dynamic ones, i.e. they were com-
puted from an actual execution of the benchmark in question. Just like the use
of VM-independent metrics, this choice is motivated by the desire to eliminate all
influences of any particular implementation, be it a JVM or static analysis, on the
measurement results. Nevertheless, the metrics have been chosen carefully such
that the results are relevant to the optimizations performed by modern JVMs; thus,
they can guide implementers towards JVMs that handle both Java and Scala well.

One has to keep in mind, however, that dynamic metrics can hint at optimization
opportunities which any concrete JVM may be unable to exploit. If my measure-
ments, e.g., indicate that a call site targets a single method only (cf. Section 5.4.2)
and is thus suitable for inlining, it simply means that the call site had just a single
target method during the observed benchmark execution; the call site in question
may or may not be monomorphic during other executions. Also, a concrete JVM
may or may not be able to infer that the call site is de-facto monomorphic due to the
inevitable limitations of the static analyses employed by its just-in-time compiler.
My results therefore mark the upper bound of what a JVM can infer.

5.2 Profilers

In this section, I will briefly describe the different profilers chosen for gathering
the data presented in Section 5.4, in particular with respect to any inaccuracies
these choices entail. Not only are the measured metrics VM-independent, but the
profilers themselves are also independent from any particular JVM; in particular,
they require no modifications to the JVM itself. All measurements can be conducted
on any standard Java-6-compatible JVM and thus easily be reproduced by others.

TamiFlex
I have re-purposed the TamiFlex tool [BSSM10, BSS+11] (cf. Section 4.1.2) to

gather information about the use of reflection by the benchmarks (Section 5.4.6).
The profiles produced by TamiFlex itself are entirely accurate in that they include
any use of reflection, including reflection used during VM startup and shutdown as
well as by the benchmark harness itself. While such use undoubtedly exists,1 the

1 In fact, the use of reflection by the benchmark harness of the latest DaCapo release was the
primary motivation for the creation of TamiFlex.

44 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

number of calls and accesses, respectively, is small and does not dilute the mea-
surements. There is one minor inaccuracy, however, which may affect the metrics
presented in Section 5.4.6: Call sites are identified by line number rather than in-
struction offset; this may exaggerate the number of receiver objects a call site sees,
if multiple call sites are accidentally conflated.

JP2
I used the appropriately-modified JP2 calling-context profiler (cf. Section 4.1.1)

to collect calling-context trees [ABL97] decorated with the execution frequencies
of the respective methods’ basic blocks. The rich profiles collected by the call-
site aware JP2 make it possible to derive most code-related metrics from a single,
consistent set of measurements: instruction mix (Section 5.4.1), call-site polymor-
phism (Section 5.4.2), argument passing (Section 5.4.4), method and basic block
hotness (Section 5.4.5), and the use of boxed types (Section 5.4.7).

A specially-written callback [SMB+11] ensures that only the benchmark itself is
profiled by JP2; this includes both the benchmark’s setup and its actual iteration
but excludes JVM startup and shutdown as well as the benchmark’s harness. This
methodology guarantees that the results are not diluted by startup and shutdown
code [DDHV03]. Also, the Scala benchmarks remain undiluted by Java code used
only in the harness. Some Scala benchmarks still execute a significant amount of
Java code, though (cf. Section 3.2.3).

Elephant Tracks
The existing Elephant Tracks profiler [RGM11]2 has been used to collect

garbage-collection traces from which many memory-related metrics can be derived:
general garbage-collector workload (Section 5.4.8), object churn (Section 5.4.9),
and object sizes (Section 5.4.10). Elephant Tracks implements the Merlin algo-
rithm [HBM+06] to produce exact garbage collection traces. The profiler itself
relies on a combination of bytecode instrumentation and JVMTI (JVM Tool Inter-
face) callbacks to maintain a shadow heap on which the Merlin algorithm then
operates. Bytecode instrumentation is done in a separate JVM process; thus, the
instrumentation activity does not disturb the execution of the analyzed program.

The traces produced by Elephant Tracks have been analyzed offline using a
Garbage Collection simulation framework (GC Simulator). The GC simulator
makes it possible to derive the theoretical garbage-collector workload of a par-
ticular program run independently of any implementation decisions that might be
made in an actual garbage collector. Unfortunately, the use of Elephant Tracks is
quite heavy-weight; for some benchmarks, the resulting traces occupy hundreds of

2 See http://www.cs.tufts.edu/research/redline/elephantTracks/.

5.2 Profilers 45

http://www.cs.tufts.edu/research/redline/elephantTracks/

gibibytes, even in compressed form. In one case (the tmt Scala benchmark) this
required me to reduce the benchmark’s input size.

Tailored metrics written in DiSL
I complemented Elephant Tracks with several light-weight analyses writ-

ten in DiSL [MVZ+12], a domain-specific language for bytecode instrumenta-
tion, to compute metrics not derivable from the traces produced by that pro-
filer: immutability (Section 5.4.11), zero initialization (Section 5.4.12), shar-
ing (Section 5.4.13), synchronization (Section 5.4.14), and the use of identity-
hashcodes (Section 5.4.15). While Elephant Tracks is an existing memory profiler,
the DiSL-based dynamic analyses were specifically written for the purpose.

DiSL allows rapid development of efficient dynamic program analysis tools
with complete code-coverage, i.e. the resulting profilers can instrument all exe-
cuted bytecode instructions, including those from the Java runtime library. Like
Elephant Tracks, DiSL’s implementation performs bytecode instrumentation in a
separate JVM. Unlike Elephant Tracks, however, the custom analyses I developed
maintain their data structures in the JVM process under evaluation. This approach
requires to exclude the so-called reference-handler thread, which the JVM uses to
process weak references, from the analyses.

5.3 Threats to Validity

Choice of Workloads
The benchmarks from the DaCapo benchmark suite [BGH+06], which represent

real-world “Java programs,” have been widely accepted by researchers in diverse
communities, from the memory-management community to the static analysis com-
munity. My novel Scala benchmark suite [SMSB11] is much younger than its Java
counterpart, having been publicly released in April 2011. It has therefore not yet
gained the same degree of acceptance as the DaCapo benchmark suite.

Since a few benchmarks (tradebeans, tradesoap, and actors) contain hard-coded
timeouts, they had to be excluded from any measurements where the profiler in-
curred a large overhead; the overhead triggers the timeout and causes the bench-
mark to exit prematurely. Another benchmark (tomcat) had to be excluded from
several measurements because it exhibits a “controlled” stack overflow3 which un-
fortunately interferes with the instrumentation-based profilers written in DiSL. Fi-
nally, one benchmark (scalatest) requires that line number information is correctly
preserved during bytecode instrumentation. This again interferes with the profilers

3 See http://sourceforge.net/tracker/?func=detail&atid=861957&aid=2934521&group_

id=172498.

46 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

http://sourceforge.net/tracker/?func=detail&atid=861957&aid=2934521&group_id=172498
http://sourceforge.net/tracker/?func=detail&atid=861957&aid=2934521&group_id=172498

written in DiSL; the current version of DiSL’s instrumentation agent does not handle
line numbers correctly. This is not an permanent restriction, though, but merely a
consequence of the current state of DiSL’s implementation.

For one benchmark (tmt), the overhead incurred by the dynamic analyses was
so high to make it infeasible to use the benchmarks’ default input size. In this case,
which is marked accordingly (tmtsmall), I used the small input size.

Choice of Scala Version
There is one further threat to validity concerning the Scala benchmarks: All of

them are written in Scala 2.8.x. As both the Scala library and the Scala compiler are
subject to much faster evolution than their Java counterparts, it is unclear whether
all findings carry over to newer versions of Scala.4 This should not be seen as a
shortcoming of this thesis, though, but as a fruitful direction for future work (cf.
Section 8.1) in which to trace the impact of the Scala language’s evolution.

Startup/Shutdown
For performance evaluations it is typically undesirable to include the startup and

shutdown activity of both JVM and benchmark harness in the actual measurements.
The DaCapo benchmark suite thus offers a callback mechanism which allows one to
limit measurements to the benchmark iteration itself. But since the DaCapo group
designed this mechanism with performance measurements in mind, it is not always
the best solution during workload characterization tasks like mine.

Still, all code-related measurements performed with JP2 make use of the call-
back mechanism (cf. Section 4.1.1) to exclude both VM startup and shutdown as
well as the benchmark’s harness. The code-related measurements performed using
TamiFlex, however, do include startup, shutdown, and the benchmark harness, as
TamiFlex, being a tool re-purposed for profiling, does not offer a way to use the
benchmark suites’ callback mechanism.

In contrast to the code-related measurements, all memory-related measurements
do not make use of the callback mechanism. This is not because of technical limita-
tions but because the callback mechanism it is not very suitable for characterizing
the memory behaviour of benchmarks: Objects that are used during the benchmark
iteration may have been allocated well in advance, i.e. during startup. The mea-
surements are thus based on the overall execution of the JVM process for a single
benchmark run. To compensate for the startup and shutdown activities, albeit in
an informal way, I present results for the dummy benchmark (cf. Section 3.2.4),
which performs no work of its own. This allows a comparison of the results for
a complete benchmark run, i.e. startup, iteration, and shutdown, with a run con-

4 As of this writing, Scala 2.9.2 is the latest stable version.

5.3 Threats to Validity 47

sisting of startup and shutdown only. This methodology is similar to the use of an
“empty” program by Dufour et al. [DDHV03].

Dynamic Imprecision
In this chapter, I exclusively resort to dynamic metrics (cf. Section 5.1). On the

upside, my results are therefore not subject to static imprecision [DRS08], as any
static analysis is by nature pessimistic. The results are therefore not disturbed by
the intricacies of a particular static analysis but directly mirror each benchmark’s
behaviour. On the downside, some metrics may optimistically hint at optimization
opportunities which only an omniscient just-in-time compiler or garbage collector
would be able to exploit. Any real-world compiler or collector itself needs to re-
sort to static analysis and hence tends towards pessimism rather than optimism,
although techniques like dynamic deoptimization may alleviate this by permitting
optimizations being carried out speculatively [AFG+05]. When a particular met-
ric is subject to dynamic imprecision [DRS08], i.e. when the profiler cannot deliver
entirely accurate results, this is mentioned for the metric in question.

5.4 Results

In the following, I will describe the results I have obtained using VM-independent,
dynamic metrics. These results fall into two broad categories: Metrics that de-
scribe the structure and execution properties of the code itself [SMSB11] (Sec-
tions 5.4.1–5.4.7) and metrics that describe the memory behaviour this code ex-
hibits [SMSB11] (Sections 5.4.8–5.4.15).

5.4.1 Instruction Mix

The instruction mix of a benchmark, i.e. which instructions are executed during
its execution and how often, usually provides a first indication whether the given
benchmark is “array intensive” or “floating-point intensive.” Moreover, it may ex-
hibit patterns that allow one to distinguish between Scala and Java code based on
the respective benchmarks’ instruction mix alone.

To obtain the instruction mix of the 14 Java and 12 Scala benchmarks I have
used the JP2 profiler together with a straight-forward analysis [SSB+11] written in
XQuery [BCF+10]. The measurements resulted in precise frequency counts for all
156 instructions present in the JVM instruction set.5

5 This number is smaller than the actual number of JVM instructions (201); mere abbreviations
like, e.g. aload_0 and goto have been treated as aload and goto_w, respectively. The wide
modifier (“instruction” 196) is treated similarly.

48 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

While related work on workload characterization either considers all 156
bytecode instructions individually [CMS07, DHPW01] or groups them manu-
ally [DHPW01, DDHV03], I applied principal component analysis (PCA) [Pea01]
to discern meaningful groupings of instructions. This approach avoids both the
extreme low-level view of the former works as well as the inherent subjectivity of
the latter. Instead, it automatically offers a higher-level view of the instruction mix
which is objective rather than being biased by one’s intuition of what groupings
might be meaningful (array operations, floating-point operations, etc.).

Based on the measurements with JP2, one can represent each benchmark by a
vector X in a 156-dimensional space. The vector’s components X i are the relative
execution frequencies of the individual instructions, i.e.

∑156
i=1 X i = 1. As such a

high-dimensional vector space is hard to comprehend, I applied PCA to reduce the
dimensionality of the data. First, each component X i is standardized to zero mean,
i.e. Yi = X i − X i . It is not standardized to unit variance, though. In other words, I
applied PCA with the covariance rather than the correlation matrix; this is justified
as using the latter would exaggerate rarely-executed instructions whose execution
frequency varies little across benchmarks (e.g. nop, multianewarray, floating-point
coercions). PCA now yields a new set of vectors, whose uncorrelated components
Zi =
∑

j ai jYj are called principal components.

Those principal components which account for a low variance only, i.e. those
which do not discriminate the benchmarks well, were discarded. Just 4 compo-
nents were thus retained and account for 58.9 %, 15.3 %, 6.4 %, and 5.6 %, respec-
tively, of the variance present in the data. Together, these four components explain
more than 86.2 % of the total variance. In contrast, no single discarded component
accounts for more than 2.7 % of the total variance. Figure 5.1 depicts the resulting
loadings, i.e. the weights ai j ∈ [−1,+1], of the four retained principal components.

These principal components form the basis of the automatic grouping of in-
structions. This grouping needs some interpretation, though. For the first
component, for example, several instructions exhibit a strong positive correla-
tion (
�

�a1 j

�

� > 0.1) with the first principal component: reference loads (aload),
method calls (invokestatic, invokevirtual, . . .), and several kinds of method re-
turn (return, areturn, and ireturn). Likewise, one group of three instructions ex-
hibits an equally strong negative correlation: integer variable manipulations (iinc,
iload, and istore). The first component may thus be interpreted as contrasting
inter-procedural with intra-procedural control flow, i.e. method calls and their cor-
responding returns with “counting” loops controlled by integer variables. This is
further substantiated by the fact that the if_cmpge instruction commonly found
in such loops is also negatively correlated. The second principal component is
governed by floating-point manipulations (fload, fmul, and fstore) and field ac-

5.4 Results 49

−1 0 +1
iload
iinc

getfield

putfield

fload

fmul
fstore

fadd

aload
invokestatic
invokevirtual

return
ifeq

instanceof

j = 1

−1 0 +1

j = 2

−1 0 +1

j = 3

−1 0 +1

j = 4

Figure 5.1: The top four principal components that account for 86.2 % of variance
in the benchmarks’ instruction mixes

50 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

−0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.1

−0.05

0

0.05

0.1

0.15

avrora

batik
eclipse

fop
h2

jythonluindex

lusearch pmd

sunflow

tomcat tradebeans

tradesoap
xalan

actors

apparat
factorie

kiama
scalacscaladoc

scalap scalariform

scalatest

scalaxb
specs

tmt

1st Principal Component

2
nd

P
rincip

alC
om

p
onent

Java benchmarks
Scala benchmarks

Figure 5.2: The Java and Scala benchmarks with respect to the first and second
principal component

cesses (getfield, putfield), all of which are positively correlated. This may be
interpreted as representing both float-based numerical computations as well as
object-relative field accesses. Note that the getfield instruction, e.g., exhibits a
small negative correlation with the first component, but a large positive correlation
with the second. This is a fundamental property of the groupings produced by PCA;
a single instruction may belong, to varying degree, to several groups.

Figure 5.2 shows to what degree both the Scala and Java benchmarks are af-
fected by the first two principal components: All Scala benchmarks, with the
exception of actors, exhibit high values for the first component, with the scalat-
est benchmark with its heavy usage of the Java runtime (cf. Section 3.2.3) being a
borderline case. Likewise, the actors benchmark spends a significant portion of exe-
cution in those parts of the Scala runtime written in Java. This shows that the Scala

5.4 Results 51

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04
avrora

batik

eclipse

fop

h2

jython luindex

lusearch
pmd

sunflow

tomcat

tradebeans

tradesoap
xalan

actors

apparat

factorie

kiama
scalac

scaladoc scalap scalariformscalatest

scalaxb

specs

tmt

3rd Principal Component
4
th
P
rincip

alC
om

p
onent

Java benchmarks
Scala benchmarks

Figure 5.3: The Java and Scala benchmarks with respect to the third and fourth
principal component

benchmarks strongly favour inter-procedural over intra-procedural control flow. In
fact, they do so to a larger degree than most of the considered Java benchmarks.

The third principal component correlates positively with calls that are statically
dispatched (invokespecial and invokestatic) and negatively with calls that are
dynamically dispatched (invokevirtual and invokeinterface). Moreover, other
forms of dynamic type checks (checkcast, instanceof) also contribute negatively
to this component. These two instructions, together with the invokevirtual in-
struction, are the hallmark of Scala’s pattern matching on so-called case classes.
The fourth principal component again correlates (negatively) with various floating-
point operations, but is otherwise hard to grasp intuitively. This illustrates the
prime limitation of a PCA-based approach to analyzing the benchmark’s instruction
mix; the resulting groups are not always easy to conceptualize. Still, as Figure 5.3

52 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

−0.1

0

0.1

1st Principal Component

Java benchmarks
Scala benchmarks

2nd Principal Component

3
rd
P
rincip

alC
om

p
onent

−0.1 0 0.1

−0.1

0

0.1

−0.1 0 0.1

4
th
P
rincip

alC
om

p
onent

Figure 5.4: The Java and Scala benchmarks with respect to the first four principal
components

shows, even such a hard-to-conceptualize component has significant discrimina-
tory power, both with respect to the Java and Scala benchmarks, with the two Java
benchmarks avrora and sunflow marking opposite ends of the spectrum.

What is noteworthy in Figure 5.2 and particularly in Figure 5.3 is that bench-
marks like factorie and tmt, which both stem from the same application do-
main (here: machine learning) nevertheless exhibit distinctive instruction mixes.
This justifies their joint inclusion into the suite.

For the sake of completeness, Figure 5.4 depicts the remaining combinations of
components. Note how the plot marks line up on the x-axis for each column and
on the y-axis for each row. Also note how the vertical spread of the plot marks

5.4 Results 53

is smaller than the horizontal spread; the third and fourth components (y-axes)
exhibit lower variance than the first and second components (x-axes).

5.4.2 Call-Site Polymorphism

In object-oriented languages like Java or Scala, polymorphism plays an important
role. For the JVM, however, call sites that potentially target different methods
pose a challenge, as dynamic dispatch hinders method inlining [DA99a], which
is an important optimization (cf. Section 6.4). At the level of Java bytecode, such
dynamically-dispatched calls take the form of invokevirtual or invokeinterface
instructions, whereas statically-dispatched calls take the form of invokespecial
and invokestatic instructions. Figures 5.5a and 5.5b contrast the relative oc-
currences of these instructions in the live part of the Java and Scala benchmarks.
Here, only instructions executed at least once have been counted; dormant code is
ignored. The numbers are remarkably similar for the Scala and Java benchmarks,
with the vertical bars denoting the respective arithmetic mean. There is only a
slight shift from invokevirtual to invokeinterface instructions, which is due to
the way the Scala compiler unties inheritance and subtyping [Sch05, Chapter 2]
when implementing traits (cf. Section 2.3.1).

But the numbers in these figures provide only a static view. At runtime, the in-
structions’ actual execution frequencies may differ. Figures 5.6a and 5.6b thus show
the relative number of actual calls made via the corresponding call sites. Here, the
numbers for the Scala and Java benchmarks diverge, with the Scala benchmarks
exhibiting a disproportionate amount of calls made by both invokeinterface and
invokestatic instructions. The translation strategy for traits (cf. Section 2.3.1),
with its alternating pattern of invokestatic and invokeinterface instructions,
explains much of it. The large number of invokestatic calls is additionally ex-
plained by the use of Singleton objects in general and by companion objects in
particular (cf. Section 2.3.3). The divergence is even more pronounced, specifi-
cally with respect to calls made by invokeinterface, when comparing the num-
bers for Scala with results obtained for older Java benchmark suites; Gregg et
al. [GPW05] observed only between 0 % (Java Grande benchmark suite) and
5.2 % (SPEC JVM98) invokeinterface calls. Scala code can thus be expected
to benefit more than Java code from techniques for the efficient execution of the
invokeinterface instruction [ACFG01].

Polymorphic calls involve dynamic binding, as the target method may depend on
the runtime type of the object receiving the call. Therefore, Dufour et al. [DDHV03]
distinguish between the number of target methods and the number of receiver

54 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

avrora
batik

eclipse
fop
h2

jython
luindex

lusearch
pmd

sunflow
tomcat

tradebeans
tradesoap

xalan

invokevirtual . . .interface . . .special . . .static

Figure 5.5a: The relative number of call sites using invokevirtual,
invokeinterface, invokespecial, and invokestatic instruc-
tions for the Java benchmarks

types for polymorphic call sites, as there are typically more of the latter than of the
former; after all, not all subclasses override all methods.

Both dynamic metrics can be relevant to compiler optimizations [DDHV03]:
The number of receiver types for polymorphic call sites is relevant for inline
caching [HCU91], an optimization technique commonly used in runtimes for
dynamically-typed languages.6 In contrast, the number of target methods for poly-
morphic call sites is relevant for method inlining [DA99b], an extremely effective
compiler optimization. As modern JVMs predominantly rely on virtual method
tables (vtables) in combination with method inlining to implement polymorphic

6 The Scala compiler relies on a similar compilation technique using Java reflection and polymor-
phic inline caches for structural types [DO09b]. But this technique is rarely applied within the
JVM itself.

5.4 Results 55

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

actors
apparat
factorie

kiama
scalac

scaladoc
scalap

scalariform
scalatest

scalaxb
specs

tmt

invokevirtual . . .interface . . .special . . .static

Figure 5.5b: The relative number of call sites using invokevirtual,
invokeinterface, invokespecial, and invokestatic instruc-
tions for the Scala benchmarks

method calls, I did not investigate the number of receiver types in this thesis, but
focus on the number of target methods.

If a call site has only a single target method, the target method can be (specu-
latively) inlined. Moreover, even if a call site has more than one target, inlining is
still possible with appropriate guards in place [DA99b]. Only if the number of pos-
sible targets grows too large, i.e. if the call site is megamorphic, inlining becomes
infeasible. In the following, I will thus investigate the distribution of the number
target methods in the different Java and Scala benchmarks.

Figures 5.7a and 5.7b (respectively 5.8a and 5.8b) show histograms of the poten-
tially polymorphic call sites (invokevirtual, invokeinterface), presenting the
number of call sites (respectively the number of calls for call sites) with x ≥ 1 tar-
get methods. In Figures 5.7a and 5.7b, the actual number of invocations at a call
site is not taken into account; call sites are merely counted. For example, if a call
site s targets two methods m and n, whereby m is invoked ms times and n is invoked
ns times, then call site s will be counted once for the bar at x = 2; the actual num-

56 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

avrora
batik

eclipse
fop
h2

jython
luindex

lusearch
pmd

sunflow
tomcat

tradebeans
tradesoap

xalan

invokevirtual . . .interface . . .special . . .static

Figure 5.6a: The relative number of calls made using invokevirtual,
invokeinterface, invokespecial, and invokestatic instruc-
tions for the Java benchmarks

bers ms and ns of invocations will be ignored. In contrast to Figures 5.7a and 5.7b,
Figures 5.8a and 5.8b do take these numbers into account. The call site s from the
previous example thus contributes ms + ns to the bar at x = 2. These latter figures
therefore mirror the analysis on the polymorphicity of method calls performed by
Gregg et al. [GPW05, Section 3.3] for the Java benchmarks from the Java Grande
and SPEC JVM98 benchmark suites.

Figures 5.7a and 5.7b correspond to Figures 5.5a and 5.5b, whereas Figures 5.8a
and 5.8b in turn correspond to Figures 5.6a and 5.6b. Whereas the former his-
tograms show the possibility of inlining, the latter show its possible effectiveness.
Figures 5.7a–5.7b also state what fraction of call sites proved to be monomorphic
in practice. Likewise, Figures 5.8a–5.8b state what fraction of calls was made at
call sites that proved to be monomorphic during the actual benchmark run. Put

5.4 Results 57

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

actors
apparat
factorie

kiama
scalac

scaladoc
scalap

scalariform
scalatest

scalaxb
specs

tmt

invokevirtual . . .interface . . .special . . .static

Figure 5.6b: The relative number of calls made using invokevirtual,
invokeinterface, invokespecial, and invokestatic instruc-
tions for the Scala benchmarks

differently, the fractions relate the length of the histogram’s leftmost bar to the
combined lengths of all the bars.

As Figures 5.7a–5.8b are concerned with potentially polymorphic call sites, they
only consider call sites corresponding to invokevirtual or invokeinterface byte-
codes; call sites corresponding to invokespecial and invokestatic bytecodes are
excluded, as they are trivially monomorphic. Moreover, call sites that are never ex-
ecuted by the workload are excluded as well.

Like the analysis conducted by Gregg et al. for the Java Grande and SPEC JVM98
benchmark suites, my analysis shows that there exist both marked differences be-
tween the individual benchmarks and between the two benchmark suites. While
on average 96.5 % and 95.1 % of the potentially polymorphic call sites are de-facto
monomorphic for the Java and Scala benchmarks, respectively, on average only
87.5 % and 80.2 % of calls are made at one of these call sites. Nevertheless, the

58 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

101

103

105
98.2 %

#
C
al
lS

ite
s

avrora

96.3 %

batik

93.2 %

eclipse

97.4 %

fop

101

103

105
95.7 %

#
C
al
lS

ite
s

h2

98.7 %

jython

97.2 %

luindex

97.1 %

lusearch

101

103

105
94.5 %

#
C
al
lS

ite
s

pmd

97.5 %

sunflow

96.5 %

tomcat

96.8 %

tradebeans

1 8 15+

101

103

105
95.4 %

Targets

#
C
al
lS

ite
s

tradesoap

1 8 15+

97.1 %

Targets

xalan

Figure 5.7a: The number of dynamically-dispatched call sites targeting a given num-
ber of methods for the Java benchmarks, together with the fraction of
monomorphic call sites

latter numbers are still significantly higher than what Gregg et al. reported for the
Java Grande (78 %) and SPEC JVM98 benchmark suites (45 %).7

7 Gregg et al. only considered dynamically-dispatched calls made using the invokevirtual in-
struction, though; calls made using invokeinterface were ignored in their study.

5.4 Results 59

101

103

105
93.9 %

#
C
al
lS

ite
s

actors

94.7 %

apparat

93.7 %

factorie

96.1 %

kiama

101

103

105
94.8 %

#
C
al
lS

ite
s

scalac

94.5 %

scaladoc

94.6 %

scalap

95.8 %

scalariform

1 8 15+

101

103

105
96.8 %

Targets

#
C
al
lS

ite
s

scalatest

1 8 15+

96.2 %

Targets

scalaxb

1 8 15+

96.5 %

Targets

specs

1 8 15+

94.0 %

Targets

tmt

Figure 5.7b: The number of dynamically-dispatched call sites targeting a given num-
ber of methods for the Scala benchmarks, together with the fraction
of monomorphic call sites

Dynamic dispatch with respect to many different targets per call site is used more
frequently by the Scala benchmarks than by the Java benchmarks. That being said,
megamorphic call sites, i.e. call sites with 15 or more targets, are exercised by
almost all benchmarks in both the Java and Scala benchmark suites, i.e. by 10 out
of 14 and 11 out of 12 benchmarks, respectively.

Based on the significantly lower number of calls made at potentially polymorphic
yet monomorphic call sites, one may assume that the effectiveness of inlining is
significantly reduced for Scala code. But when one considers all call sites, i.e.,
when one includes the trivially-monomorphic call sites that use invokespecial
and invokestatic instructions, it turns out that the differences between Java and
Scala code are far less pronounced: For the Scala benchmarks, on average 97.1 %

60 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

101

106

1011
88.5 %

#
C
al
ls

avrora

93.6 %

batik

85.3 %

eclipse

83.4 %

fop

101

106

1011
78.5 %

#
C
al
ls

h2

84.3 %

jython

87.0 %

luindex

86.3 %

lusearch

101

106

1011
81.6 %

#
C
al
ls

pmd

95.4 %

sunflow

90.7 %

tomcat

86.6 %

tradebeans

1 8 15+

101

106

1011
89.1 %

Targets

#
C
al
ls

tradesoap

1 8 15+

95.3 %

Targets

xalan

Figure 5.8a: The number of dynamically-dispatched calls made at call sites with a
given number of targets for the Java benchmarks, together with the
fraction of calls made at monomorphic call sites

of all call sites are monomorphic and account for 89.7 % of the overall method calls.
For the Java benchmarks, on average 97.8 % of all call sites are monomorphic and
account for 91.5 % of calls. This is a direct consequence of the observation made in

5.4 Results 61

101

106

1011
77.9 %

#
C
al
ls

actors

65.5 %

apparat

83.2 %

factorie

85.7 %

kiama

101

106

1011
80.1 %

#
C
al
ls

scalac

76.0 %

scaladoc

93.1 %

scalap

73.2 %

scalariform

1 8 15+

101

106

1011
74.9 %

Targets

#
C
al
ls

scalatest

1 8 15+

71.0 %

Targets

scalaxb

1 8 15+

82.9 %

Targets

specs

1 8 15+

98.9 %

Targets

tmt

Figure 5.8b: The number of dynamically-dispatched calls made at call sites with a
given number of targets for the Scala benchmarks, together with the
fraction of calls made at monomorphic call sites

Figures 5.6a and 5.6b: For the Scala benchmarks nearly half of the calls are made
using invokespecial and invokestatic instructions.

The Scala benchmarks, however, also exhibit a higher variance with respect to
the number of monomorphic calls than their Java counterparts. With respect to this
metric, my Scala benchmark suite is therefore at least as diverse as its role model,
the DaCapo benchmark suite.

5.4.3 Stack Usage and Recursion

On the JVM, each method call creates a stack frame which, at least conceptually,
holds the method’s arguments and local variables, although a concrete implemen-

62 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

av
rora

bati
k

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

tomca
t

tra
deb

ea
ns

tra
deso

ap
xa

lan
0

500

1,000

1,500

St
ac

k
H
ei
g
ht

[f
ra
m
es
]

Java

ac
tors

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lat

est

sca
lax

b
sp

ec
s
tm

t

Scala

Figure 5.9: The maximum stack height required by the Java and Scala benchmarks

tation of the virtual machine may place some of them in registers instead (cf. Sec-
tion 5.4.4). As most modern JVMs are unable to re-size a thread’s call stack at
runtime,8 they have to reserve a sufficiently large amount of memory whenever
a new thread is created. If the newly-created thread does not require all the re-
served space, memory is wasted; if it requires more space than was reserved, a
StackOverflowException ensues.

As Figure 5.9 shows, the stack usage of the Scala benchmarks is significantly
higher than for the Java benchmarks. That being said, for both benchmark suites
the required stack size varies widely across benchmarks: For the Scala benchmarks,
it ranges from 110 (tmt) to 1460 frames (kiama), with an average of about 472.
For the Java benchmarks, these numbers are more stable and significantly lower,
ranging from 45 (lusearch) to 477 frames (pmd), with an average of 137.

The question is therefore what gives rise to this significant increase in stack us-
age, the prime suspects being infrastructure methods inserted by the Scala compiler
on the one hand and the use of recursion by application or library code on the other

8 Re-sizing call stacks may require moving them in memory; this complicates the implementation.

5.4 Results 63

hand. To assess to what extent the latter contributes to the benchmarks’ stack us-
age, I made use of the calling-context profiles collected by JP2. In the presence
of polymorphism, however, a recursive method call is dynamically dispatched and
may or may not target an implementation of the method identical to the caller’s.
This often occurs when the Composite pattern is used, where different components
implement the same abstract operation.

Figures 5.10a and 5.10b, which depict the distribution of stack heights for each
of the benchmarks, therefore use an extended definition of recursion. In this defi-
nition I distinguish between “true” recursive calls that target the same implemen-
tation of a method and plain recursive calls, which may also target a different
implementation of the same method. Now, to compute the histograms of Fig-
ures 5.10a and 5.10b, at every method call the current stack height x is noted.
All method calls contribute to the corresponding light grey bar, whereas only recur-
sive calls contribute to the dark grey bar, and only “true” recursive calls contribute
to the black one.

The scalariform benchmark, for example, makes no “true” recursive calls that
target an implementation identical to the caller’s at a stack height beyond 287,
but still makes plenty of recursive calls targeting a different implementation of the
selfsame method. In this case, the phenomenon is explained by the benchmark
traversing a deeply-nested composite data structure, namely the abstract syntax
tree of the Scala code formatted by scalariform. In general, this form of recursion
is harder to optimize, as tail-call elimination requires the recursive call’s target to
be identical to the caller.

For all benchmarks, recursive calls indeed contribute significantly to the stack’s
growth, up to its respective maximum size, although for two Scala (scalap and
scalariform) and one Java (pmd) benchmark this is not a direct consequence of
“true” recursive calls, but of dynamically-dispatched ones. For all other bench-
marks, however, there exists a stack height xrec from which on all calls are “truly”
recursive. This shows that, ultimately, it is the more extensive use of recursion by
applications and libraries rather than the infrastructure methods introduced by the
Scala compiler that leads to the observed high stack usage.

5.4.4 Argument Passing

A method’s stack frame not only stores the method’s local variables, but it also
contains the arguments passed to the method in question. Now both the number
and kind of arguments passed upon a method call can have a performance impact:
Large numbers of arguments lead to spilling on register-scarce architectures; they
cannot be passed in registers alone. Likewise, different kinds of arguments may

64 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

101

106

1011

#
C
al
ls

avrora batik eclipse fop

101

106

1011

#
C
al
ls

h2 jython luindex lusearch

101

106

1011

#
C
al
ls

pmd sunflow tomcat tradebeans

1 250 500+

101

106

1011

Stack Height

#
C
al
ls

tradesoap

1 250 500+
Stack Height

xalan

Figure 5.10a: The distribution of stack heights upon a method call for the Java
benchmarks: all method calls (), recursive calls (), and recursive
calls to the same implementation ()

have to be passed differently; on many architectures floating point numbers occupy
a distinct set of registers.

As not all benchmarks in the Java and Scala benchmark suites make much use of
floating-point arithmetic, I will first focus on the six benchmarks for which at least

5.4 Results 65

101

106

1011

#
C
al
ls

actors apparat factorie kiama

101

106

1011

#
C
al
ls

scalac scaladoc scalap scalariform

1 250 500+

101

106

1011

Stack Height

#
C
al
ls

scalatest

1 250 500+
Stack Height

scalaxb

1 250 500+
Stack Height

specs

1 250 500+
Stack Height

tmt

Figure 5.10b: The distribution of stack heights upon a method call for the Scala
benchmarks: all method calls (), recursive calls (), and recursive
calls to the same implementation ()

1 % of method calls carry at least one floating-point argument: the Java bench-
marks batik (1.9 %), fop (3.4 %), lusearch (2.6 %), and sunflow (25.1 %) and the
Scala benchmarks factorie (5.1 %) and tmt (13.5 %).

The histograms in Figure 5.11 depict the number of floating-point arguments
passed upon a method call in relation to the overall number of arguments.The bar
shadings correspond to the number of floating-point arguments; the darker the
shade, the more arguments are of either float or double type. As can be seen, not
only do sunflow and tmt most frequently pass floating-point arguments to methods,
but these two benchmarks are also the only ones where a noticeable portion of calls
passes multiple floating-point arguments: In the case of sunflow, four-argument
methods are frequently called with three floating-point arguments (x-, y-, and z-

66 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

0 %

25 %

#
C
al
ls

batik fop lusearch sunflow

0 1 2 3 4 5
0 %

25 %

Arguments

#
C
al
ls

factorie

0 1 2 3 4 5
Arguments

tmt

Figure 5.11: Distribution of the number of floating-point arguments passed upon a
method call: none (), 1 (), 2 (), 3 (), 4 (), and 5 or more ()

coordinate), indicated by the dark portion of the respective bar. In the case of tmt,
three-argument methods occasionally have two floating-point arguments (1.0 % of
all calls).

The relation of floating-point and integral arguments is not the only dimen-
sion of interest with respect to argument passing: The histograms in Figures 5.12a
and 5.12b thus depict the number of reference arguments passed upon an method
call, in relation to the overall number of arguments, i.e. of primitive and reference
arguments alike. Here, the bar shadings correspond to the number of reference
arguments; the darker the shade, the large the number of reference arguments.

Figures 5.12a and 5.12b distinguish between those calls with an implicit receiver
object (invokevirtual, invokeinterface, and invokespecial) and those with-
out one (invokestatic). Both figures display the amount of arguments attributed
to the former group above the x-axis, whereas the amount of arguments attributed
to the latter group is displayed below the x-axis. Taken together, the bars above
and below the axis show the distribution of reference arguments for all calls to
methods with x arguments. The receiver of a method call (if any) is hereby treated

5.4 Results 67

50 %

0 %

50 %

#
C
al
ls

avrora batik eclipse fop

50 %

0 %

50 %

#
C
al
ls

h2 jython luindex lusearch

50 %

0 %

50 %

#
C
al
ls

pmd sunflow tomcat tradebeans

0 1 2 3 4 5

50 %

0 %

50 %

Arguments

#
C
al
ls

tradesoap

0 1 2 3 4 5
Arguments

xalan

Figure 5.12a: Distribution of the number of reference arguments passed upon a
method call by the Java benchmarks: none (), 1 (), 2 (), 3 (),
4 (), and 5 or more ()

68 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

50 %

0 %

50 %

#
C
al
ls

actors apparat factorie kiama

50 %

0 %

50 %

#
C
al
ls

scalac scaladoc scalap scalariform

0 1 2 3 4 5

50 %

0 %

50 %

Arguments

#
C
al
ls

scalatest

0 1 2 3 4 5
Arguments

scalaxb

0 1 2 3 4 5
Arguments

specs

0 1 2 3 4 5
Arguments

tmt

Figure 5.12b: Distribution of the number of reference arguments passed upon a
method call by the Scala benchmarks: none (), 1 (), 2 (), 3 (),
4 (), and 5 or more ()

as a reference argument as well. This is in line with the treatment this receives
from the virtual machine; it is simply placed “in local variable 0” [LYBB11].

For Scala and Java benchmarks alike, almost all methods have at least one
argument, be it explicit or implicit, viz. this. This confirms earlier findings by
Daly et al. [DHPW01] for Java benchmarks. But while the maximum number of
passed arguments can be as large as 21 for Scala code (specs) and 35 for Java
code (tradebeans, tradesoap), on average only very few arguments are passed

5.4 Results 69

upon a call: 1.04 to 1.47 for Scala code and 1.69 to 2.43 for Java code. In particu-
lar, the vast majority of methods called by the Scala benchmarks has no arguments
other than the receiver; they are simple “getters.” This has an effect on the econom-
ics of method inlining: For a large number of calls, the direct benefit of inlining,
i.e. the removal of the actual call, outweighs the possible indirect benefits, i.e. the
propagation of information about the arguments’ types and values which, in turn,
facilitates constant folding and propagation.

This marked difference between Scala and Java benchmarks is of particular in-
terest, as the Scala language offers special constructs, namely implicit parameters
and default values, to make methods with many arguments more convenient to the
programmer. But while methods taking many parameters do exist, they are rarely
called. Instead, the parameterless “getters” automatically generated by the Scala
compiler for every field dominate.

5.4.5 Method and Basic Block Hotness

Any modern JVM with a just-in-time compiler adaptively optimizes applica-
tion code, focusing its efforts on those parts that are “hot,” i.e. executed fre-
quently. Regardless of whether the virtual machine follows a traditional, region-
based [HHR95, SYN03], or trace-based [BCW+10] approach to compilation, pro-
nounced hotspots are fundamental to the effectiveness of adaptive optimization
efforts. It is therefore of interest to which extent the different benchmarks exhibit
such hotspots.

In contrast to Dufour et al., who report only “the number of bytecode instruc-
tions responsible for 90 % execution" [DDHV03], the metric used in this thesis is
continuous. Figures 5.13a and 5.13b report to which extent the top 20 % of all
static bytecode instructions in the code contribute to the overall dynamic bytecode
execution. A value of 100 % on the x-axis corresponds to all instructions contained
in methods invoked at least once; again, dormant methods are excluded. Basic
blocks, however, that are either dead or simply dormant during the benchmark’s
execution in an otherwise live method are taken into account, as they still would
need to be compiled by a traditional method-based compiler. A value of 100 % on
the y-axis simply corresponds to the total number of all executed bytecodes.

Current JVMs typically optimize at the granularity of methods rather than basic
blocks and are thus often unable to optimize just the most frequently executed
instructions or basic blocks. To reflect this, Figures 5.13a and 5.13b also report the
extent to which the hottest methods are responsible for the execution. The two
data series are derived as follows:

70 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

80 %

90 %

100 %

#
B
yt
ec

od
es

avrora batik eclipse fop

80 %

90 %

100 %

#
B
yt
ec

od
es

h2 jython luindex lusearch

80 %

90 %

100 %

#
B
yt
ec

od
es

pmd sunflow tomcat tradebeans

10 % 20 %
80 %

90 %

100 %

Bytecodes

#
B
yt
ec

od
es

tradesoap

10 % 20 %
Bytecodes

xalan

Figure 5.13a: Cumulative number of executed bytecodes for the most frequently
executed bytecodes when measured at the granularity of basic
blocks () or methods ()

Basic block hotness. The basic blocks (in methods executed at least once) are
sorted in descending order of their execution frequencies. Each basic
block bi is then plotted at x =

∑i
j=1 size(b j) and y =

∑i
j=1 size(b j) · freq(b j),

5.4 Results 71

80 %

90 %

100 %

#
B
yt
ec

od
es

actors apparat factorie kiama

80 %

90 %

100 %

#
B
yt
ec

od
es

scalac scaladoc scalap scalariform

10 % 20 %
80 %

90 %

100 %

Bytecodes

#
B
yt
ec

od
es

scalatest

10 % 20 %
Bytecodes

scalaxb

10 % 20 %
Bytecodes

specs

10 % 20 %
Bytecodes

tmt

Figure 5.13b: Cumulative number of executed bytecodes for the most frequently
executed bytecodes when measured at the granularity of basic
blocks () or methods ()

where size(b j) is the number of bytecodes in b j and freq(b j) is the number
of times b j has been executed.

Method hotness. The methods (that are executed at least once) are sorted in
descending order of the overall number of bytecodes executed in each
method. Each method mi is then plotted at x =

∑i
j=1

∑

b∈B j
length(b)

and y =
∑i

j=1

∑

b∈B j
length(b) · freq(b), where B j denotes the set of basic

blocks of method m j .

For the actors and scalap benchmarks only 1.4 % and 1.5 % of all bytecode in-
structions, respectively, are responsible for 90 % of all executed bytecodes. Beyond

72 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

that point, however, the basic block hotness of the two benchmarks’ differs consid-
erably. Moreover, the method hotness of these two benchmarks is also different,
the discrepancy between basic block and method hotness being much larger for
scalap than for actors: A method-based compiler would need to compile just 2.7 %
of actor’s instructions to cover 90 % of all executed instructions, whereas 4.7 % of
scalap’s instructions need to be compiled to achieve the same coverage.

In general, the discrepancy between basic block and method hotness is quite
pronounced. This is the effect of methods that contain both hot and cold ba-
sic blocks; some blocks are executed frequently and some are not. Four Java
benchmarks (jython, pmd, tradesoap, and xalan) with a larger than average num-
ber of basic blocks per method suffer most from this problem. The remaining
Java benchmarks exhibit patterns similar to the Scala benchmarks. Both region-
based [HHR95, SYN03] and trace-based compilation [BCW+10] can be employed
to lessen the effect of such temperature drops within methods.

5.4.6 Use of Reflection

While reflective features that are purely informational, e.g. runtime-type in-
formation, do not pose implementation challenges, other introspective features
like reflective invocations or instantiations are harder to implement efficiently
by a JVM [RZW08]. It is therefore of interest to what extent Scala code
makes use of such features, in particular as Scala’s structural types are com-
piled using a reflective technique [DO09b]. I have thus extended9 Tami-
Flex [BSS+11, BSSM10] to gather information about the following three usages of
reflection: method calls (Method.invoke), object allocation (Class.newInstance,
Constructor.invoke, and Array.newInstance), and field accesses (Field.get,
Field.set, etc.).

I first consider reflective invocations. What is of interest here is not only how
often such calls are made, but also whether a call site exhibits the same behav-
iour throughout. If a call site for Method.invoke, e.g., consistently refers to the
same Method instance, partial evaluation [BN99] might avoid the reflective call
altogether. For the two benchmark suites, Figure 5.14 depicts the number of re-
flective method invocations with a single or multiple Method instances per call site.
These numbers have been normalized with respect to the number of overall method
calls (invokevirtual–invokeinterface bytecode instructions). They are subject
to some minor imprecision, as TamiFlex conflates call sites sharing a source line,
thereby potentially exaggerating the number of shared Method instances.

9 This extension has since become part of TamiFlex’s 2.0 release.

5.4 Results 73

av
rora

bati
k

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

tomca
t

tra
deb

ea
ns

tra
deso

ap
xa

lan
0 %

0.01 %

0.02 %

0.03 %

#
C
al
ls

Java

ac
tors

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lat

est

sca
lax

b
sp

ec
s
tm

t

Scala

Single Instance
Multiple Instances

Figure 5.14: Number of methods invoked reflectively with a single or multiple
Method instances per call site, normalized to the number of all method
invocations

Few benchmarks in either suite perform a significant number of reflective
method invocations. Even for those benchmarks that do (scalap, pmd, tomcat,
and tradesoap), reflective invocations account for at most 0.03 % of invocations
overall. In the case of scalap, these invocations are almost exclusively due to the
use of structural types within the benchmark. This also explains why in most cases
only a single Method instance is involved, which the Scala runtime’s keeps in an in-
line cache [DO09b]. Should the use of reflection to implement structural types be
supplanted by the use of the special invokedynamic instruction in future versions
of the Scala compiler, these metrics nevertheless remain meaningful, as similar
caching techniques can be applied [TR10].

I next consider reflective object instantiations, i.e. calls to Class.newInstance,
Constructor.invoke, as well as Array.newInstance. Again, I distinguish be-
tween call sites referring to a single meta-object and call sites referring to several.10

10 The Class instance passed to Array.newInstance are treated as the meta-object here.

74 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

av
rora

bati
k

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

tomca
t

tra
deb

ea
ns

tra
deso

ap
xa

lan
0 %

0.2 %

0.4 %

0.6 %

0.8 %

#
In
st
an

tia
tio

ns
Java

ac
tors

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lat

est

sca
lax

b
sp

ec
s
tm

t

Scala

Single Instance
Multiple Instances

Figure 5.15: Number of objects instantiated reflectively with a single or multiple
Class instances per call site, normalized to the number of all object
instantiations (new)

Figure 5.15 depicts the number of reflective instantiations for the Java and Scala
benchmark suites, respectively. The numbers have been normalized with respect to
the number of overall allocations (new bytecode instructions). Again, the numbers
are subject to some minor imprecision, as TamiFlex conflates reflective allocation
sites sharing a source line.

The large number of reflective instantiations by several Scala benchmarks can be
traced back to the creation of arrays via a scala.reflect.ClassManifest, where
a single call site instantiates numerous arrays of different type. This is an artifact
of Scala’s translation strategy, as one cannot express the creation of generic arrays
in Java bytecode without resorting to reflection (cf. Section 2.1); the newarray,
anewarray, and multianewarray all require the array’s type to be hard-coded in
the instruction stream.

Unlike reflective invocations and instantiations, reflective field accesses are al-
most absent from both Scala and Java benchmarks. The only notable exception is

5.4 Results 75

eclipse, which reflectively writes to a few hundred fields to perform dependency
injection.

5.4.7 Use of Boxed Types

Unlike Java, which distinguishes between primitive and reference types, Scala
maintains the illusion that “every value is an object,” even though it tries to use
primitives types internally for reasons of efficiency. It is sometimes necessary, how-
ever, for the Scala compiler to wrap a primitive value in a object box to maintain
the illusion throughout.

Boxing of primitive types like int or double may incur significant overhead; not
only is an otherwise superfluous object created, but simple operations like addi-
tion now require prior unboxing of the boxed value. I have therefore measured
to which extent the Java and Scala benchmarks create boxed values. To this end,
I distinguish between the mere request to create a boxed value by using the ap-
propriate valueOf Factory Method and the actual creation of a new instance using
the boxed type’s constructor; usage of the Factory Method allows for caching of
commonly-used values but may impede JIT compiler optimizations [Chi07].

Figure 5.16 shows how many boxed values are requested and how many are
actually created. The counts have been normalized with respect to the number of
all object allocations (new bytecode instructions). Note that I have not counted
boxed values created from strings instead of unboxed values, as the intent here is
often rather different, namely to parse a sequence of characters. While for the Java
benchmarks, boxing accounts only for very few object creations, this is not true for
many of the Scala benchmarks; for example, almost all of the objects created by
the tmt benchmark are boxed primitives.

In general, the caching performed by the Factory Methods is effective. Only for
factorie and tmt, a significant number of requests (calls to valueOf) to box a value
result in an actual object creation; this is due to the fact that these two benchmarks
operate on floating-point numbers, for which the corresponding valueOf Factory
Methods do not perform caching. That being said, the Scala benchmarks in general
both create and request more boxed values than their Java counterparts. Extensive
use of user-directed type specialization [DO09a] may be able to decrease these
numbers, though.

Another interesting fact about the usage of boxed values is that they are created
at a few dozen sites only within the program, the fop Java benchmark being the
only exception with 4547 call sites of a boxing constructor.

76 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

av
rora

bati
k

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

tomca
t

tra
deb

ea
ns

tra
deso

ap
xa

lan
0 %

20 %

40 %

60 %

80 %

100 %

#
C
al
ls

Java

valueOf
Constructor

ac
tors

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lat

est

sca
lax

b
sp

ec
s
tm

t

Scala

Figure 5.16: Boxed instances requested (valueOf) and created (Constructor), nor-
malized to the number of all object allocations (new)

5.4.8 Garbage-Collector Workload

So far I have focused on code-related metrics. But how does the garbage-collector
workload differ between Java and Scala programs? This question has been an-
swered using Elephant Tracks [RGM11], which produces an exact trace containing
object allocations and deaths as well as field updates. The resulting traces were
run through a GC simulator, which was configured to simulate a generational col-
lection scheme: New objects are allocated in a 4 MiB nursery, a nursery size that
was also used by Blackburn et al. in their analysis of the initial version of the Da-
Capo benchmarks [BGH+06]. When full, the nursery is collected, and any survivors
are promoted to the older generation. The size of this older generation was set to
4 GiB. When this older generation is filled, a full-heap collection is performed.
While this setup is far simpler than the generational collectors found in production
JVMs, it nevertheless gives a good initial intuition of the garbage-collector work-
load posed by the different benchmarks. Moreover, the setup is similar enough to

5.4 Results 77

Benchmark Cons Marks Mark/Cons Survival

avrora 2 075 466 59 684 0.03 2.88 %
batik 1 088 785 327 505 0.30 30.08 %

eclipse 66 569 509 171 766 557 2.58 30.82 %
fop 2 982 888 486 253 0.16 16.30 %
h2 100 265 924 1 948 804 662 19.44 46.00 %

jython 43 752 983 10 654 369 0.24 24.35 %
luindex 404 186 50 616 0.13 12.52 %
lusearch 13 323 025 29 544 022 2.22 19.86 %

pmd 9 110 278 2 671 559 0.29 29.32 %
sunflow 61 883 982 3 577 022 0.06 5.78 %

xalan 10 250 705 747 468 0.07 7.29 %

apparatsmall 8 953 723 338 633 0.04 3.78 %
factorie 1 505 398 186 6 475 518 895 4.30 1.24 %
kiama 12 891 237 205 002 0.02 1.59 %
scalac 19 875 421 433 046 0.02 2.18 %

scaladoc 18 077 250 395 418 0.02 2.19 %
scalap 1 948 053 64 735 0.03 3.32 %

scalariform 10 077 808 325 769 0.03 3.23 %
scalaxb 4 343 541 42 037 0.01 0.97 %
specs 12 684 716 248 027 0.02 1.96 %

tmtsmall 395 247 346 59 516 039 0.15 0.01 %

Table 5.1: Garbage collection marks and cons (object allocations) used, together
with the survival rates in a 4 MiB nursery. (To keep the traces produced
by Elephant Tracks manageable, two benchmarks had to be run with a
reduced input size.)

that of Blackburn et al. [BGH+06] to allow for comparisons with the older version
of the DaCapo benchmark suite.

Table 5.1 shows the simulation’s results. In this table, “cons” denotes the total
number of objects allocated by the benchmark, “marks” refers to the total number
of times those objects are marked as live, and the nursery survival rate denotes the
fraction of allocated objects which survive a minor garbage collection, i.e. which
are promoted to the older generation.

Note that the nursery survival rate of the Scala programs in the benchmark suite
is considerably lower than that of the Java programs from the DaCapo 9.12 suite:

78 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

0 32 64 96 128
0.01 %

0.1 %

1 %

10 %

100 %

avrora

batik

eclipse
fop

h2

jython

luindex

lusearch

pmd

sunflow

xalan

Lifetime [MiB]

#
O
b
je
ct
s

Figure 5.17a: Fraction of objects surviving more than a given amount of allocation
for the Java benchmarks

Aside from avrora, the entirety of the DaCapo suite has a higher nursery survival
rate than the Scala benchmark suite, whose apparat benchmark sports the highest
nursery survival rate therein with a mere 3.78 %. The low nursery survival rate
observed in the simulation suggests that, at least for most Scala benchmarks, ob-
jects die younger than for the Java benchmarks. Figures 5.17a and 5.17b confirm
this: For half of the Java benchmarks at least 10 % of objects survive for 20 MiB of
allocation, whereas few objects allocated by the Scala benchmarks survive for more
than a few MiB of allocation.

The question arises whether the sharp drop of the Scala benchmarks’ sur-
vival rates can be explained by the fact that the Scala compiler generates
many short-lived objects under the hood, e.g. to represent closures (cf. Sec-
tion 2.3.2). For the purpose of this study, I have identified four categories of such

5.4 Results 79

0 32 64 96 128
0.01 %

0.1 %

1 %

10 %

100 %

apparat

factorie

kiama

scalac
scaladoc

scalap

scalariform

scalaxb

specs

tmt

Lifetime [MiB]

#
O
b
je
ct
s

Figure 5.17b: Fraction of objects surviving more than a given amount of allocation
for the Scala benchmarks

“under-the-hood” objects: objects representing closures, objects representing vari-
ables captured by a closure (e.g. scala.runtime.IntRef), boxed primitives (e.g.
java.lang.Integer), and rich primitives (e.g. scala.runtime.RichInt). List-
ing 5.1 illustrates these categories using the example from Section 2.3.3 again.

To answer the aforementioned question, Table 5.2 tabulates both the likelihood
of a new object belonging to one of the four categories of “under-the-hood” objects
or to the category of other objects together with the likelihood of these objects
surviving just 1 MiB of allocation. As can be seen, for all Scala benchmarks a signif-
icant portion of allocations is due to what I termed “under-the-hood” objects; only
68.62 % of allocations are due to “regular” objects. Closures in particular contrib-
ute significantly to overall allocations. 19.19 % of objects allocated by the scalac
benchmark, e.g., represent closures. But only 0.10 % of those objects exhibit a

80 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

1 object Countdown {
2 def nums = {
3 var xs = List[Int]() // Captured Variables
4 (1 to 10) foreach { // Rich Primitives
5 x \underline{=>} // Closures
6 xs = x :: xs // Boxed Primitives
7 }
8 xs
9 }

10 }

Listing 5.1: The four categories of “under-the-hood” objects (cf. Listing 2.3)

lifetime of 1 MiB or more; for this benchmark, most closures are extremely short-
lived. What Table 5.2 also shows is that boxed primitives play a noticeable role
for almost all benchmarks, with only apparat and specs spending less than 1 % of
their respective allocations on boxed primitives. As noted elsewhere [SMSB11],
the tmt benchmark is an outlier in this respect; almost all objects allocated by this
numerical-intensive benchmark are boxed floating-point numbers, which happen
to be extremely short-lived.

While Table 5.2 shows that short-lived “under-the-hood” objects indeed signifi-
cantly contribute to the low survival rates observed for the Scala benchmarks (cf.
Figure 5.17b), on average they account for only one third of allocations. The re-
maining two thirds are regular objects allocated directly on behalf of the program.
But they too exhibit low survival rates.

Lifetimes and survival rates are one important component of a garbage collec-
tor’s workload, but the sheer amount of allocations and pointer mutations, if some
write barrier is employed, are another. Figure 5.18 thus visualizes the size of the
different benchmarks, both in terms of allocation volume and pointer mutations.
This figure not only gives a good impression of the size of traces the GC simulator
had to process, but also shows that the Java benchmarks from the DaCapo bench-
mark suite are more likely to favour mutation over allocation than their counter-
parts from the Scala benchmark suite, with the sole exception of apparat. Also, the
two Scala benchmarks factorie and tmt are far more allocation-intensive than any
other benchmarks in either suite—in particular, since Figure 5.18 shows only the
small input size for the latter benchmark. (The profiles for tmt’s default input size
grew too large to process.)

5.4 Results 81

Captured Boxed Rich Other
Closures Variables Primitives Primitives Objects

apparat 3.45 % 1.35 % 0.41 % 0.64 % 94.15 % Cons
1.31 % 0.07 % 21.28 % 0.00 % 5.82 % Survival

factorie 20.48 % 1.22 % 19.15 % 0.00 % 59.15 % Cons
0.00 % 0.00 % 0.76 % 0.00 % 0.34 % Survival

kiama 8.53 % 1.14 % 2.34 % 4.48 % 83.51 % Cons
0.44 % 0.20 % 0.13 % 0.00 % 4.21 % Survival

scalac 19.19 % 4.40 % 2.25 % 4.52 % 69.64 % Cons
0.10 % 0.04 % 1.49 % 0.00 % 5.28 % Survival

scaladoc 12.40 % 3.16 % 1.14 % 17.35 % 65.95 % Cons
0.73 % 0.01 % 1.08 % 0.00 % 8.54 % Survival

scalap 29.67 % 1.84 % 1.78 % 0.13 % 66.58 % Cons
19.78 % 60.53 % 32.13 % 0.00 % 13.74 % Survival

scalariform 11.89 % 1.41 % 4.90 % 0.20 % 81.61 % Cons
0.21 % 0.17 % 0.13 % 0.00 % 7.49 % Survival

scalaxb 22.79 % 0.95 % 10.67 % 0.92 % 64.66 % Cons
0.00 % 0.01 % 0.14 % 0.00 % 2.88 % Survival

specs 3.16 % 0.20 % 0.49 % 0.32 % 95.83 % Cons
1.44 % 0.05 % 1.56 % 0.00 % 1.09 % Survival

tmtsmall 1.38 % 0.00 % 92.99 % 0.47 % 5.16 % Cons
0.16 % 0.04 % 0.04 % 0.00 % 1.29 % Survival

Mean
13.29 % 1.57 % 13.61 % 2.90 % 68.62 % Cons

2.42 % 6.11 % 5.87 % 0.00 % 5.07 % Survival

Table 5.2: Distribution of allocations for the Scala benchmarks, together with the
1 MiB survival rate for each of the five categories

5.4.9 Object Churn

Object churn, i.e. the creation of many temporary objects, is an important source
of overhead which badly hurts framework-intensive Java programs [DRS08]. But
as I have shown in the previous section, Scala programs exhibit at least as many
short-lived objects as Java programs. The fact that temporary objects are often not

82 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

107 108 109 1010 1011

106

107

108

109

avrora

batik

eclipse

fop

h2
jython

luindex

lusearch
pmd

sunflow

xalan

apparat

factorie

kiama

scalac

scaladoc

scalap

scalariform

scalaxb

specs

tmtsmall

Allocations [bytes]

Pointer
M
utations

Java benchmarks
Scala benchmarks

Figure 5.18: Allocations and pointer mutations performed by the benchmarks

only used within a single method but either passed on or returned to other methods
makes intra-procedural escape analysis ineffective in identifying such temporaries.
Their identification therefore requires either an expensive inter-procedural analy-
sis [DRS08] or careful use of method inlining [SAB08] to expose multiple methods
to an inexpensive intra-procedural analysis. In the latter case in particular, it is not
so much of interest how long an object lives but how closely it is captured by a
calling context. Ideally, the object dies in the calling context it was allocated in.

To study object churn, I defined the novel metric of dynamic churn distance, il-
lustrated by Figure 5.19. For each object, one determines both its allocation and
death context. From these two, one derives the closest capturing context; interme-
diate contexts are ignored. The dynamic churn distance is then either the distance
from the capturing context to the object’s allocation context or the distance from
the capturing context to the object’s death context, whichever is larger. Note that

5.4 Results 83

main(String[])

✽

✝

capturing context churn
distance

Figure 5.19: The churn distance of an object is computed as the largest distance
between its allocation (✽) respectively death (✝) context and its closest
capturing context.

the object’s death context is defined with respect to the object’s allocating thread,
which may or may not have been the thread which relinquished the last reference
to the object in question. This simple definition is sufficient since objects that es-
cape their allocating thread are not only hard to optimize away but typically also
quite rare.

Figures 5.20a and 5.20b depict the distribution of churn distances for the Java
and Scala benchmarks, respectively, as derived from the traces produced by Ele-
phant Tracks [RGM11]. The distribution is remarkably benchmark-dependent,
with the most peaked histograms belonging to number-crunching benchmarks:
avrora (processor simulation), sunflow (raytracing), and tmt (machine learning).
Here, a small kernel dominates the birth and death patterns of objects. Further-
more remarkable is that for most benchmarks a churn distance of zero is very rare,
with a maximum of 12.83 % (sunflow) and an average of only 2.64 % and 1.27 %
for the Java and Scala benchmarks, respectively (excluding dummy); few objects
die in the same method that allocated them. Nevertheless, large churn distances are
also relatively uncommon; the median churn distance is never larger than 4, with
that for the Scala programs generally being higher than for their Java counterparts.

Re-using the categorization of Table 5.2, Table 5.3 tabulates the median churn
distances observed for different categories of objects. What is noteworthy is that
rich primitives not only exhibit a median churn distance of 1 for all benchmarks, but
that their churn distance is always equal to 1. This is a direct consequence of their
typical usage pattern, which creates a rich primitive in an implicit conversion

84 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

0 %

50 %

100 %

↓

#
O
b
je
ct
s

avrora

↓

batik

↓

eclipse

↓

fop

0 %

50 %

100 %

↓

#
O
b
je
ct
s

h2

↓

jython

↓

luindex

↓

lusearch

0 5 10+
0 %

50 %

100 %

↓

Distance

#
O
b
je
ct
s

pmd

0 5 10+

↓

Distance

sunflow

0 5 10+

↓

Distance

xalan

Figure 5.20a: The distribution of churn distances with median marked (↓) for the
Java benchmarks

method, invokes a method on the returned object, and then discards it. In contrast
to rich primitives, boxed primitives predominately exhibit median churn distances
higher than the overall median. This indicates that these objects are kept for longer,
e.g. to be passed around in a collection. Unlike for rich and boxed primitives,
the churn distances of “under-the-hood” objects that represent closures and their
captured variables exhibit no such pattern; their churn distances vary widely from
benchmark to benchmark.

5.4.10 Object Sizes

If a program allocates not only many, but many small objects the ratio of payload
to header overhead gets worse. It is thus of interest to examine the distribution

5.4 Results 85

0 %

50 %

100 %

↓

#
O
b
je
ct
s

dummy

↓

apparat

↓

factorie

↓

kiama

0 %

50 %

100 %

↓

#
O
b
je
ct
s

scalac

↓

scaladoc

↓

scalap

↓

scalariform

0 5 10+
0 %

50 %

100 %

↓

Distance

#
O
b
je
ct
s

scalaxb

0 5 10+

↓

Distance

specs

0 5 10+

↓

Distance

tmtsmall

Figure 5.20b: The distribution of churn distances with median marked (↓) for the
Scala benchmarks

of object sizes as depicted in Figures 5.21a and 5.21b for the different Java and
Scala benchmarks. This figure focuses on objects of small size (less than 88 bytes)
and shows that, on average, Scala programs allocated significantly smaller objects
than Java programs: For most Scala benchmarks the median is either just 8 bytes
or 16 bytes, the size of one or two pointers, respectively. Thus, the overhead intro-
duced by the object header, on whose properties (locks, identity hash-codes) I will
focus later (cf. Sections 5.4.14 and 5.4.15), becomes more pronounced.

5.4.11 Immutability

While favouring immutable data structures is considered a best practice in
Java [Blo08, GPB+06], it is even more so in Scala [OSV10]; in particular, Scala’s

86 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

Captured Boxed Rich Other
Benchmark Closures Variables Primitives Objects

apparat 3↓ 1↓ 13↑ 1↓ 4
factorie 2 4↑ 3↑ 1↓ 1↓
kiama 4↑ 5↑ 3 1↓ 3
scalac 3 1↓ 3 1↓ 3

scaladoc 3↑ 1↓ 6↑ 1↓ 3↑
scalap 6↑ 26↑ 18↑ 1↓ 4

scalariform 3↓ 0↓ 3↓ 1↓ 4
scalaxb 3 1↓ 4↑ 1↓ 3
specs 7↑ 1 7↑ 1 1
tmt 2↓ 0↓ 3 1↓ 1↓

Table 5.3: Median churn distances for the Scala benchmarks for each of the five
classes, together with an indication whether the category’s median churn
distance is lower (↓) or higher (↑) than the overall median

collection library offers a large selection of basic, immutable data structures in the
scala.collection.immutable package. But immutable data does not only make
it easier for the programmer to reason about a program, it also allows for various
optimizations [PS05].

I thus assessed to what extent Java and Scala programs make use of immutable
data structures. In the analysis, I distinguish between class and object immutabil-
ity [HP09] as well as between per-class and per-object field immutability: A class is
considered immutable if all of its instances are immutable objects.11 Likewise, an
object is considered immutable if all of its instance fields are immutable. If a field
proves to be immutable not just for a single instance (per-object immutable), but
for all objects of a class, I consider it to be per-class immutable.

While the above definitions are straight-forward, the question when exactly a
field is considered immutable is a tricky one, as even otherwise immutable fields
are commonly initialized to some value. I therefore adopt the following defini-
tion: An object’s field is immutable if it is never written to outside of the dynamic
extent of that object’s constructor. Note, however, that this definition is only an
approximation; not all initialization happens inside the constructor. In particular,
cyclic data structure or Java beans are frequently initialized outside the construc-
tor [HP09]. Also, arrays, by their very nature, lack a constructor; thus, arrays were

11 Static fields are not considered in this analysis. Compared to the number of field instances, the
number of static fields is insignificant.

5.4 Results 87

0 %

50 %

100 %

↓

#
O
b
je
ct
s

avrora

↓

batik

↓

eclipse

↓

fop

0 %

50 %

100 %

↓

#
O
b
je
ct
s

h2

↓

jython

↓

luindex

↓

lusearch

0 40 80+
0 %

50 %

100 %

↓

Size [64 bit]

#
O
b
je
ct
s

pmd

0 40 80+

↓

Size [64 bit]

sunflow

0 40 80+

↓

Size [64 bit]

xalan

Figure 5.21a: The distribution of object sizes (excluding the header) with median
marked (↓) for the Java benchmarks. Each bin is 8 bytes wide, the size
of a pointer.

excluded from this analysis. Note furthermore that the above definition differs from
some definitions of immutability found elsewhere [GJS+11, GPB+06]. In particu-
lar, a field may be immutable in a particular program run only. Static analyses for
identifying immutable classes and objects [PBKM00] may thus be unable to detect
this fact. But the tailored dynamic analysis I use sidesteps these limitations; unlike
a static analysis it need not be overly conservative.

I implemented a tailored analysis12 using DiSL to measure immutability. Fig-
ure 5.22a depicts the fraction of instance fields that are never mutated during
the course of the respective benchmark, except, of course, during construction.

12 See http://www.disl.scalabench.org/modules/immutability-disl-analysis/.

88 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

http://www.disl.scalabench.org/modules/immutability-disl-analysis/

0 %

50 %

100 %

↓#
O
b
je
ct
s

dummy

↓

apparat

↓

factorie

↓

kiama

0 %

50 %

100 %

↓

#
O
b
je
ct
s

scalac

↓

scaladoc

↓

scalap

↓

scalariform

0 40 80+
0 %

50 %

100 %

↓

Size [64 bit]

#
O
b
je
ct
s

scalaxb

0 40 80+

↓

Size [64 bit]

specs

0 40 80+

↓

Size [64 bit]

tmtsmall

Figure 5.21b: The distribution of object sizes (excluding the header) with median
marked (↓) for the Scala benchmarks. Each bin is 8 bytes wide, the
size of a pointer.

Figure 5.22b contrasts this with the fraction of fields that are per-class immutable.
In other words, Figure 5.22b provides a static view of the program, whereas the
view of Figure 5.22a is a dynamic one. As can be seen, these two views differ signif-
icantly. That being said, the Scala benchmarks in general exhibit a higher fraction
of immutable fields than their Java counterparts—both per-object and per-class.

Figures 5.22a and 5.22b considered each field individually. However, an object
may contain both mutable and immutable fields, rendering the entire object muta-
ble if it contains just a single mutable field. Figures 5.23a and 5.23b thus consider
object and class immutability, respectively. The Scala benchmarks consistently ex-
hibit a larger fraction of immutable classes than the Java benchmarks: 79.67 %
and 52.06 %, respectively. What is furthermore interesting to observe is that the

5.4 Results 89

av
rora

bati
k

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

xa
lan

0 %

20 %

40 %

60 %

80 %

100 %

primitive

primitive + reference

#
In
st
an

ce
F
ie
ld
s

Java

Primitive
Reference

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm
sca

lax
b
sp

ec
s
tm

t

dummy

primitive

primitive + reference

Scala

Figure 5.22a: Fraction of primitive and reference instance fields that are per-object
immutable (including averages without dummy)

numbers from Figure 5.23b (immutable classes) for the Scala benchmarks (exclud-
ing dummmy) almost exactly mirror those from Figure 5.22b (per-class immutable
fields); a mixture of mutable and immutable fields within the same class is ex-
tremely rare in the Scala programs—but not in Java programs. This is at least
partly explained by the smaller size of Scala objects (cf. Section 5.4.10); for objects
with just a single field immutability is an all-or-nothing proposition.

5.4.12 Zero Initialization

Related to object allocation is zero initialization, which is mandated by the JVM
specification [LYBB11]; depending on its type, every field is guaranteed to be ini-
tialized to a “zero value” of 0, false, or null, respectively. This seemingly simple
operation has a surprisingly large impact on performance [YBF+11]—and is not
always strictly necessary: If an object’s constructor initializes a field explicitly by

90 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

av
rora

bati
k

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

xa
lan

0 %

20 %

40 %

60 %

80 %

100 %

primitive

primitive + reference

#
F
ie
ld
s

Java

Primitive
Reference

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm
sca

lax
b
sp

ec
s
tm

t

dummy

primitive

primitive + reference

Scala

Figure 5.22b: Fraction of primitive and reference fields that are per-class im-
mutable (including averages without dummy)

assigning it a value (including a zero value), the field’s implicit initialization to a
zero value by the JVM’s allocation logic was unnecessary.

I used a tailored dynamic analysis13 written in DiSL14 to measure to what ex-
tent such unnecessary zeroing occurs in practice, as it hints at an optimization
opportunity. This analysis considers zeroing of an instance field unnecessary if the
following condition is met: The field is assigned in the dynamic extent of the con-
structor without being read prior to the explicit assignment. In particular, zeroing
of a field that is neither read nor written to in the dynamic extent of the constructor
is not considered unnecessary.

Note that the above condition does not take into account the fact that the JVM,
in order to elide unnecessary zeroing, has not only to ensure that the program does
not observe the uninitialized field, but also that the garbage collector remains un-

13 See http://www.disl.scalabench.org/modules/immutability-disl-analysis/.
14 See http://www.disl.scalabench.org/modules/immutability-disl-analysis/.

5.4 Results 91

http://www.disl.scalabench.org/modules/immutability-disl-analysis/
http://www.disl.scalabench.org/modules/immutability-disl-analysis/

av
rora

bati
k

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

xa
lan

0 %

20 %

40 %

60 %

80 %

100 %

#
O
b
je
ct
s

Java

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm
sca

lax
b
sp

ec
s
tm

t

dummy

Scala

Figure 5.23a: Fraction of immutable objects (including averages without dummy)

aware of the field’s uninitialized state.15 But this source of imprecision is inevitable
if the metric should be VM-independent.

Figures 5.24a and 5.24b depict the extent to which zeroing of instance fields
is unnecessary, distinguishing between fields of primitive (int, double, etc.) and
reference type. In general, zeroing of reference fields is necessary less often than
zeroing of primitive fields; in other words, the initial value is null less often than
0 or false. Furthermore, reference fields play a larger role for the Scala bench-
marks (57.6 %) than for the Java benchmarks (40.0 %). The sole exception is the
tmt benchmark, which suffers from excessive boxing of primitive values [SMSB11];
almost all Double instances (accounting for 97.87 % of the objects allocated) have
their primitive value field explicitly set in the constructor.

15 This significantly complicates optimizing away unnecessary zeroing in the Oracle HotSpot VM,
which implements this intricate optimization [YBF+11].

92 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

av
rora

bati
k

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

xa
lan

0 %

20 %

40 %

60 %

80 %

100 %

#
C
la
ss
es

Java

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm
sca

lax
b
sp

ec
s
tm

t

dummy

Scala

Figure 5.23b: Fraction of immutable classes (including averages without dummy)

5.4.13 Sharing

Many of the Java benchmarks and some of the Scala benchmarks are multi-
threaded. It is thus of interest to what extent objects are shared between differ-
ent threads. The metric employed here is “sharing by actual usage” as used by
Mole et al. [MJK12]; an object is considered shared only if at least one of its fields
is accessed by a thread other than the allocating thread. Unlike Mole et al. but
consistent with my custom immutability analysis, I track sharing at the level of in-
dividual fields. This makes it possible to recognize situations where only parts of
an object are accessed by different threads; this partial sharing contrasts with full
sharing, where all fields of an object are read or written to by another thread.

I used a tailored dynamic analysis16 written in DiSL to track read and write
accesses by the different threads, distinguishing between the thread that allocated
the object in question and all other threads. For the purpose of this analysis, arrays
are treated as objects with two pseudo-fields: one keeping the array’s length and

16 See http://www.disl.scalabench.org/modules/sharing-disl-analysis/.

5.4 Results 93

http://www.disl.scalabench.org/modules/sharing-disl-analysis/

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

avrora
batik

eclipse
fop
h2

jython
luindex

lusearch
pmd

sunflow
xalan

Prim. Ref. necessary Prim. Ref. unnecessary

Figure 5.24a: Necessary and unnecessary zeroing of primitive and reference in-
stance fields, respectively, for the Java benchmarks (including
averages)

one keeping its components (treated as a single field). Static fields, which others
have found to be frequently shared [KMJV12], are not taken into account. Even if
not shared, they are, as globally accessible resources, hard to optimize for.

One minor source of imprecision is that the DiSL instrumentation is not yet active
while the JVM is bootstrapping. For the few objects allocated during that time, the
dynamic analysis is obviously unable to determine the allocating thread; the object
and its fields may be incorrectly flagged as shared.

The results of the analysis are depicted in Figures 5.25a, 5.25b and 5.25c.
Only a small fraction of objects allocated during a benchmark invocation is
shared among threads, the big exceptions being avrora and lusearch, two
Java benchmarks from the DaCapo suite.17 These two benchmarks are again
quite different as there is just one type predominantly shared among threads
in avrora (RippleSynchronizer.WaitLink) whereas there are several in luse-
arch (FSIndexInput, CSIndexInput, char[], Token, etc.). Figures 5.25a and

17 The dummy benchmark also exhibits a high fraction of shared objects, but allocates very few
objects overall, namely 7300.

94 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

apparat
factorie

kiama
scalac

scaladoc
scalap

scalariform
scalaxb

specs

tmt
dummy

Prim. Ref. necessary Prim. Ref. unnecessary

Figure 5.24b: Necessary and unnecessary zeroing of primitive and reference in-
stance fields, respectively, for the Scala benchmarks (including aver-
ages without dummy)

5.25b illustrate the fraction of individual instances shared among threads, which
on average is quite low. But as Figure 5.25c illustrates, the number of classes
for which at least one instance is shared is surprisingly high: 28.94 % (Java) and
11.56 % (Scala); thus, all these classes potentially require some synchronization.

Such synchronization, however, is superfluous if the object in question is of an
immutable class (cf. Section 5.4.11). Of those (non-array) objects whose fields are
read but not written to by multiple threads, more than 53.57 % belong to a (poten-
tially) immutable class in the case of the Java programs. In the case of the Scala
programs, this fraction is even higher; more than 87.06 % of objects belong to a
class whose fields are not mutated after construction.

5.4.14 Synchronization

Conceptually, on the Java virtual machine every object has an associated moni-
tor. A thread acquires such a monitor either explicitly by entering a synchronized
block (executing a monitorenter instruction) or implicitly by entering a

5.4 Results 95

av
rora

bati
k

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

xa
lan

0 %

5 %

10 %

15 %

#
O
b
je
ct
s

Java

Partially
Fully

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm
sca

lax
b
sp

ec
s
tm

t

dummy

Scala

Figure 5.25a: Partially and fully shared objects with respect to read accesses, i.e.,
with fields read by multiple threads

synchronized method and releases it again after exiting the block (monitorexit)
or method, respectively. This locking facility, alas, comes at a cost.

To avoid both the runtime and memory cost of multi-word “fat locks” kept in a
data structure separate from their associated objects, researchers have developed
“thin locks” [BKMS98, ADG+99], which require only a handful of bits in the header
of the object itself. These lock compression techniques exploit the fact that most
locks are never subject to contention by multiple threads. If they are, however,
the affected locks must be decompressed again. Biased locks [RD06, PFH11] go
one step further than thin locks by exploiting the fact that most locks are not only
never contended for, but are also only ever owned by one thread. The resulting
lock further improves the runtime cost of lock acquisition and release, if not the
lock’s memory cost.

To be effective, both thin locks and biased locks rely on two assumptions, which
I have validated using a tailored dynamic analysis written in DiSL: First, most locks
are only acquired by a single thread. Second, nested locking is shallow. The former
assumption is fundamental to biased locking whereas the latter affects all com-

96 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

av
rora

bati
k

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

xa
lan

0 %

5 %

10 %

15 %

#
O
b
je
ct
s

Java

Partially
Fully

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm
sca

lax
b
sp

ec
s
tm

t

dummy

Scala

Figure 5.25b: Partially and fully shared objects with respect to write accesses, i.e.,
with fields written to by multiple threads

pression techniques that reserve only a few bits in the object header for the lock’s
recursion count.18 Especially in light of the deeply recursive calls common in Scala
programs (cf. Section 5.4.3), the latter metric is of interest. I used a tailored dy-
namic analysis19 to obtain the necessary data. Like Bacon et al. [BKMS98], I also
record the total number of objects, total number of synchronized objects, and total
number of synchronization operations. The results are depicted in Figure 5.26.20

The vast majority of objects are only ever synchronized on by a single thread;
on average only 0.49 % (Java) respectively 1.75 % (Scala) of all locks are owned
by more than one thread. This makes thin locks in general and biased locks in
particular effective for both Java and Scala programs. Nevertheless, in both bench-
mark suites there exist notable outliers: 3.37 % (sunflow, Java) and 13.68 % (tmt,
Scala), respectively. This is countered by the very small fraction of objects these
two benchmarks synchronize on at all; it is virtually zero in both cases.

18 Techniques exist to store the recursion count outside the thin lock [RD06].
19 See http://www.disl.scalabench.org/modules/monitoring-disl-analysis/.
20 Explicit locks from java.util.concurrent.locks were not considered.

5.4 Results 97

http://www.disl.scalabench.org/modules/monitoring-disl-analysis/

av
rora

bati
k

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

xa
lan

0 %

10 %

20 %

30 %

40 %

50 %

#
O
b
je
ct
s

Java

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm
sca

lax
b
sp

ec
s
tm

t

dummy

Scala

Array
Scalar

Figure 5.25c: Fraction of scalar and array types that are shared, i.e., for which at
least one instance is shared

Figures 5.27a and 5.27b confirm the findings of Bacon et al. [BKMS98] that
nested locking does not prevent the use of thin locks for both the Java and Scala
benchmarks; all locking operations are relatively shallow. In fact, only four bench-
marks (avrora, eclipse, h2, and xalan) exhibit more than ten levels of recursive
synchronization on the same object. That these are all Java benchmarks also shows
that Scala programs, despite their tendency towards deeply recursive calls (cf. Sec-
tion 5.4.3), only exhibit shallow locking.

I finally assess to what extent code from different sources (cf. Section 3.2.3) em-
ploys synchronization. Of the lock operations performed by the Java benchmarks,
on average 68.8 % of operations target objects from the Java runtime and 31.2 %
of operations target objects from the (Java) application and its libraries. For the
Scala benchmarks, an even higher fraction of operations targets Java runtime ob-
jects (77.4 %). Naturally, Java libraries play only a small role (1.1 %), whereas
objects from both the Scala runtime (8.5 %) and the Scala application (13.0 %) are
targeted by a fair number of lock operations. The small part of the Scala runtime
written in Java (cf. Section 3.2.3) plays no role at all (0.0 %).

98 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

av
rora

bati
k

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

xa
lan

0 %

2 %

4 %

6 %

8 %
16

2.
04

41
.7

5 8.
45

12
.5

2
32

.1
4

17
9

35
.4

5
11

.0
8

24
17

.7
7 23

7.
09

#
O
b
je
ct
s

Java

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm
sca

lax
b
sp

ec
s
tm

t

dummy
5.

89
90

9.
19

3.
07

1.
77

2.
87

22
.3

5 4.
24

16
.6

7
11

.6
6

1,
57

9.
3

10
.0

7

Scala

Multiple threads
Single thread

Figure 5.26: Fraction of objects synchronized on by one or more threads, together
with the average number of lock operations per object

5.4.15 Use of Identity Hash-Codes

Not only has every object on the JVM an associated monitor but also an asso-
ciated hash-code, which the programmer may compute by invoking the object’s
hashCode method. Not every class declares its own hashCode method, however. It
is therefore the virtual machine’s responsibility to provide some implementation of
Object.hashCode().21 As the return value of this method, the so-called identity
hash-code, must not change across invocations, it is tempting to simply store it in
an extra slot in the object’s header. This, however, wastes space, since the identity
hash-codes of many objects are never queried.

This observation led to research on header compression techniques that do not
store the identity hash-code but rather turn the object’s address into its hash-
code [BFG06]. This address-based hashing scheme eliminates the space overhead

21 Even if a class overrides Object.hashCode(), its implementation is always accessible through
the static System.identityHashCode(Object) method.

5.4 Results 99

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

avrora
batik

eclipse
fop
h2

jython
luindex

lusearch
pmd

sunflow
xalan

Figure 5.27a: The maximum nesting depth reached per lock for the Java bench-
marks, ranging from 0 () to 10 or more ()

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

apparat
factorie

kiama
scalac

scaladoc
scalap

scalariform
scalaxb

specs

tmt
dummy

Figure 5.27b: The maximum nesting depth reached per lock for the Scala bench-
marks, ranging from 0 () to 10 or more ()

100 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

av
rora

bati
k

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

xa
lan

0 %

2 %

4 %

6 %

8 %
0.

37
0.

66
0.

28 0.
5

0.
19

0.
49

0.
39

0.
22

0.
24

0
0.

31

#
O
b
je
ct
s

Java

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm
sca

lax
b
sp

ec
s
tm

t

dummy
0.

16
0.

17
0.

12
0.

23
0.

13
0.

08
0.

23
0.

68
0 0

0.
09

Scala

Overriding
Identity & Overriding

Identity

Figure 5.28: Fraction of objects hashed using the identity hashCode method, an
overriding implementation thereof, or both together with the average
number of hash operations per object

completely, but does not work as-is for copying collectors, a frequently used collec-
tor design. Such collectors must add an extra header slot whenever they copy an
object whose identity hash-code has already been computed to a new address.

To assess the usage of hash-codes I used a tailored dynamic analysis22 writ-
ten in DiSL. But as DiSL relies on bytecode instrumentation, only calls to
System.identityHashCode(Object) and Object.hashCode() made from meth-
ods with a bytecode representation are covered; calls made from native code are
not. I believe this to be a negligible source of dynamic imprecision.

The results of the analysis are depicted in Figure 5.28 for the Java and Scala
benchmarks, respectively. I distinguish between objects whose identity hash-code
was taken and objects whose hash-code was provided by a custom, overriding im-
plementation of hashCode(). Only the former objects require, if hashed and then
moved by the garbage collector [BFG06], additional space in the object header to

22 See http://www.disl.scalabench.org/modules/hashcode-disl-analysis/.

5.4 Results 101

http://www.disl.scalabench.org/modules/hashcode-disl-analysis/

permanently keep their identity hash-code. Note that virtually no objects have both
their identity and custom hash-code taken. But if this is the case, this is almost ex-
clusively due to a overriding hashCode() implementation performing a super-call
to Object.hashCode(). The only notable exception to this rule are String objects,
where the same object is kept in two hashtables that use Object.hashCode() and
System.identityHashCode(Object), respectively, as hash function.

That being said, at most 0.70 % of objects (pmd) have their identity hash-code
taken, with an average of 0.16 % and 0.06 % for the Java and Scala benchmarks,
respectively. Address-based hashing is thus expected to work as good if not better
for Scala programs than it does for Java programs.

5.5 Summary

In this chapter, I have compared Scala and Java programs taken from two bench-
marks suites. This led to the following findings about the behaviour of Scala pro-
grams on the Java Virtual Machine:

Instruction Mix. Scala and Java programs differ significantly in their instruction
mix. In particular, most Scala programs favour inter-procedural over intra-
procedural control-flow, which is reflected in the instruction mix.

Call-Site Polymorphism. Although polymorphism plays a larger role for Scala than
for Java code, the overwhelming number of call sites is effectively monomor-
phic and accounts for the majority of calls. Inlining is thus expected to be as
effective for Scala code as it is for Java code.23

Stack Usage and Recursion. Scala programs require significantly more space on the
call stack than their Java counterparts. Recursive method calls to varying
target implementations contribute significantly to this.

Argument Passing. The vast majority of method calls in Scala code target
parameter-less “getters;” methods with more than one argument are rarely
called. This may negatively affect the economics of method inlining, as the
optimization propagates less information into the inlined method.

Method and Basic Block Hotness. Hotspots in Scala and Java code are similarly
distributed and, in both cases, very pronounced. However, Scala code seems
to be slightly easier for method-based compilation to cope with.

23 As Chapter 6 shows, inlining is even more effective for Scala code; in fact, it becomes a necessity.

102 5 A Comparison of Java and Scala Benchmarks Using VM-independent Metrics

Use of Reflection. Although the Scala compiler resorts to using reflection to trans-
late structural types, reflective invocations are not a significant performance
bottleneck in Scala applications. Scala is thus much less likely to benefit
from the invokedynamic instruction than dynamically-typed languages like
Clojure, Groovy, Ruby, or Python.

Use of Boxed Types. While the Scala compiler already tries to avoid boxing, Scala
programs nevertheless request and create significantly more boxed values
than Java programs. Therefore, canonicalization or similar optimizations
are crucial.

Garbage-Collector Workload. Objects in Scala programs are even more likely to
die “young” than Java objects. Closures and boxed primitives contribute
significantly to this. Captured variables and rich primitives are only a minor
contribution, however.

Object Churn. Despite the above, objects in Scala programs do not necessarily die
“close” to their allocation site.

Object Sizes. Very small objects play a significantly larger role in Scala than in Java.

Immutability. Immutable fields and objects play an even larger role in Scala pro-
grams than in Java programs.

Zero Initialization. The implicit zeroing of fields during allocation is mostly unnec-
essary, in particular for Scala programs.

Synchronization. Scala code does not negatively affect common lock implementa-
tions (thin, biased locking) optimized for Java code.

Use of Identity Hash-Codes. The identity hash-code associated with objects is
rarely used by Scala and Java programs.

Taken together, these findings provide the first comprehensive overview about
both code-related [SMSB11] and memory-related [SMS+12] behaviour of Scala
programs on the Java Virtual Machine. They thus sharpen the JVM implementers’
intuition as to what the differences are between Java and Scala code when viewed
from the JVM’s perspective.

5.5 Summary 103

6 An Analysis of the Impact of Scala Code on High-Performance JVMs

In the previous chapter, I have used VM-independent metrics to shed light on some
of the key differences between Java and Scala code. While such independence from
any particular VM is crucial during the inception of a benchmark suite, as it helps
to avoid a benchmark selection which favours just a single VM, VM-independent
metrics can only point VM implementers in the right direction; by their very nature,
they cannot pinpoint a particular piece of performance-critical implementation that
needs to be adapted to better accommodate Scala code. In this chapter, I thus go
one step further and use my Scala benchmark suite to compare and contrast the
ability of several modern high-performance JVMs to cope with Java and Scala code,
respectively.

First, Section 6.1 describes my experimental setup. Next, Section 6.2 presents
an initial investigation into the Java and Scala performance of the selected VMs.
Thereafter, Sections 6.3 and 6.4 explore two hypotheses to explain the observed
performance differences. Finally, a discussion of the findings concludes this chapter.

The research presented in this chapter has not been published before.

6.1 Experimental Setup

To get a realistic impression of how Scala code impacts different JVMs, it is crucial
to consider a broad selection of modern virtual machines. For this experiment I
have thus chosen five Java virtual machine configurations overall, the first four be-
ing based on well-known production JVMs and the fifth being based on the premier
research JVM [DFD10]:

OpenJDK 6 The OpenJDK 64-bit Server VM (build 19.0-b09, mixed mode) with
the IcedTea 1.10.6 class library

OpenJDK 7u The OpenJDK 64-bit Server VM (build 23.0-b15, mixed mode) with
the generic OpenJDK class library,1 built from Mercurial tag jdk7u4-b11

JRockit The Oracle JRockit® VM (build R28.1.3-11-141760-1.6.0_24-20110301-
1432 linux-x86_64, compiled mode)

1 Using IcedTea 2.0.1 was not an option, due to a build failure under Debian GNU/Linux.

105

J9 The IBM J9 VM (build 2.4, JRE 1.6.0 IBM J9 2.4 Linux amd64-64
jvmxa6460sr9-20110203_74623)

Jikes RVM The Jikes Research VM [AAB+05] in its production configuration, built
from Mercurial tag 3.1.2,2 with the GNU Classpath 0.97.2 class library

The three Open Source VMs (both OpenJDKs and Jikes RVM) were built from
scratch, but without manual tuning. For example, for Jikes RVM I refrained from
both building a profiled boot-image and tuning the VM’s compiler DNA (cf. Sec-
tion 6.3). For the IBM J9 VM I have disabled ahead-of-time compilation (-Xnoaot
command-line option); disallowing precompiled code avoids favouring J9 when
measuring startup performance. Aside from this J9-specific configuration and un-
less otherwise noted command-line options were only used to set the VM’s heap
size (cf. Section 6.1.1). The validity of the following findings thus depends on the
assumption that the VMs’ default configuration is already well-tuned for a variety
of (Java) workloads. This assumption is reasonable, as most users of both produc-
tion and research VMs use them without manual tuning, thereby creating a strong
incentive for VM implementers to tune their respective VM for a broad range of
workloads.

The Java and Scala workloads stem from the DaCapo 9.12 benchmark
suite [BGH+06] and from the Scala benchmark suite developed for this thesis,
respectively. Each benchmark’s default input size was used.

All measurements were conducted on a 4-core/8-thread Intel Core i7-870
processor clocked at 2.93 GHz with 4 × 32KiB L1 data and instruction caches,
4 × 256KiB L2 cache, 8 MiB L3 cache, and 4096 MiB RAM running a 64-bit ver-
sion of GNU/Linux (Debian “Squeeze” 6.0.4, kernel 2.6.32). This machine serves
as a good example of a modern multi-core commonly found in desktop and server
machines.

6.1.1 Choosing Heap Sizes

As I am primarily interested in the JVMs’ ability to cope with Java and Scala code,
the performance impact of garbage collection needs to be minimized. But simply
fixing a large heap size, say 1 GiB, is counterproductive, as locality effects can cause
performance to deteriorate at excessive heap sizes. In a single-JVM setting, one
therefore traditionally chooses some small multiple3 of the minimum heap size in

2 Jikes RVM was built with changeset f47765eca54f backed out, due to a build failure under
64-bit Debian GNU/Linux. See http://jira.codehaus.org/browse/RVM-942.

3 Two to six times the minimum heap size is common [BGH+06, BMG+08, YBF+11].

106 6 An Analysis of the Impact of Scala Code on High-Performance JVMs

http://jira.codehaus.org/browse/RVM-942

Benchmark OpenJDK 6 OpenJDK 7u JRockit J9 Jikes RVM

avrora 4 4 16 4 24
batik 24 — 20 24 —

eclipse 100 104 68 84 —
fop 28 32 24 40 —
h2 284 280 212 384 —

jython 24 24 20 40 64
luindex 4 4 16 8 24
lusearch 4 4 16 4 28

pmd 32 36 20 32 52
sunflow 4 4 16 12 28
tomcat 12 12 16 16 —

tradebeans 20 16 40 28 —
tradesoap 20 24 32 28 —

xalan 4 4 16 8 40

actors 4 4 16 4 —
apparat 20 16 16 24 —
factorie 104 104 84 148 —
kiama 4 4 16 12 36
scalac 28 36 24 44 80

scaladoc 32 36 28 44 80
scalap 4 4 16 8 32

scalariform 4 4 16 8 32
scalatest 12 16 16 12 —
scalaxb 20 16 16 16 40
specs 4 4 16 8 —
tmt 32 32 32 36 —

Table 6.1: The minimum heap size (in MiB) required to successfully run a single iter-
ation of the respective benchmark (measured at 4 MiB granularity)

which a given benchmark runs successfully without raising an OutOfMemoryError;
this multiple is then used as heap size during the actual measurement runs. This
approach, however, is not applicable when comparing multiple JVMs, because
different JVMs sometimes require significantly different heap sizes, as set by the
-Xms/-Xmx command-line options, to pass a benchmark run. Table 6.1 illustrates
these discrepancies for the five JVM configurations considered. Of the five JVMs,
Jikes RVM is the only JVM which consistently fails to execute several benchmarks (7

6.1 Experimental Setup 107

Java benchmarks; 6 Scala benchmarks); this is mostly due to the GNU Classpath
class library lacking classes required by the benchmarks in question.

The different heap and object layouts used by the five JVMs only explain part
of the discrepancies in heap consumption. What also contributes to the observed
differences is the simple fact that different JVMs interpret the -Xms/-Xmx options
differently: Due to its meta-circular nature, Jikes RVM considers all machine code
generated by its just-in-time compilers to be part of the application’s heap, whereas
OpenJDK considers generated machine code to be part of a dedicated code-cache
area which is separate from the heap itself. These differences in interpretation ex-
plain why Jikes RVM requires a larger minimum heap size than its four competitors;
for example, on the kiama benchmark it requires a heap size nine times larger than
that required by OpenJDK, namely 36 MiB rather than 4 MiB.

These differences in interpretation unfortunately prevent the traditional ap-
proach of heap sizing from being applied. If one were to use a different multiple
of the minimum heap size for each JVM/workload combination, then the fact that
Jikes RVM considers generated machine code to be part of the heap would cause
correspondingly more memory to be awarded to Jikes RVM than to JVMs with a
different interpretation of -Xms/-Xmx—even though the amount of generated ma-
chine code stays more or less constant. Conversely, if one were to use the same
multiple of the single smallest minimum heap size across all JVMs for a particular
benchmark, then one would severely disadvantage a JVM like Jikes RVM. In this
case, Jikes RVM would likely not even be able to run benchmarks like kiama, since
it requires a minimum heap size nine times larger than the smallest minimum heap
size, namely that of OpenJDK.

I therefore chose a different approach:4 For each JVM/workload combination,
I empirically determined the optimal heap size, i.e. the heap size for which the
given JVM delivered the fastest startup performance. For this purpose, I measured
the benchmark’s first iteration across a range of different heap sizes, from twice
the minimum heap size required (cf. Table 6.1) up to eight times that heap size or
128 MiB, whichever is smaller. Again, measurements were done at the granularity
of 4 MiB. Table 6.2 summarizes the results.

This approach to heap sizing may be susceptible to jitter; small changes in the
heap size may result in large changes in execution time. Table 6.2 therefore also
states the coefficients of variation for the latter, as derived from a five-measurement
interval around the optimal heap size (−8 MiB, −4 MiB,±0 MiB, +8 MiB, +8 MiB).
For 69 out of 112 JVM/workload combinations, the coefficient does not exceed
2.0 %, indicating that performance has reached a steady state (cf. Section 6.1.2)

4 The members of the jikesrvm-researchers mailing list in general and Steve Blackburn in
particular provided valuable feedback on this approach.

108 6 An Analysis of the Impact of Scala Code on High-Performance JVMs

mailto:jikesrvm-researchers@lists.sourceforge.net

Benchmark OpenJDK 6 OpenJDK 7u JRockit J9 Jikes RVM

avrora 128 2.74 68 1.25 20 2.22 72 2.12 176 1.27
batik 140 0.45 — 160 0.35 136 8.62 —

eclipse 680 1.52 732 2.49 268 1.42 548 3.12 —
fop 212 0.26 116 6.11 180 0.31 284 0.90 —
h2 1072 2.59 468 2.16 1380 3.11 2476 2.71 —

jython 184 0.78 156 2.34 152 0.69 284 2.43 468 1.17
luindex 36 1.80 40 3.44 128 1.29 48 3.52 136 1.89
lusearch 60 7.99 124 3.41 128 1.46 120 2.10 220 2.75

pmd 192 1.92 276 1.26 132 1.72 244 3.05 300 1.95
sunflow 100 1.27 120 2.21 96 2.60 128 2.39 168 0.88
tomcat 116 0.85 124 3.58 104 0.47 104 0.76 —

tradebeans 160 2.30 104 4.18 260 5.84 212 1.16 —
tradesoap 120 3.56 192 1.48 256 2.95 192 3.50 —

xalan 80 4.00 100 6.07 116 0.84 92 5.96 244 2.16

actors 92 1.14 112 0.87 68 1.30 116 1.70 —
apparat 60 2.89 88 7.09 72 1.00 32 7.05 —
factorie 500 4.37 280 6.72 644 2.38 1124 3.72 —
kiama 64 1.00 104 2.71 96 0.34 124 0.88 204 1.46
scalac 224 1.49 264 4.42 176 0.18 328 2.19 468 1.79

scaladoc 92 2.55 276 2.68 172 0.37 308 1.46 328 1.03
scalap 72 0.85 112 2.18 100 0.34 76 4.07 208 1.02

scalariform 128 0.61 120 2.81 124 0.37 100 1.16 244 1.06
scalatest 96 0.92 96 1.14 92 0.67 92 0.80 —
scalaxb 92 0.56 72 1.99 40 0.64 96 0.94 220 5.16
specs 116 0.54 104 1.17 120 0.36 88 0.71 —
tmt 256 2.49 252 1.26 248 0.25 256 0.63 —

Table 6.2: The optimal heap size (in MiB) to run a single iteration of the respective
benchmark (measured at 4 MiB granularity in the range of 1 x to 8 x the
minimum heap size) together with the coefficient of variation (%) for a
five-measurement interval around that heap size

also with respect to minor heap-size adjustments. For 95 combinations, the coeffi-
cient stays below 3.0 %.

The validity of my findings might also be threatened by the fact that heap sizes
were chosen based on optimal startup performance, i.e. based on a single bench-
mark iteration. Unlike its competitors, Jikes RVM accrues more and more machine

6.1 Experimental Setup 109

code on the application’s heap from iteration to iteration, as its optimizing com-
piler re-compiles methods. The effect is minor, though, and does not threaten
validity; under normal circumstances the extra machine code rarely exceeds 1 MiB
to 2 MiB. Inlining much more aggressively than the default, however, does have
an effect: While it does not generate much extra machine code (less than 10 MiB),
Jikes RVM’s optimizing compiler consumes vastly more memory. In some cases,
this even triggers an OutOfMemoryError, as the garbage collection workload tem-
porarily becomes too high (cf. Section 6.4).

6.1.2 Statistically Rigorous Methodology

Throughout this chapter, I use a statistically rigorous performance evaluation
methodology [GBE07] to compute both startup and steady-state performance of the
benchmarks under investigation: Overall startup performance is averaged across
30 VM invocations, each invocation running a single benchmark iteration [GBE07,
Section 4.1], whose execution time is taken. The large number of invocations
allows me to assume that the (independent) execution times follow a Gaussian
distribution [GBE07, Section 3.2.1]. Overall steady-state performance is averaged
across 15 VM invocations, whose steady-state performance is defined to be the
arithmetic mean of the execution time of the first five consecutive iterations whose
coefficient of variation is below 2.0 % [GBE07, Section 4.2] or, if the benchmark
fails to converge,5 the last 5 of 30 iterations overall. Due to the smaller number of
invocations, I had to assume that the steady-state execution time average follows
the Student’s t-distribution (with 15−1 degrees of freedom) rather than a Gaussian
distribution [GBE07, Section 3.2.2]. Where used, the confidence intervals around
the quotient of two means were computed using Fieller’s theorem, i.e. assuming
that the means were sampled from Gaussian distributions even if a relatively small
number of samples was taken.

Prior to the measured invocations, the benchmark was run once without con-
tributing to the measurements. This extra invocation ensures that disk I/O does
not adversely affect the first measured invocation; the extra invocation primes any
disk caches and thereby a priori avoids an outlier in the measurements.

5 The following benchmarks failed to converge on multiple invocations: batik (OpenJDK 6),
pmd (Jikes RVM), scalaxb (OpenJDK 7u), sunflow (Jikes RVM), and tradesoap (JRockit).

110 6 An Analysis of the Impact of Scala Code on High-Performance JVMs

av
rora

bati
k

ec
lip

se fop h2
jyt

hon

luindex

lusea
rch pmd

su
nflow

tomca
t

tra
deb

ea
ns

tra
deso

ap
xa

lan
0

0.5

1

1.5

2
E
xe

cu
tio

n
ti
m
e
(n
or
m
al
iz
ed

)
OpenJDK 6 OpenJDK 7u JRockit J9 Jikes RVM

Figure 6.1a: Startup execution time of the Java benchmarks normalized to that of
JRockit (Arithmetic mean ± 95 % confidence interval), including the
geometric mean for each JVM

6.2 Startup and Steady-State Performance

In this section, I will give a first intuition of how well the five selected JVMs cope
with Java and Scala code, respectively. I thus measured their startup and steady-
state performance using the methodology described in Section 6.1.2.

Startup Performance
Figures 6.1a and 6.1b depict the startup execution time of the Java and Scala

benchmarks, respectively, when run on one of the five JVMs under consideration.
All execution times have been been normalized to that of the respective bench-
mark run on the JRockit VM, which is the only JVM which consistently passes
the benchmark harness’s output verification for all the workloads: During startup,
OpenJDK 7u fails on batik, both OpenJDKs and J9 occasionally fail on the twin
benchmarks tradebeans and tradesoap, and Jikes RVM fails several benchmarks,
including half of the Scala ones.

Aside from the occasional failures, several of the JVMs exhibit some performance
pathologies during startup. OpenJDK 6, for example, performs badly on xalan. Al-
though at least in this particular case, the pathology could be mitigated by disabling

6.2 Startup and Steady-State Performance 111

ac
tors

ap
para

t

fac
torie

kia
ma

sca
lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lat

est

sca
lax

b
sp

ec
s

tm
t

0

0.5

1

1.5

2

E
xe

cu
tio

n
ti
m
e
(n
or
m
al
iz
ed

)
OpenJDK 6 OpenJDK 7u JRockit J9 Jikes RVM

Figure 6.1b: Startup execution time of the Scala benchmarks normalized to that of
JRockit (Arithmetic mean ± 95 % confidence interval), including the
geometric mean for each JVM

background compilation through a command-line option (-Xbatch), which causes
OpenJDK 6 to achieve the same performance as the newer OpenJDK 7u, I refrained
from any JVM-specific tuning to keep a level playing field. This is all the more jus-
tified as both OpenJDK 6 and 7u perform extremely well once reaching the steady-
state for xalan (cf. Figure 6.2a); the “performance pathology” simply reflects a
trade-off between startup and steady-state performance made by the implementers
of OpenJDK.

That being said, Figures 6.1a and 6.1b already allow for some interesting ob-
servations: On the one hand, despite the aforementioned performance pathologies
for individual benchmarks, the five JVMs exhibit remarkably similar average per-
formance for the various Java benchmarks. On the other hand, the JVMs exhibit
wildly different average performance for the Scala benchmarks. This indicates that
the common case the implementers of all five JVMs strive to optimize for is typical
Java code, as typified by the benchmarks from the DaCapo benchmark suite, rather
than Scala code, as typified by my novel Scala benchmark suite.

Also note that at least for Java code the Jikes Research VM delivers performance
competitive with most production JVMs; it is only 1.4 % slower than OpenJDK 6
and 17.2 % slower than OpenJDK 7u, which are the slowest and fastest of the

112 6 An Analysis of the Impact of Scala Code on High-Performance JVMs

av
rora

bati
k

ec
lip

se fop h2
jyt

hon

luindex

lusea
rch pmd

su
nflow

tomca
t

tra
deb

ea
ns

tra
deso

ap
xa

lan
0

0.5

1

1.5

2
E
xe

cu
tio

n
ti
m
e
(n
or
m
al
iz
ed

)
OpenJDK 6 OpenJDK 7u JRockit J9 Jikes RVM

Figure 6.2a: Steady-state execution time of the Java benchmarks normalized to that
of JRockit (Arithmetic mean± 95 % confidence interval), including the
geometric mean for each JVM

four production JVMs, respectively. The means have to be interpreted with care,
however, as Jikes RVM suffers more failures on the benchmarks of the DaCapo 9.12
benchmark suite than the production JVMs’; this may bias the (geometric) mean.

Steady-state Performance
Figures 6.2a and 6.2b depict the steady-state performance of the five JVMs con-

sidered in this chapter. Again, the performance has been normalized to that of
the JRockit VM, which is the only JVM that successfully passes output verifica-
tion for all benchmarks. In particular, OpenJDK, J9, and Jikes RVM fail on some
benchmarks before reaching their steady-state performance, even though they suc-
cessfully passed output verification after a single iteration of the same benchmarks.

For the steady state, the observations made earlier about the startup perfor-
mance still hold; in fact, they become even more pronounced: The JVMs’ perfor-
mance becomes even more similar for the Java benchmarks (means ranging from
0.92 to 1.11) and even more dissimilar for the Scala benchmarks (0.62 to 1.89).

OpenJDK 6 performs much better on the Scala benchmarks than on the Java
benchmarks and is only beaten by its own successor, OpenJDK 7u. In contrast,
Jikes RVM performs a lot worse than the other four JVMs on the Scala benchmarks,

6.2 Startup and Steady-State Performance 113

ac
tors

ap
para

t

fac
torie

kia
ma

sca
lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lat

est

sca
lax

b
sp

ec
s

tm
t

0

0.5

1

1.5

2

E
xe

cu
tio

n
ti
m
e
(n
or
m
al
iz
ed

)
OpenJDK 6 OpenJDK 7u JRockit J9 Jikes RVM

Figure 6.2b: Steady-state execution time of the Scala benchmarks normalized to
that of JRockit (Arithmetic mean ± 95 % confidence interval), includ-
ing the geometric mean for each JVM

even though the research VM delivers Java performance competitive to that of the
production JVMs. While Jikes RVM is only 10.9 % slower than the slowest (JRockit)
and 20.4 % slower than the fastest (OpenJDK 6) of the four production JVMs on
the Java benchmarks, performance is abysmal on the Scala benchmarks, with Jikes
RVM being 70.8 % slower than slowest (J9) and even 200.5 % slower than the
fastest competitor (OpenJDK 7u). For scaladoc at least the abysmal performance
can be explained by the fact that Jikes RVM spends about one third of the bench-
mark’s execution time in the operating system’s kernel, executing just a handful
of native methods,6 whereas the other JVMs spend only a small fraction of their
execution in kernel mode. For the other five Scala benchmarks that Jikes RVM runs
successfully, however, no such simple explanation presents itself.

Of course, the above comparison needs to be taken with a grain of salt, as all
JVMs except for JRockit fail on one or more benchmarks and not always on the
same subset; thus, strictly speaking the geometric means are not comparable. Nev-
ertheless, Figures 6.1a to 6.2b already give a good indication that some JVMs are

6 The native methods executed are VMFile.exists, VMFile.isDirectory, VMFile.isFiles, and
VMFile.toCanonicalForm, all of which ultimately perform a stat/lstat syscall.

114 6 An Analysis of the Impact of Scala Code on High-Performance JVMs

able to cope with Scala code better than others. In particular, one may speculate
that the stellar Scala performance of both OpenJDKs is due to the fact that, as of
this writing, the developers of Scala rely exclusively on OpenJDK 6 to detect per-
formance regressions in the Scala compiler.7 This bias towards OpenJDK 6 is only
reinforced by the improvements made by its implementers to OpenJDK 7u.

Regardless of the postulated bias towards OpenJDK, Figures 6.1a to 6.2b prove
that Scala code poses particular challenges to modern JVMs, which some of them
handle much better than others. Jikes RVM in particular seems to have difficulty
producing well-optimized code, which raises the question what factors influence a
JVM’s performance when running Scala code.

In the following I will explore two hypotheses to shed light onto the observed
performance differences in general and onto the dismal Scala performance of Jikes
RVM in particular:

Different Cost-Benefit Trade-Offs The just-in-time compilation of Scala code ex-
hibits different costs and benefits than the compilation of Java code. Thus,
compiler optimizations are applied less often than they should be.

Method Inlining Scala code negatively effects the just-in-time compiler’s inlining
heuristic. Thus, failure to inline causes performance degradation.

In Section 6.3 I will explore the former hypothesis, whereas in Section 6.4 I will
explore the latter.

6.3 The Effect of Scala Code on Just-in-Time Compilers

In this section as well as in the remainder of this chapter, I will limit myself to
comparing both OpenJDKs and Jikes RVM, as these JVMs sit at opposite ends of
the performance spectrum. Moreover, these three JVMs are Open Source, which
allows for a more in-depth analysis of optimization decisions than is possible for
their closed-source counterparts, JRockit and J9. Unfortunately, this choice also
means limiting myself to just a subset of benchmarks, as the OpenJDKs and Jikes
RVM in particular fail to consistently execute several benchmarks. While Jikes
RVM fails several benchmarks outright, mostly because of classes missing from
GNU Classpath, the OpenJDKs exhibit more spurious failures.

First, I analyzed to what extent the three JVMs utilize their respective optimiz-
ing compilers, since code can only be well-optimized if it is optimized at all. I thus
recorded which methods have been optimized and at which optimization level once

7 See http://www.scala-lang.org/node/360.

6.3 The Effect of Scala Code on Just-in-Time Compilers 115

http://www.scala-lang.org/node/360

the JVM has reached its steady state, i.e. when the coefficient of variation of five
consecutive benchmark iterations dropped below 2 % (cf. Section 6.1.2). Consider-
ing the steady-state performance rather than the JVM’s startup performance helps
to reduce the inevitable fluctuation in optimization decisions across different invo-
cations [GBE07], of which I performed 15 per benchmark and JVM.

For OpenJDK 6, I report the number of methods compiled with its single com-
piler, the so-called C2 or server compiler [PVC01]. For OpenJDK 7u, which uses a
tiered compilation approach with multiple optimization levels, I report the number
of methods compiled at each of the four levels (levels 1, 2, 3 use the C1 com-
piler [KWM+08], level 4 uses the C2 compiler [PVC01]). For Jikes RVM, which
follows a tiered, compile-only approach, I report both the number of methods
compiled with its “baseline” compiler as well as the number of methods com-
piled with its optimizing compiler [Wha99] at each of the three available opti-
mization levels (levels O0, O1, O2). As Jikes RVM is a meta-circular VM itself
written in Java, I took care to exclude the handful of methods from the run-
time itself (package org.jikesrvm) that are (re)compiled during benchmark ex-
ecution. For all three JVMs, I also excluded methods that are only part of the
benchmark harness (packages org.dacapo.harness, org.apache.commons.cli,
and org.scalabench). Any native methods are excluded as well, even though
OpenJDK and Jikes RVM do compile a small method stub for them. If a method
is compiled several times at different optimization levels, I attributed it to the last
level it was compiled at. This accounts both for the effects of adaptive optimiza-
tion, where frequently executed methods are re-compiled at higher optimization
levels, and the effects of dynamic de-optimization, where an initial, speculative op-
timization decision proved overly optimistic and is later reverted by the just-in-time
compiler [AFG+05].

Figures 6.3a to 6.3c depict the number of methods optimized by the three JVMs
at their different optimization levels. The three figures clearly show that Jikes RVM
subjects significantly less methods to its optimizing just-in-time compiler (levels
O0, O1, and O2) than do either OpenJDK 6 or 7u. Overall, however, Jikes RVM
compiles many more methods than OpenJDK—namely all of them. But the vast
majority of methods is compiled with the Jikes RVM’s baseline compiler only, which
does not perform any optimizations.

Of course, the number of optimized methods is only one simple indicator of
steady-state performance, as it treats all methods alike, regardless of their size.
Moreover, all modern optimizing compilers perform method inlining, which means
that a single method may be compiled multiple times in different contexts. For

116 6 An Analysis of the Impact of Scala Code on High-Performance JVMs

av
rora

bati
k

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

tomca
t

tra
deb

ea
ns

xa
lan

0

5

10

15

20
·103

#
M
et
ho

d
s

Java

C2

ac
tors

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lat

est

sca
lax

b
sp

ec
s
tm

t

·103 Scala

Figure 6.3a: Number of methods compiled by OpenJDK 6 (Arithmetic mean across
15 invocations)

av
rora

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

tra
deb

ea
ns

xa
lan

0

5

10

15

20
·103

#
M
et
ho

d
s

Java

Level 4 (C2)
Level 3 (C1)
Level 2 (C1)
Level 1 (C1)

ac
tors

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lax

b
sp

ec
s
tm

t

·103 Scala

Figure 6.3b: Number of methods compiled by OpenJDK 7u at different optimiza-
tion levels (Arithmetic mean across 15 invocations)

6.3 The Effect of Scala Code on Just-in-Time Compilers 117

av
rora

jyt
hon

luindex

lusea
rchpmd

su
nflow

xa
lan

0

5

10

15

20
·103

#
M
et
ho

d
s

Java

Level O2
Level O1
Leel O0
Baseline

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lax

b

·103 Scala

Figure 6.3c: Number of methods compiled by Jikes RVM at different optimization
levels (Arithmetic mean across 15 invocations)

the purpose of this section, however, the number of compiled methods suffices as
metric,8 as this section focuses on in large-scale optimization decisions.

In particular, Figures 6.3a to 6.3c already highlight a crucial difference be-
tween Jikes RVM and OpenJDK. Jikes RVM, which follows a compile-only approach,
deems extensive optimizations unprofitable for the overwhelming majority of meth-
ods; such methods are subjected to the baseline compiler only. This reasoning, as
both Figures 6.1a and 6.2a attest, serves Jikes RVM well for the Java benchmarks
from the DaCapo benchmark suite; it delivers performance close to that of produc-
tion VMs. But for the Scala benchmarks, one may hypothesize that Jikes RVM’s
adaptive optimization system (AOS) [AFG+00] is far off the mark and does not
compile enough methods with the RVM’s optimizing compiler.

In the following, I will thus briefly review how OpenJDK and Jikes RVM ar-
rive at their respective optimization decisions. OpenJDK uses a straight-forward
threshold-based approach to trigger the compilation and hence optimization of a
method. Conceptually, in both OpenJDK 6 and 7u the decision is governed by
two thresholds: an invocation threshold (-XX:CompileThreshold) and a back-
edge threshold (-XX:BackEdgeThreshold). When the number of interpreted

8 For more detailed metrics, the reader is referred to Section 6.4, which explicitly discusses the
effects of method inlining.

118 6 An Analysis of the Impact of Scala Code on High-Performance JVMs

method executions exceeds the invocation threshold, that method is compiled.
Likewise, when the number of backward branches taken within a loop exceeds
the back-edge threshold, the containing method is compiled and installed right
away using on-stack replacement (OSR) [FQ03]. OSR thereby ensures that a
single, long-running loop cannot deteriorate performance. Unlike its predeces-
sor, OpenJDK 7u uses a tiered compilation approach; thus, a method can succes-
sively be re-compiled at four different optimization levels. But the basic approach
remains the same: For each of the four levels there exist both invocation and back-
edge thresholds to trigger compilation at that level (-XX:Tier2CompileThreshold,
-XX:Tier2BackEdgeThreshold, etc.), along with several other thresholds and trig-
gers for fine-tuning the overhead incurred by maintaining invocation and back-edge
counters in optimized code.

Aside from these complications, OpenJDK’s approach is rather simple. In con-
trast, Jikes RVM’s approach is much more involved [AFG+00, Section 4.3]. For
each method, Jikes RVM uses sampling to estimate the time spent executing that
method at the current optimization level. Once a method is considered hot, i.e.
when a lot of time is spent executing that method, the AOS performs a cost-benefit
analysis of re-compiling it at the same9 or a higher optimization level. It estimates
the costs of optimizing the method based on the method’s size and the compiler’s
compilation rate for the optimization level considered. The benefits of optimization
are estimated based on the expected speedup and the predicted future execution
time of the overall application and hence also of the method in question.10 To-
gether, compilation rate and expected speedup form the so-called compiler DNA.11

For each of the optimization levels, the factors have been determined in dedicated
training runs, in which Jikes RVM compiles all methods at the level in question.

These training runs were performed using a set of Java benchmarks (SPEC
JVM98); thus, one may hypothesize that they are inherently biased towards the
execution of Java programs. To test this hypothesis, I re-computed the compiler
DNA from the steady-state performance exhibited on the benchmarks from both
the DaCapo and the Scala benchmark suite. Table 6.3 shows the resulting com-
piler DNA together with the built-in DNA that was derived by the implementers of
Jikes RVM by training on the SPEC JVM98 suite. Unfortunately, several entries in
Table 6.3 are missing, as forcing the optimizing compiler to compile a benchmark
in its entirety exposes several bugs both in Jikes RVM12 and in the DaCapo bench-

9 The availability of new profiling data may make re-optimizing at the same level attractive.
10 As the AOS obviously cannot predict the future, it simply assumes that the program will execute

for twice the current duration [AFG+00].
11 See http://jikesrvm.org/Compiler+DNA.
12 See http://jira.codehaus.org/browse/RVM-957 and http://jira.codehaus.org/browse/
RVM-958.

6.3 The Effect of Scala Code on Just-in-Time Compilers 119

http://jikesrvm.org/Compiler+DNA
http://jira.codehaus.org/browse/RVM-957
http://jira.codehaus.org/browse/RVM-958
http://jira.codehaus.org/browse/RVM-958

Base O0 O1 O2
Benchmark Rate Speedup Rate Speedup Rate Speedup Rate

avrora 1328 1.82 59.63 2.11 30.17 2.10 28.76
jython 824 — — —
luindex 1534 2.27 50.32 2.62 27.30 2.62 26.11
lusearch 945 2.08 49.44 2.31 25.75 2.33 24.72

pmd 771 1.51 45.51 — —
sunflow 1225 5.09 54.79 5.57 28.42 5.57 27.26

xalan 1056 2.04 52.64 2.33 28.48 2.32 27.36
geo. mean 1068 2.26 51.87 2.78 27.99 2.78 26.81

kiama 848 1.99 37.68 2.44 22.53 2.44 21.71
scalac 943 2.71 41.96 — —

scaladoc 932 2.00 41.50 — —
scalap 851 1.88 41.50 — —

scalariform 882 2.45 38.06 3.45 22.44 3.51 21.62
scalaxb 924 2.62 41.83 3.34 23.25 3.34 22.36

geo. mean 896 2.25 40.38 3.04 22.74 3.05 21.89

Built-in 909 4.03 39.53 5.88 18.48 5.93 17.28

Table 6.3: Compiler DNA for Jikes RVM, i.e., the compilation rates (in KiB/ms) at
the various optimization levels and the speedup over baseline-compiled
code (Arithmetic mean across 15 invocations)

marks.13 Nevertheless, the results allow for some interesting observations: First,
the default compiler DNA underestimates the compilation rates achieved by the
optimizing compiler but overestimates the resulting speedup. Second, optimizing
Scala code results in marginally higher speedups over the baseline than optimizing
Java code. Third, for either compiler, the compilation rates are significantly lower
for Scala code than they are for Java code.

The question is thus whether the low compilation rates for Scala code can be
explained by a bottleneck in the optimizing compiler, e.g., by a particularly ex-
pensive optimization which is applied more often to Scala code than to Java code.
But as Table 6.4 shows, the lower compilation rates observed cannot easily be at-
tributed to a single cause, i.e. to a single phase of the RVM’s optimizing compiler.
What is noteworthy, however, is that the two initial lowering transformations from

13 See http://sourceforge.net/tracker/?func=detail&atid=861957&aid=3049886&group_

id=172498.

120 6 An Analysis of the Impact of Scala Code on High-Performance JVMs

http://sourceforge.net/tracker/?func=detail&atid=861957&aid=3049886&group_id=172498
http://sourceforge.net/tracker/?func=detail&atid=861957&aid=3049886&group_id=172498

O0 O1 O2
Java Scala Java Scala Java Scala

Bytecodes→ HIR 6.1 6.2 8.4 8.6 8.4 8.8
CFG Transformations — 1.7 1.7 1.7 1.7

CFG Structural Analysis 1.1 1.2 0.7 0.7 0.7 0.7
Flow-insenstive Opt. — 1.2 1.3 1.2 1.3

Escape Transformations — 1.7 1.6 1.7 1.6
Branch Optimizations — 0.5 0.5 0.5 0.5

Copy Propagation 0.9 1.0 0.2 0.2 0.2 0.2
Constant Propagation 0.3 0.3 0.1 0.2 0.1 0.2

Common Subexpr. Elimination 1.2 0.9 0.7 0.5 0.7 0.5
Field Analysis 0.1 0.2 0.1 0.1 0.1 0.1

HIR→ LIR 20.7 22.7 24.9 27.8 24.9 27.8
Copy Propagation 0.6 0.8 0.4 0.5 0.4 0.5

Constant Propagation 0.3 0.4 0.6 0.8 0.6 0.8
Local CSE 1.3 1.1 1.1 0.9 1.1 0.9

Flow-insenstive Opt. 1.8 2.1 1.5 1.6 1.5 1.6
Basic Block Freq. Estimation 1.6 2.0 1.6 2.0 1.6 2.0

Code Reordering 0.1 0.2 1.6 1.9 1.6 2.0
Branch Optimizations 1.1 1.2 1.6 1.6 1.6 1.7

LIR→ MIR 38.6 30.3 26.6 20.9 26.6 20.3
Register Mapping 20.6 25.2 20.7 22.4 20.7 22.7

Branch Optimizations — 0.9 1.0 0.9 1.0
Machine Code Generation 3.4 4.1 3.2 3.2 3.2 3.2

Table 6.4: Percentage of time spent by Jikes RVM in the phases of its optimizing
compiler when running Java and Scala benchmarks, respectively (Arith-
metic mean across 15 invocations)

Java bytecode to the compiler’s high-level intermediate representation (HIR) and
from the high-level to the low-level intermediate representation (LIR) are more
expensive for the Scala benchmarks, whereas the final lowering to machine-level
intermediate representation (MIR) is less expensive.

The question is, however, whether the aforementioned differences are large
enough to have an impact on the resulting steady-state performance. Figures 6.4a
and 6.4b answer this question: Tuning the compiler DNA for a specific language can
result in a small although not always (statistically) significant speedup. Likewise,

6.3 The Effect of Scala Code on Just-in-Time Compilers 121

av
rora

jyt
hon

luindex

lusea
rch pmd

su
nflow

xa
lan

0.9

1

1.1

E
xe

cu
tio

n
ti
m
e
(n
or
m
al
iz
ed

)
Java-tuned DNA Scala-tuned DNA

Figure 6.4a: Steady-state execution time of the Scala benchmarks on Jikes RVM with
tuned compiler DNA, normalized to the default DNA (Arithmetic mean
± 95 % confidence interval)

tuning for the “wrong” language can result in a slowdown. On the Java bench-
marks the DNA tuned for Java is superior to the DNA tuned for Scala, while on the
Scala benchmarks it is the other way around. Nevertheless, the observed speedups
and slowdowns are not nearly large enough to explain the dismal performance of
Scala programs running on Jikes RVM (cf. Section 6.2). In the next section, I will
therefore investigate whether Scala code as such negatively affects an optimization
routinely performed by high-performance JVMs: method inlining. This hypothe-
sis is supported by the VM-idependent analysis in Sections 5.4.2 and 5.4.4; Scala
code does indeed exhibit different patterns of call-site polymorphism and argument
usage than Java code.

6.4 The Effect of Method Inlining on the Performance of Scala Code

Method inlining [DA99a], i.e. replacing a call site in the caller with the callee’s
body, is one of the most effective optimizations available to compilers; all modern,
high-performance JVMs perform this optimization. The effectiveness of inlining,
however, depends crucially on carefully-tuned heuristics—and these heuristics have

122 6 An Analysis of the Impact of Scala Code on High-Performance JVMs

kia
ma

sca
lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lax

b

0.9

1

1.1

E
xe

cu
tio

n
ti
m
e
(n
or
m
al
iz
ed

)
Java-tuned DNA Scala-tuned DNA

Figure 6.4b: Steady-state execution time of the Java benchmarks on Jikes RVM with
tuned compiler DNA, normalized to the default DNA (Arithmetic mean
± 95 % confidence interval)

been tuned with Java programs in mind. In this section, I will investigate how these
heuristics fare when confronted with Scala code.

Inline Expansion
I first revisit a metric from Section 6.3, namely the number of methods compiled

by the different JVMs at different optimization levels (Figures 6.3a to 6.3c). While
the number of compiled methods is a relatively coarse-grained metric, the number
of compiled bytecodes is much more fine-grained; in particular, it accounts for
methods of different sizes.

Now, due to inlining, the bytecode of a single method may be compiled several
times in different contexts. Moreover, some methods may never be compiled as
a free-standing method; they are always inlined into some other method by an
optimizing compiler. Small “getter” and “setter” methods are the prime example of
this. All these effects distort one’s view of a JVM’s optimization decisions when one
is restricted to the number of compiled methods as a metric.

Figures 6.5a to 6.5c thus depict the amount of bytecode compiled at the different
optimization levels. In particular, the figures distinguish between bytecodes that
stem from the (root) method being compiled and bytecodes that stem from other

6.4 The Effect of Method Inlining on the Performance of Scala Code 123

av
rora

bati
k

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

tomca
t

tra
deb

ea
ns

xa
lan

0

0.5

1

1.5
·106

#
B
yt
ec

od
es

Java

C2

ac
tors

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lat

est

sca
lax

b
sp

ec
s
tm

t

·106 Scala

Figure 6.5a: Number of bytecodes compiled by OpenJDK 6 (Arithmetic mean across
15 invocations), excluding (left) or including (right) inlined methods

av
rora

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

tra
deb

ea
ns

xa
lan

0

0.5

1

1.5
·106

#
B
yt
ec

od
es

Java

Level 4 (C2)
Level 3 (C1)
Level 2 (C1)
Level 1 (C1)

ac
tors

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lax

b
sp

ec
s
tm

t

·106 Scala

Figure 6.5b: Number of bytecodes compiled by OpenJDK 7u at different optimiza-
tion levels (Arithmetic mean across 15 invocations), excluding (left) or
including (right) inlined methods

124 6 An Analysis of the Impact of Scala Code on High-Performance JVMs

av
rora

jyt
hon

luindex

lusea
rchpmd

su
nflow

xa
lan

0

0.5

1

1.5
·106

#
B
yt
ec

od
es

Java

Level O2
Level O1
Level O0
Baseline

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lax

b

·106 Scala

Figure 6.5c: Number of bytecodes compiled by Jikes RVM at different optimization
levels (Arithmetic mean across 15 invocations), excluding (left) or in-
cluding (right) inlined methods

methods that have been inlined into the root method. The left-hand-side bars
depict the number of bytecodes of just the methods compiled directly, whereas the
right-hand-side bars depict the number of bytecodes of methods compiled both
directly and indirectly, i.e. through inlining.

As Figures 6.5a to 6.5c show, even a small number of methods compiled at
one of the higher optimization levels can amount to a large number of com-
piled bytecodes; this is a direct consequence of other methods being inlined into
the root method. Conversely, both the C1 compiler of OpenJDK 7u, at its low-
est optimization level, and the baseline compiler of Jikes RVM do not inline at
all. This optimization is the responsibility of Jikes RVM’s optimizing compiler,
which does compile a large fraction of bytecodes at one of its three optimiza-
tion levels (Figure 6.5c): Including bytecodes that stem from inlined methods,
it ranges from 30.7 % (luindex) to 63.0 % (lusearch) and from 21.5 % (scalap) to
44.3 % (scalariform) for the Java and Scala benchmarks, respectively. On average,
46.1 % respectively 34.9 % of bytecodes are compiled by the optimizing compiler,
even though only a small percentage of methods is optimized by it. Figure 6.6
further illustrates this fact by depicting the number of bytecodes compiled by Jikes
RVM over time, i.e. from one benchmark iteration to the next until the steady-state

6.4 The Effect of Method Inlining on the Performance of Scala Code 125

is reached (coefficient of variation is below 2.0 % for 5 consecutive iterations). As
can be seen, the fraction of baseline-compiled bytecode amongst all compiled byte-
code steadily decreases over time as more and more methods are re-compiled with
the optimizing compiler. Nevertheless, the overall amount of bytecodes compiled
increases over time.

Now, inlining contributes significantly to this observed code expansion; even if
only a few (root) methods are optimized, copies of other methods may be inlined
into the optimized methods and are subsequently optimized as well. Since the in-
direct benefits of inlining, e.g. the propagation of data-flow information from caller
to callee [SJM11], vary depending on the optimizations performed in later com-
piler phases,14 the compiler’s inlining heuristic also varies in its aggressiveness. At
higher optimization levels, inlining is performed more aggressively, as this enables
further optimizations later on. Figures 6.7a to 6.7c illustrate this connection: The
higher the optimization level, the more aggressive the inlining heuristic, i.e. the
larger the amount of inline expansion.

Conversely, as Figures 6.7b and 6.7c clearly show, inlining heuristics are not very
aggressive at lower optimization levels. In fact, OpenJDK 7u does not inline at all
at its lowest optimization level. Also, Jikes RVM performs little inline expansion at
its lowest optimization level, O0; only for levels O1 and up does inlining increase
the root method’s size significantly.

But the amount of inline expansion does not only correlate with the optimiza-
tion level chosen but also with the programming language used for the benchmark
programs. For example, OpenJDK’s C2 compiler, which is used exclusively by Open-
JDK 6 and powers the highest optimization level of OpenJDK 7u, inlines much more
aggressively when compiling Scala code than when compiling Java code; inlining
expands Scala code on average by a factor of 5.1 and 6.9 for OpenJDK 6 and 7u, re-
spectively, whereas it expands Java code by just a factor of 3.2 and 4.3, respectively.
While inline expansion at the lower optimization levels of OpenJDK 7u, which are
powered by the C1 compiler, is also higher for Scala code than it is for Java code,
this difference is less pronounced than at the highest optimization level. That be-
ing said, the differences are still more pronounced than those found for Jikes RVM’s
inlining heuristic; there, inline expansion of Java and Scala code is much more sim-
ilar, with Scala code facing between 8.1 % (level 01) and 20.1 % (O2) more code
expansion than Java code.

I have shown in Chapter 5 that the Scala benchmarks favor inter-procedural over
intra-procedural control-flow, i.e. that method calls are more prominent than loops.
The fact that Jikes RVM does not react to this with inlining much more aggressively

14 To completely exploit the indirect benefits, Jikes RVM performs inlining in the very first compiler
phase: Bytecodes→ HIR (cf. Table 6.4)

126 6 An Analysis of the Impact of Scala Code on High-Performance JVMs

0

0.5

1

1.5
·105

#
B

yt
ec

od
es

avrora

Level O2
Level O1
Level O0
Baseline

·106
jython

·105 luindex

0

0.5

1

·105

#
B

yt
ec

od
es

lusearch
·105

pmd
·105 sunflow

0

1
2

3

·105

#
B

yt
ec

od
es

xalan

0

1

2
·105

#
B

yt
ec

od
es

kiama
·106 scalac

·105 scaladoc

10 20 30
0

0.5

1

·105

Iterations

#
B

yt
ec

od
es

scalap

10 20 30

·105

Iterations

scalariform

10 20 30

·105

Iterations

scalaxb

Figure 6.6: The number of bytecodes compiled by Jikes RVM at different optimiza-
tion levels (best-performing invocation) until the steady-state is reached

6.4 The Effect of Method Inlining on the Performance of Scala Code 127

av
rora

bati
k

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

tomca
t

tra
deb

ea
ns

xa
lan

2

4

6

8

10

1

E
xp

an
si
on

fa
ct
or

Java

C2

ac
tors

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lat

est

sca
lax

b
sp

ec
s
tm

t

Scala

Figure 6.7a: Amount of inline expansion in OpenJDK 6

av
rora

ec
lip

sefop h2
jyt

hon

luindex

lusea
rchpmd

su
nflow

tra
deb

ea
ns

xa
lan

2

4

6

8

10

1

E
xp

an
si
on

fa
ct
or

Java

Level 1 (C1)
Level 2 (C1)
Level 3 (C1)
Level 4 (C2)

ac
tors

ap
para

t

fac
torie

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lax

b
sp

ec
s
tm

t

Scala

Figure 6.7b: Amount of inline expansion in OpenJDK 7u

128 6 An Analysis of the Impact of Scala Code on High-Performance JVMs

av
rora

jyt
hon

luindex

lusea
rchpmd

su
nflow

xa
lan

2

4

6

8

10

1

E
xp

an
si
on

fa
ct
or

Java

Baseline
O0
O1
O2

kia
ma
sca

lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lax

b

Scala

Figure 6.7c: Amount of inline expansion in Jikes RVM

than it already does for the Java benchmarks indicates that the inlining heuristic
may be responsible for Jikes RVM’s poor performance on the Scala benchmark suite.

Tuning Jikes RVM’s Inlining Heuristic
I have therefore investigated whether Jikes RVM’s inlining heuristic can be tuned

such that the optimizing compiler performs better on Scala code. The aggressive-
ness of the compiler’s inlining heuristic is kept in check by four parameters: an
upper bound on the inlining depth (-X:opt:inline_max_inline_depth; defaults
to 5), an upper bound on the target’s size (-X:opt:inline_max_target_size; 23),
an upper bound on the root method’s size (-X:opt:inline_massive_method_size;
2048), and a lower bound below which the target method is always in-
lined (-X:opt:inline_max_always_inline_target_size; 11). Of these four pa-
rameters, the first two have the largest impact on the VM’s performance [Yan06].

Other parameters help to further fine-tune the cost-benefit analysis performed
by the inlining heuristic by reducing the target’s perceived size if inlining would
propagate additional information into the target method, e.g. when an argument’s
value or exact type is known [SJM11]. While it is possible to automatically tune
more than a dozen parameters [CO05], I have chosen to perform a more focused,
manual investigation and consider the two most important parameters only, namely
-X:opt:inline_max_inline_depth and -X:opt:inline_max_target_size.

6.4 The Effect of Method Inlining on the Performance of Scala Code 129

Figures 6.8a and 6.8b show the impact that varying these parameters has on
Jikes RVM’s steady-state performance on the Java and Scala benchmarks, respec-
tively. During the measurements, the upper bound on the inlining depth assumed
one of five values from 5 (the default) to 9. Likewise, the upper bound on the
target’s size assumed one of nine values from 23 (the default) to 115, i.e. five times
that size. This gives rise to 45 combinations of the two parameters’ values.

The results confirm the findings of Yang [Yan06] that changing the maximum
target method size has a significant effect on performance, whereas changing
the maximum inlining depths has a lesser, but still noticeable effect. Moreover,
Figure 6.8a shows that inlining more aggressively than the current default hurts
steady-state performance on most Java benchmarks; only jython and sunflow ben-
efit from more aggressive inlining. In the case of jython, however, moderately
increasing the upper bound on the target method size to more than twice the pa-
rameter’s default causes the benchmark to fail. Such failures are indicated by the
lines cut short in Figures 6.8a and 6.8b. While even for very aggressive inlining
the amount of inlining-induced code bloat is small compared to the overall heap
size (cf. Table 6.2), the optimizing compiler nevertheless allocates large amounts
of temporary objects which drive the garbage collection workload above a built-
in threshold; this causes Jikes RVM to raise an OutOfMemoryException and the
benchmark to fail.

In general, Figure 6.8a proves that Jikes RVM’s inlining heuristic is already well-
tuned for Java workloads. Inlining more aggressively does not improve perfor-
mance for 5 out of 7 benchmarks; instead, the resulting code bloat causes severe
performance degradations on benchmarks like luindex, lusearch, pmd, and xalan.

In contrast, Figure 6.8b shows that the Scala benchmarks indeed benefit from in-
lining more aggressively—up to a point. Beyond that point, however, steady-state
performance starts to degrade again, as can be observed for the scala and scalaxb
benchmarks. Moreover, inlining too aggressively can cause OutOfMemoryError-
induced failures (scalac, scaladoc), as the optimizing compiler allocates a large
number of objects; this phenomenon is also observable for the jython DaCapo
benchmark. It is noteworthy that this benchmark from the DaCapo suite, which
behaves similar to scaladoc, is also not a genuine Java benchmark; the Java byte-
code produced from Python source reacts to inlining quite similar to Scala code.

As 6.8b clearly shows, the Scala benchmarks indeed benefit from a more aggres-
sive choice of parameters for Jikes RVM’s inlining heuristic than is the case for the
Java benchmarks. Consequently, tuning the heuristic with respect to Scala code
can indeed yield significant performance improvements, albeit at the detriment of
Java performance. That being said, the observed speedups of up to 14.9 % are not
large enough to explain the observed performance differences between Jikes RVM

130 6 An Analysis of the Impact of Scala Code on High-Performance JVMs

−2 %
0 %
2 %
0 %

depth = 5

Sp
ee

du
p 6 7

avrora

8 9

0 %
5 %

10 %

0 %Sp
ee

du
p

jython

−20 %

−10 %

0 %0 %

Sp
ee

du
p

luindex

−40 %

−20 %

0 %0 %

Sp
ee

du
p

lusearch

−30 %
−20 %
−10 %

0 %0 %

Sp
ee

du
p

pmd

0 %
2 %
4 %

0 %

Sp
ee

du
p

sunflow

23 115

−60 %
−40 %
−20 %

0 %0 %

Sp
ee

du
p

23 115 23 115

xalan

23 115 23 115

Figure 6.8a: Speedup achieved by tuning the inlining heuristic (Java; cf. Figure 6.8b)

6.4 The Effect of Method Inlining on the Performance of Scala Code 131

−10 %

0 %

10 %

0 %
depth = 5

Sp
ee

du
p 6 7

kiama

8 9

−40 %
−20 %

0 %0 %

Sp
ee

du
p

scalac

0 %

5 %

0 %

Sp
ee

du
p

scaladoc

−10 %
0 %

10 %
0 %

Sp
ee

du
p

scalap

−10 %

0 %

10 %

0 %

Sp
ee

du
p

scalariform

23 115

0 %
10 %
20 %

0 %

Sp
ee

du
p

23 115 23 115
Max. target method size

scalaxb

23 115 23 115

Figure 6.8b: Speedup achieved by tuning the inlining heuristic with respect to max-
imum inlining depth and maximum target method size over the Scala
benchmarks’ steady-state performance (Steady-state; arithmetic mean
± 95 % confidence interval)

132 6 An Analysis of the Impact of Scala Code on High-Performance JVMs

on the one hand and OpenJDK 6 and 7u on the other hand solely in terms of a less
well-tuned inlining heuristic. In their steady-state, the OpenJDKs are about three
times as fast as Jikes RVM with its default heuristic.

But failure to inline need not be the result of an out-of-tune heuristic. Instead,
it is conceivable that Jikes VM fails to recognize some call sites as inlineable al-
together. This is a different interpretation of my hypothesis that “failure to inline
causes performance degradation” than the one addressed in this section, which was
focused on tuning the Jikes RVM’s inlining heuristic. When Jikes RVM completely
misses opportunities for inlining, no amount of tuning will help. Spotting such
missed opportunities is extremely hard, as thousands of method calls are compiled
per benchmark. I thus consider a modified hypothesis first: Jikes RVM performs no
worse than OpenJDK except for its failure to inline in certain situations.

Performance without Inlining
I therefore proceed to compare the three JVMs in a setting where inlining cannot

impact the JVMs’ performance: For this, I again measure the startup and steady-
state performance of both OpenJDKs and Jikes RVM, but this time with inlining
disabled (-XX:-Inline and -X:opt:inline=false, respectively). Note, though,
that the precise interpretation of these command-line options varies by JVM. For
example, Jikes RVM refuses to inline even VM-internal methods explicitly anno-
tated with @Inline when inlining is disabled. I have ascertained, however, that
this has minimal impact on performance, as the command-line option does affect
neither code in the bootimage, i.e. the RVM itself, nor crucial entrypoint methods
into the RVM’s runtime, which are always inlined during the compiler’s lowering
phase (HIR→ LIR; cf. Table 6.4).

Figures 6.9a and 6.9b depict the change in startup performance due to enabling
the inlining optimization. As can be seen, at least during startup, inlining does
not always result in a speedup. OpenJDK 6 in particular suffers from slowdowns
on several benchmarks. This is explained by the fact that I used both OpenJDK
VMs in their server configuration (-server, the default). In the case of OpenJDK
6, this configuration exclusively uses the C2 compiler [PVC01]. At the price of
slower startup, this compiler applies more costly optimizations than its C1 coun-
terpart [KWM+08]. In the case of OpenJDK 7, which uses a tiered compilation
approach, both compilers are used. This explains why OpenJDK 7u fares better
than its predecessor: Its tiered compilation approach makes use of the faster C1
compiler for a large number of methods (cf. Section 6.3).

That being said, Figures 6.9a and 6.9b clearly show that method inlining is al-
ready effective during startup of the Scala benchmarks, the only counterpoint being
the scalatest benchmark. This benchmark is insofar special as it executes various

6.4 The Effect of Method Inlining on the Performance of Scala Code 133

av
rora

bati
k

ec
lip

se fop h2
jyt

hon

luindex

lusea
rch pmd

su
nflow

tomca
t

tra
deb

ea
ns

xa
lan

0 %

100 %

200 %

0 %

Sp
ee

d
up

OpenJDK 6 OpenJDK 7u Jikes RVM

Figure 6.9a: Speedup achieved by inlining over the Java benchmarks’ startup per-
formance (Arithmetic mean ± 95 % confidence interval)

ac
tors

ap
para

t

fac
torie

kia
ma

sca
lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lat

est

sca
lax

b
sp

ec
s

tm
t

0 %

100 %

200 %

0 %

Sp
ee

d
up

OpenJDK 6 OpenJDK 7u Jikes RVM

Figure 6.9b: Speedup achieved by inlining over the Scala benchmarks’ startup per-
formance (Arithmetic mean ± 95 % confidence interval)

134 6 An Analysis of the Impact of Scala Code on High-Performance JVMs

av
rora

bati
k

ec
lip

se fop h2
jyt

hon

luindex

lusea
rch pmd

su
nflow

tomca
t

tra
deb

ea
ns

xa
lan

0 %

100 %

200 %

0 %

Sp
ee

d
up

OpenJDK 6 OpenJDK 7u Jikes RVM

Figure 6.10a: Speedup achieved by inlining over the Java benchmarks’ steady-state
performance (Arithmetic mean ± 95 % confidence interval)

unit tests (cf. Section 3.2.1), all of which are executed only once—by the JVM’s
interpreter; its just-in-time compiler is little used. The specs benchmark, however,
which also stems from the domain of automated testing does benefit from inlining,
even during startup. The scalatest benchmark is therefore clearly an outlier. So,
while inlining is a mixed blessing for short-running Java programs, it almost always
pays of for short-running Scala programs.

I now focus on the effect of method inlining on long-running programs, i.e. on
the benchmark’s steady-state. Figures 6.10a and 6.10b depict the speedup achieved
by the inlining optimization in this situation. What immediately catches the eye is
that inlining, on all three JVMs, is a much more effective optimization for the Scala
benchmarks than it is for the Java benchmarks. In the latter case, the observed
speedups are at most 85.4 % (OpenJDK 6/jython), whereas in the former case they
can be as high as 518.6 % (OpenJDK 6/factorie). What Figure 6.10b also shows is
that enabling inlining on Jikes RVM results in less pronounced speedups than on
OpenJDK. While a 116.1 % speedup (Jikes RVM/scalariform) is still impressive, it
falls short of the high speedups seen for both OpenJDK 6 and 7u.

The question is whether the fact that both OpenJDKs benefit much more from
inlining than Jikes RVM means that without this single optimization the optimizing
compilers of all three JVMs would play in the same league, i.e. implement equally

6.4 The Effect of Method Inlining on the Performance of Scala Code 135

ac
tors

ap
para

t

fac
torie

kia
ma

sca
lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lat

est

sca
lax

b
sp

ec
s

tm
t

0 %

100 %

200 %

0 %

Sp
ee

d
up

OpenJDK 6 OpenJDK 7u Jikes RVM

Figure 6.10b: Speedup achieved by inlining over the Scala benchmarks’ steady-state
performance (Arithmetic mean ± 95 % confidence interval)

powerful optimizations (besides inlining, of course). Figures 6.11a and 6.11b thus
contrast the steady-state execution times achieved with (dark) and without inlin-
ing (light shade). Even without inlining, Jikes RVM performs worse on every single
benchmark except for pmd.15 Thus, one can conclude that the optimizations (other
than method inlining) performed by Jikes RVM’s optimizing compiler are signifi-
cantly less powerful than those performed by OpenJDK’s compilers in general and
the C2 compiler in particular. It is therefore safe to conclude that this is what hurts
Scala performance on Jikes RVM most; other factors like a biased compiler DNA or
the less aggressive inlining heuristic contribute their share, but the primary cause
is found in the optimizing compiler’s later phases.

6.5 Discussion

In this section, I have compared the performance of several high-performance
JVMs. Upon finding that one of them, namely the Jikes Research VM, performed

15 The measurement for pmd is questionable, as this benchmark’s harness performs very lax output
verification, thereby possibly masking a VM failure. See http://sourceforge.net/tracker/
?func=detail&atid=861957&aid=3529087&group_id=172498 for further information.

136 6 An Analysis of the Impact of Scala Code on High-Performance JVMs

http://sourceforge.net/tracker/?func=detail&atid=861957&aid=3529087&group_id=172498
http://sourceforge.net/tracker/?func=detail&atid=861957&aid=3529087&group_id=172498

av
rora

bati
k

ec
lip

se fop h2
jyt

hon

luindex

lusea
rch pmd

su
nflow

tomca
t

tra
deb

ea
ns

tra
deso

ap
xa

lan
0

2

4

6
E
xe

cu
tio

n
ti
m
e
(n
or
m
al
iz
ed

)
OpenJDK 6 OpenJDK 7u Jikes RVM (without inlining)

Figure 6.11a: Steady-state execution time of the Java benchmarks with (dark) and
without (light shade) inlining, normalized to that of JRockit (Arith-
metic mean ± 95 % confidence interval)

particularly poorly on Scala code despite offering competitive performance on Java
code, I investigated the cause and was able to discard two plausible hypotheses as
to the primary cause of the observed performance:

Different Cost-Benefit Trade-Offs While JIT-compiling Scala code indeed exhibits
costs and benefits different from Java code, the bias towards Java is small.

Method Inlining Scala code indeed benefits much more from method inlining than
Java code. But aggressive inlining is only necessary for good performance
on Scala code; it is not sufficient.

This investigation allows one to conclude that Jikes RVM’s optimizing compiler
as a whole is responsible for that VMs poor performance on the Scala benchmarks;
neither the adaptive optimization system nor the inlining heuristic can solely be
blamed for the optimizing compiler’s shortcomings. That being said, my investiga-
tion has also shown that tuning both the adaptive optimization system and inlining
heuristic for a language other than Java can indeed improve performance; tun-
ing the inlining heuristic in particular improved steady-state performance on Scala

6.5 Discussion 137

ac
tors

ap
para

t

fac
torie

kia
ma

sca
lac

sca
lad

oc
sca

lap

sca
lar

ifo
rm

sca
lat

est

sca
lax

b
sp

ec
s

tm
t

0

2

4

6

E
xe

cu
tio

n
ti
m
e
(n
or
m
al
iz
ed

)
OpenJDK 6 OpenJDK 7u Jikes RVM (without inlining)

Figure 6.11b: Steady-state execution time of the Scala benchmarks with (dark) and
without (light shade) inlining, normalized to that of JRockit (Arith-
metic mean ± 95 % confidence interval)

code by up to 14.9 %. There is the very real danger, though, that doing so adversely
impacts performance on Java code.

Note that I was led to these conclusions only because of the availability of my
novel Scala benchmark suite. From measurements obtained using a Java bench-
mark suite alone one cannot safely generalize to other languages; even if the
performance on Java code is competitive, this need not be true for Scala code.
This highlights the importance of having a wide variety of benchmarks available,
in particular as the popularity of non-Java languages on the Java VM is growing,
and stresses the importance of this thesis’s contribution: a Scala benchmark suite
for the Java Virtual Machine.

138 6 An Analysis of the Impact of Scala Code on High-Performance JVMs

7 Related Work

This chapter contains a brief discussion of work that bears relation to mine: First,
Section 7.1 discusses efforts to design and establish benchmark suites for the Java
Virtual Machine. Next, Section 7.2 describes efforts to workload characterization,
focusing on but not limited to languages targeting the JVM. Finally, Section 7.3
reviews research efforts that aim to improve the performance of the Scala language.

Parts of this chapter have been published before:

• Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. Da
Capo con Scala: Design and analysis of a Scala benchmark suite for the
Java Virtual Machine. In Proceedings of the 26th Conference on Object-
Oriented Programing, Systems, Languages, and Applications (OOPSLA), 2011.
doi:10.1145/2048066.2048118

• Andreas Sewe, Mira Mezini, Aibek Sarimbekov, Danilo Ansaloni, Walter
Binder, Nathan Ricci, and Samuel Z. Guyer. new Scala() instanceof Java:
A comparison of the memory behaviour of Java and Scala programs. In
Proceedings of the International Symposium on Memory Management (ISMM),
2012. doi:10.1145/2258996.2259010

7.1 Benchmark Suites

Shortly after its inception, the first benchmarks for the Java Virtual Machine have
sprung up [Bel97, Rou98]. These early benchmarks, however, were simple micro-
benchmarks exercising basic operations like arithmetic, field accesses, or method
calls in tight loops. Due to their obvious shortcomings, they were largely ignored by
the scientific community. But since 1998, various benchmark suites have emerged
that subsequently gained wide-spread adoption by JVM researchers. Figure 7.1
shows their lineage.

Among the pioneering benchmark suites for research use are the SPEC JVM98
benchmarks [Cor98] and the Java Grande benchmark suite [BSW+00]. Of these,
the Java Grande benchmark suite, which is available in both single-threaded and
multi-threaded flavours, specifically aimed at so-called “Grande” applications, i.e.
large-scale applications with high demands on memory and computational re-
sources. Nevertheless, all these early benchmarks mostly relied on small kernels,

139

http://dx.doi.org/10.1145/2048066.2048118
http://dx.doi.org/10.1145/2258996.2259010

1997
1998

1999
2000

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

SPEC
JV

M
98

SPEC
jvm

2008

SPEC
jbb2000

SPEC
jbb2005

SciM
ark

2.0

Java
G

rande
(Sequential)

Java
G

rande
(M

ulti-threaded)
Jem

B
enchC

D
x

C
olorado

B
ench

D
aC

apo
2006-10

D
aC

apo
9.12

Scala
B

ench-
m

ark
Suite

Figure
7.1:The

principalbenchm
ark

suitesbeing
used

forJava
VirtualM

achine
research.

140 7 Related Work

which repeatedly performed the same computation. Moreover, they were predom-
inantly numerical in nature, although the SPEC JVM98 suite contained some no-
table exceptions like the db and javac benchmarks.

Also part of the SPEC effort are the SPECjbb2000 and SPECjbb2005 “Java busi-
ness benchmarks.” Both consist of just a single benchmark that emulates a three-
tier client/server system. In a research setting, one shortcoming of both bench-
marks is that the benchmarks run for a fixed amount of time rather than with
a fixed workload. This has led to the development of the so-called pseudojbb
variant,1 which keeps the workload fixed by processing a pre-defined number of
transactions. There also exists a real-time Java variant of the benchmark called
SPECjbbRT.

The SciMark 2.0 benchmark suite [PM00] consists of several numerical kernels
that perform, e.g., a fast Fourier transform or Monte Carlo integration. Again,
the benchmarks are micro-benchmarks only. But years later they have been inte-
grated with the SPECjvm2008 benchmark suite to jointly form the larger scimark
benchmark.

In 2002, the Colorado Bench benchmark suite2 marked a first attempt to turn
a diverse set of four large real-world applications (XSLT processor, persistent XML
database, webserver, chatserver) into a benchmark suite. While the benchmark
suite has not been as widely used for JVM research as most other suites presented
in this section, it nevertheless had its influence on future developments; one of its
constituent applications (the XSLT processor xalan) was later turned into one of
the original DaCapo benchmarks.

In 2006, Blackburn et al. [BGH+06] created the DaCapo benchmark suite to
improve upon the state-of-the-art of Java benchmark suites at that time, which
the authors criticize heavily in an article submitted to the Communications of the
ACM [BMG+08]. The eleven benchmarks included in the DaCapo 2006-10 suite
cover a broad range of application domains, none of which is primarily concerned
with numerical computations. The second release of the DaCapo benchmark suite
in December 2009, called version 9.12, rectified this by adding a workload focused
on numerical computations, namely the Raytracer sunflow. Moreover, the 9.12
release also marks the inclusion of several workloads derived from client/server
applications: tomcat, tradebeans, and tradesoap. As their names suggest, the
latter two benchmarks share a common core but differ in their use of client/server
communication protocols.

In 2008, ten years after the inception of the SPEC JVM98 benchmark suite, the
Standard Performance Evaluation Corporation (SPEC) released the SPECjvm2008

1 See http://cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005.
2 See http://www-plan.cs.colorado.edu/henkel/projects/colorado_bench/.

7.1 Benchmark Suites 141

http://cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005
http://www-plan.cs.colorado.edu/henkel/projects/colorado_bench/

suite [Cor08]. By default and like SPECjbb2005, SPECjvm2008 focuses on through-
put, i.e. it reports performance in operations per second. But as this is often
undesirable for research use [BMG+08], it supports a second mode (--lagom
command-line option) which keeps the workload fixed. It also includes a new
startup pseudo-benchmark, which runs all the other constituent benchmarks ex-
cept derby, which exhibits a high setup cost, for a single operation; this is meant to
measure a JVM’s startup performance.

Schoeberl et al. [SPU10] developed the JemBench benchmark suite which is
specifically aimed at embedded Java applications. It consists of six core bench-
marks, bundled together with several micro-benchmarks that cover, e.g., basic inte-
ger arithmetic. All benchmarks require only the CLDC API, the lowest denominator
among J2ME configurations.

Recently, Kalibera et al. [KHM+11] presented the CDx benchmark for real-time
Java. While CDx is, on the surface, only a single benchmark which exercises an
idealized aircraft collision detection algorithm, it is in fact a whole family of bench-
marks, each of which targets a specific real-time JVM or API (e.g. RTSJ or Safety
Critical Java). Moreover, CDx comes with several workloads and a noise genera-
tor, which can incur additional computational or allocation noise. Interestingly, the
CDx benchmark also comes with an equivalent implementation of the benchmark
in the C programming language commonly used for real-time programming.

Other benchmarks which target the Java platform are SPECjms2007, SPECjEn-
terprise2010, and SPECpower_ssj2008, all of which are published by the Standard
Performance Evaluation Corporation. The former two target complex enterprise
setups using message-oriented middleware or Java EE application servers whereas
the latter focusses on a server’s power consumption. All these benchmarks have not
yet been picked up by the community of JVM researchers, as other systems (mid-
dleware, databases) besides the JVM itself substantially contribute to overall per-
formance.

All of the aforementioned benchmarks not only target the Java platform, but
also the Java language, possibly in one of its dialects for embedded or real-time
programming. To the best of my knowledge, little effort has been invested so
far into benchmark suites for other languages targeting this platform. Dufour et
al. [DGH+04] made an initial attempt to establish some benchmarks for the AspectJ
language. Since then, this initial benchmark suite has been expanded slightly,3 but
it has not been picked up by the research community.

Also, the DaCapo benchmark suite, in both its 2006-10 and 9.12 incarnations
contains a single benchmark for the Python language, namely jython. But while
this benchmark, like the entire suite, has been picked up by researchers, little evi-

3 See http://www.sable.mcgill.ca/abc/benchmarks.

142 7 Related Work

http://www.sable.mcgill.ca/abc/benchmarks

dence exists that results obtained for this single benchmark can be generalized to
all Python workloads on the Java Virtual Machine.

7.2 Workload Characterization

Java
As part of the early Java Grande benchmarking effort, Daly et al. [DHPW01] con-

ducted a VM-independent analysis of its constituent benchmarks. In their work, the
authors focus on the benchmarks’ instruction mix with both static and dynamic met-
rics. They consider the 201 instructions of Java bytecode both individually and by
manual assignment to one of 22 groups. In Section 5.4.1, I instead apply principal
component analysis to automatically extract groupings, which avoids the subjectiv-
ity inherent to any manual assignment. Moreover, I use this tool not only to show
that there are differences between individual benchmarks, but also between the
languages the benchmarks are written in: Java and Scala.

Dufour et al. [DDHV03] analyze a selection of Java workloads using a broad
collection of VM-independent metrics. They do so in an effort to assess the metrics’
ability to discriminate their workloads; thus, the authors’ primary objects of study
are the metrics rather than the workloads. This distinguishes the work of Dufour
et al. from the one presented in Chapter 5 of this thesis. Nevertheless, Dufour
et al. not only describe but also measure various metrics in five different cate-
gories: program size and structure, data structures, polymorphism, memory use,
and concurrency and synchronization. In particular with respect to concurrency,
the metrics I present in Chapter 5 differ significantly; I am interested in the sharing
of data among threads rather than in the number of threads running overall. More-
over, I refrain from measuring fickle properties like lock contention and instead
measure more stable properties (bias and nesting) that impact the effectiveness of
current lock implementations.

The VM-independent evaluation in Chapter 5 of this thesis for the most part
ignores native methods. This is for two reasons: First, the Scala compiler emits
Java bytecode, so any metric targeting native code rather than bytecode says little
about the Scala compiler and its translation strategy. Second, native methods are
only used from within the Java runtime library but not from within the Scala run-
time library. In the broader context of workload characterization native methods
have nevertheless been subjected to some study. Gregg et al. [GPW05] observe the
number of native calls using an instrumented version of the Kaffe virtual machine.4

Unfortunately, this instrumentation approach renders their profiler inherently non-
portable. Moreover, the number of calls provides only a coarse-grained view of a

4 See http://www.kaffe.org/.

7.2 Workload Characterization 143

http://www.kaffe.org/

workload’s hotspots. While other researchers [HC99, LS03] provide a more de-
tailed breakdown of where CPU time is spent in Java workloads, their respective
profilers also rely on non-portable instrumentation approaches.

The aforementioned study by Gregg et al. [GPW05] is interesting, however, as
its main motivation is to compare two benchmark suites, namely Java Grande and
SPEC JVM98, in order to contrast scientific with regular, object-oriented Java pro-
grams. But unlike my study, theirs is not doing a cross-language comparison; both
benchmark suites contain only Java workloads. Nevertheless, their method-level
metrics are very similar to mine: the calls and call sites using different instruc-
tions (invokevirtual–invokeinterface) and the number of implementations tar-
geted by them (cf. Section 5.4.2).

Blackburn et al. [BGH+06] provide a detailed analysis of their DaCapo 2006-10
benchmark suite. Their selection of metrics puts a strong emphasis on the bench-
marks’ memory behaviour (allocations, accesses), providing a wealth of data to the
developers of garbage collectors. In contrast to Blackburn et al., Chapter 5 of this
thesis in equal parts considers code-related and memory-related metrics. While
the former metrics are directly motivated by my goal to discern the difference be-
tween Scala and Java code, the latter were also selected such that they measure
behaviour that may be caused by the Scala compiler’s translation strategy. The
code-related metrics reported by Blackburn et al. are either JVM-independent but
static or dynamic but JVM-dependent. But static metrics like the number of loaded
classes, their cohesiveness, and the coupling between them are, despite being inde-
pendent of the used JVM, mostly not independent of the used language; the design
metrics of Chidamer and Kemerer in particular [CK94] depend on the source lan-
guage. This makes these metrics, in their current form, unsuitable to compare two
benchmarks written in different source languages. The dynamic metrics reported
by Blackburn et al., e.g., the instruction mix (cf. Section 5.4.1) or method hot-
ness (cf. Section 5.4.5), have been measured in a JVM-dependent fashion, which
makes it harder than necessary to carry the results over to different JVMs. Like
both myself and Hoste and Eeckhout below [HE07], Blackburn et al. use principal
component analysis to demonstrate the benchmarks’ diversity.

Hoste and Eeckhout [HE07] show that workload characterization is best done
independently of a specific, real-world micro-architecture; instead, metrics should
be defined with respect to an idealized micro-architecture. This is exactly the ap-
proach I take in Chapter 5, with Java bytecode being the natural choice for such an
idealized micro-architecture.

Shiv et al. [SCWP09] characterize the SPECjvm2008 benchmark suite both qual-
itatively and quantitatively. For their quantitative analysis, however, the authors
rely primarily on metrics that are both JVM- and architecture-dependent. This is

144 7 Related Work

again in contrast to my analysis in Chapter 5. Shiv et al. also briefly compare the
SPECjvm2008 suite, which is their primary object of study, with its predecessor, the
SPEC JVM 98 suite, both of which are pure Java benchmark suites.

To motivate their work on thin locks, Bacon et al. [BKMS98] performed a study
on synchronization for a large albeit ad-hoc set of Java benchmarks. While my
analysis in Section 5.4.14 is similar in nature and scope, it uses and compares two
state-of-the-art benchmarks suites for Java and Scala, respectively.

As they did in their earlier work, Bacon et al. [BFG06] motivated their work on
header-compression techniques by means of a study on the use of identity hash-
codes by a set of Java benchmarks (SPECjvm98, SPECjbb2000); Java programs
compute the identity hash-code of just a small fraction of objects (1.3 %). The
analysis in Section 5.4.15 replicates the measurements of Bacon et al. for both a
more recent Java benchmark suite and the novel Scala benchmark suite described
in this thesis.

To my knowledge, Dieckmann and Hölzle [DH99] performed the first exten-
sive study on the memory behaviour of Java programs. Similar to the use of
Elephant Tracks (cf. Section 5.2), their experimental setup uses traces together
with a heap simulator to measure heap composition and the age distribution of
objects. In their experiments, Dieckmann and Hölzle found that both arrays and
non-reference fields contribute to a large extent to a Java program’s memory con-
sumption. Furthermore, by comparison to other studies the authors found that
Java objects are less likely to die at a young age than in ML or Lisp programs. With
respect to the analysis presented in Chapter 5, this puts Scala’s memory behaviour
firmly in the camp of functional languages like ML or Lisp.

Jones and Ryder [JR08] performed a detailed study of Java object demographics
with a focus on lifetime classification. In their study, the authors found that Java
objects commonly required lifetime classifications more complex than “short-lived,”
“long-lived,” and “immortal,” even though only a few lifetime distribution patterns
dominate the observed demographics. Their study, which specifically focuses on
object lifetimes, is considerably more detailed than what I present in Section 5.4.8;
nevertheless, Sections 5.4.8 and 5.4.9 already provide strong indication that the
objects created “under-the-hood” by the Scala compiler to represent, e.g. closures,
exhibit very distinct lifetime distribution patterns.

In a very recent observational study, Kalibera et al. [KMJV12] investigated to
what extent the workloads from the DaCapo benchmark suite (releases 2006-10
and 9.12) exhibit parallelism. Like I did in Chapter 5, the authors solely rely on
VM-independent metrics to ensure that their findings are not restricted to a partic-
ular JVM implementation or hardware platform. But unlike my analysis of sharing
of objects amongst threads in Section 5.4.13, Kalibera et al. define their metrics

7.2 Workload Characterization 145

to be time-sensitive. This allows them to detect patterns like a producer/consumer
relationship among threads or rapidly changing object ownership. The authors also
distinguish between the notions of “shared use” and “shared reachable” and ana-
lyze the use of volatile fields and concurrent APIs like java.util.concurrent.
Where my analysis in Chapter 5 aims at giving a broad overview, theirs investigates
one issue, namely parallelism, in-depth. Applying their metrics, techniques, and
tools to the Scala benchmarks from my benchmark suite might thus be a fruitful
direction for future work.

AspectJ
Dufour et al. [DGH+04] characterized the execution behaviour of programs writ-

ten in AspectJ, an aspect-oriented extension to Java. To this end, the authors tagged
individual bytecodes as corresponding to the Java and AspectJ parts of the source
program, respectively, or as corresponding to low-level infrastructure code inserted
by the AspectJ compiler for various purposes. The work by Dufour et al. is similar
to mine in that it relies predominately on bytecode-based metrics, but dissimilar in
that I compare two benchmark suites, one for Java and one for Scala, whereas their
benchmarks eo ipso are written in two languages, the base-language Java and the
aspect-language AspectJ. That being said, the goals of my work and theirs are sim-
ilar as well: to shed light on the execution behaviour of a novel language targeting
the JVM.

PHP
In recent work, Jibaja et al. [JBHM11] performed a comparison of the memory

behaviour of two managed languages, namely Java and PHP. Using the SPECjvm98
and PHP benchmarks suites, they found significant similarities in behaviour and
concluded that the implementers of PHP, who chose to implement a very prim-
itive memory manager (reference counting with backup tracing to detect cyclic
garbage), should focus on the tried and tested garbage collector designs (gen-
erational tracing collectors) found in modern JVMs. There exists new evidence,
though, that even reference counting with backup tracing can deliver good perfor-
mance when carefully tuned [SBF12].

JavaScript
Recently, both Richards et al. [RLBV10] and Ratanaworabhan et al. [RLZ10]

set out to study the dynamic behaviour of JavaScript. Despite the difference in
the languages studied—Scala in my case and JavaScript in theirs—they follow an
approach similar to the one I describe in Chapter 5, using VM-independent metrics
like instruction mix, call-site polymorphism, and method hotness. For this thesis,

146 7 Related Work

however, I went one step further in that I developed a state-of-the-art benchmark
suite for other researchers to use. Moreover, I also compared the results obtained
for the newly developed suite with an already established (Java) benchmark suite.
Of the aforementioned two studies, only the one by Ratanaworabhan et al. includes
a comparison with other, established JavaScript benchmarks suites.

Scala and Other Languages
Recently, Robert Hundt [Hun11] conducted a small-scale study in which he com-

pared four implementations of a single algorithm (loop recognition) implemented
in C++, Java, Go, and Scala, respectively, along several dimensions: “language fea-
tures, code complexity, compilers and compile time, binary sizes, run-times, and
memory footprint.” The author readily admits that his study is an “anecdotal com-
parison” only. Nevertheless, the study does point out some issues with the Scala
compiler’s translation strategy of Scala source- to Java bytecode, in particular with
respect to for-comprehensions. Moreover, Hundt found that for both his Java and
Scala benchmark, tuning the garbage collector had an disproportionate effect on
the benchmarks’ runtime performance.

Totoo et al. [TDL12] conducted a similar study, comparing the support for par-
allel programming in three languages: Haskell, F#, and Scala. Like Hundt, the au-
thors compared several implementations of a single algorithm (here: Barnes–Hut
simulation). With respect to Scala, Totoo et al. found that whether or not the
Scala compiler performs tail recursion elimination has a significant impact on their
benchmark’s performance. They also note that, while object allocation on the JVM5

is very light-weight, one has to take care of not performing overly expensive object
initialization; thus, constructors should finish their work as quickly as possible.

7.3 Scala Performance

While one strand of research on the Scala programming language is firmly focussed
on issues of language design [OZ05, MPO08], another strand focusses on language
implementation in general and on performance issues in particular.

In his thesis, Schinz [Sch05, Chapter 6] outlines the Scala compiler’s general
translation strategy. In particular, he discusses several strategies to translate run-
time types and measured their impact on Scala’s performance using earlier ver-
sions (circa 2005) of two Scala programs part of my benchmark suite: scalac and
scalap. But the goal of Schinz, being one of the developers of the Scala compiler,

5 Unfortunately, the authors do not clearly identify the JVM used (“JVM 1.7”); presumably, they
used a recent release of Orcale’s HotSpot JVM.

7.3 Scala Performance 147

differs from mine: While his work evaluates different translation strategies for run-
time types, mine evaluates the impact that the one strategy finally chosen, together
with all the other choices made by the Scala compiler’s developers, has on different
Java Virtual Machines.

In his thesis, Dragos [Dra10] describes two key optimizations applied by the
Scala compiler: inlining [Dra08] and specialization [DO09a]. The former opti-
mization [Dra10, Section 3] is automatically applied by the Scala compiler6 and
acts as enabling optimization for closure and dead-code elimination. In contrast,
the latter optimization [Dra10, Section 4] requires the programmer to annotate
the generic methods to be specialized. Both optimizations have the potential to
remove the need for boxing (cf. Section 5.4.7). In his thesis, the author evalu-
ates both optimizations separately on two sets of small-scale benchmarks,7 both
with respect to the increase in code size and the resulting startup and steady-
state performance. The observed speedups for the inlining optimization are highly
benchmark-dependent, whereas Dragos observed a consistent twofold speedup for
specialization except for one notable outlier in a benchmark whose performance
was governed, prior to specialization, almost exclusively by boxing; here, special-
ization resulted in a 35-fold speedup. All these results were, however, obtained
using small-scale benchmarks only, where the failure to eliminate one instance
closure or boxing operation alone can ruin performance. Despite the limitations
of his benchmarking setup, Dragos arrived at the conclusion “that optimizations
[performed by the Scala compiler] can remove more than just the boxing cost,
and that the JVM does not perform the same level of inlining and cross-method
optimizations.” [Dra10]

Dubochet and Odersky [DO09b] compare reflective and generative approaches
to compiling structural types on the JVM. As representatives of the former ap-
proach, the authors chose two variants of the Scala compiler which translate
structural method calls to reflective calls using monomorphic and polymorphic
inline caches, respectively. As representative of the latter approach, the authors
chose the Whiteoak compiler, which translates structural method calls to calls to a
proxy object’s methods. The authors conclude that Whiteoak’s generative approach
potentially outperforms reflective approaches, at least once the higher startup cost
of on-the-fly proxy generation are amortized. As the reflective approach is easier to
implement, however, the Scala compiler currently implements structural types us-
ing reflection, assisted by a polymorphic inline cache. This implementation decision

6 Provided that the respective compiler option has been used; by default optimizations are dis-
abled (cf. Section 8.1).

7 Most benchmarks are based either on numerical kernels (matrix multiplication, fast Fourier
transformation) or on the repeated application of higher-order functions (map, fold).

148 7 Related Work

has been reached solely based on micro-benchmarks. But as my own experiments
show, structural types are rarely used in larger benchmarks (cf. Section 5.4.6), so
they do not (yet) warrant much optimization effort. Nevertheless, from the exper-
iments one can observe the inline cache’s effectiveness; most reflective call sites
indeed target just a single target method.

Rytz and Odersky [RO10] provide a detailed description of how the Scala lan-
guage handles named and default arguments, two features introduced with Scala
2.8, the version of Scala that my benchmark suite targets. While the authors de-
scribe the implementation of these features [RO10, Section 3], they do not com-
ment on its performance implications, not even using micro-benchmarks. This is
unfortunate, as at least default arguments have the potential to affect performance
both positively and negatively:8 The positive effect ensues if the default arguments
are, as is often the case, simple constants, which can be propagated into the called
method; the negative effect ensues because each default argument translates into
a virtual method invocation of its own. But these further methods are invoked on
the same object as is the called method, so that if inlining is possible for the latter,
it is also possible for the former.

Rompf et al. [RMO09] describe how the Scala compiler implements delimited
continuations by transforming parts of the program to continuation-passing style.
The authors compare Scala’s performance on two benchmarks (actors, generators)
with that of Kilim, another language with continuations which also targets the
JVM. Moreover, they compare an implementation of a third benchmark (same-
fringe) using Scala’s delimited continuations to alternative Scala implementations.
But all three performance comparisons differ in intention very much from mine. In
Chapter 5, I compare and contrast the execution characteristics of two languages,
without necessarily making a statement about the languages’ overall performance.
In Chapter 6, I do make statements about performance, but rather about the differ-
ences between JVMs rather than between languages. This is because statements of
the latter kind are hard to justify and even harder to generalize; what is required is
the same benchmark program written in multiple languages, e.g. in both idiomatic
Scala and idiomatic Kilim. For the Scala benchmark suite and its Java counter-
part, no such one-to-one correspondence between benchmarks exists. In fact, it
would be extremely time-consuming to produce a dozen Scala duplicates of large,
real-world Java benchmarks, but written in idiomatic Scala.

Recently, Pham [Pha12] developed a tool, incidentally also called Scala Bench-
marking Suite (SBS), designed to help writing Scala micro-benchmarks.9 The re-

8 Named arguments are compiled away entirely.
9 Using real-world programs for benchmarks is also supported through so-called snippet bench-

marks, but no such benchmark suite has yet been assembled.

7.3 Scala Performance 149

sulting micro-benchmarks can be used both to assess the JVM’s performance in a
statistically rigorous fashion [GBE07], but also to compute a limited selection of
dynamic metrics: classes loaded, methods called, use of boxed types, memory con-
sumption, number of GC cycles. In this latter respect, SBS is similar to but more
limited than the selection of dynamic metrics presented in Chapter 5. This is a
direct consequence of SBS’s reliance on the Java Debug Interface, which is less
flexible than many of the tools presented in Chapter 4. That being said, the fo-
cus of Pham is different than mine; while he wants to assist the developers of the
Scala compiler in tuning their translation strategy (cf. Section 2.3), my main audi-
ence are the developers of JVMs, who I assist in spotting performance problems (cf.
Chapter 6).

150 7 Related Work

8 Conclusions and Future Directions

With the growing popularity of modern programming languages such as Scala,
Groovy, or Clojure in recent years, the Java Virtual Machine has become a Joint
Virtual Machines. Alas, the research community has not caught up yet with this de-
velopment. While micro-benchmark suites abound on the Internet for nearly every
conceivable JVM language, few of them satisfy the requirements of JVM researchers
with respect to representativeness and rigorous design.

In this thesis I have addressed this shortcoming for the Scala programming lan-
guage by designing a full-fledged benchmark suite comparable to and compatible
with the well-established DaCapo 9.12 benchmark suite. It is freely available to
other researchers, complete with source code for the benchmark harnesses and the
build toolchain from the project’s website (Figure 8.1). This Scala benchmark suite
therefore makes up a valuable piece of research infrastructure, which I myself have
already used to good effect [Sew10, SMSB11, SMS+12].

In Chapter 5, I was able to answer my initial question of “Scala
?
≡ Java mod

JVM” [Sew10]: When viewed from the JVM’s perspective, Scala programs indeed
exhibit patterns, e.g. in the code’s instruction mix (cf. Section 5.4.1) or the objects’
lifetimes (cf. Section 5.4.8), which are different from Java programs. However,
with respect to other metrics, the structure, execution characteristics, and memory
behaviour of Scala code are remarkably similar. Therefore, depending on the met-
ric and thus the area of JVM implementation of interest, Scala code is similar or
dissimilar to Java code.

But, as I have shown in Chapter 6, the dissimilarities are pronounced enough
that some modern JVM implementations perform much worse than the competi-
tion on Scala benchmarks—despite delivering competitive performance for Java
benchmarks.

8.1 Directions for Future Work

Empirical Analysis
On the Java Virtual Machine, it has traditionally been the responsibility of the

just-in-time compiler to perform optimizations; while javac, the compiler that
compiles Java source- to bytecode, offers a -optimise command-line option, the
option nowadays has become a no-op. For Scala, however, the situation is different;
recently, scalac, which compiles Scala source- to Java bytecode, has acquired the

151

Figure
8.1:The

w
ebsite

ofthe
Scala

Benchm
ark

Project

152 8 Conclusions and Future Directions

capability to perform a set of optimizations (-Yinline, -Yclosure-elim options;
@specialize annotation) on its own [Dra10]. Not only is the implementation
of these optimizations rather intricate [DO09a, Dra08], it also seems redundant:
method inlining and escape analysis (needed for closure elimination) are stock
optimizations performed by modern JVMs.

One fruitful direction for future work is thus to assess the effectiveness of these
optimizations when performed by the Scala compiler rather than the JVM. This
would require variants of all the Scala benchmarks, built with different compiler
options or even different versions of the Scala compiler. Such a study might also
benefit from some compiler support for tagging “under-the-hood” objects with the
cause of their allocation. Similar tagging support has been used by Dufour et al. in
measuring the dynamic behaviour of AspectJ programs [DGH+04].

Benchmarks from my Scala benchmark suite might also be useful in assessing
the performance impact of language changes like the value classes proposed in SIP-
15.1 This change in particular has the potential to prevent the creation of most
implicit wrapper objects for so-called rich primitives (cf. Section 5.4.8), which at
least for some benchmarks (kiama, scalac, and scaladoc) contribute significantly to
the benchmarks’ allocations. In contrast to method inlining and closure elimina-
tion, value classes were not primarily designed as an optimization. Nevertheless,
they may have a positive effect on performance—which needs a full-fledged bench-
mark suite to quantify exactly.

While this thesis (cf. Chapter 6) assessed the impact of Scala code on the just-
in-time compilers of modern Java Virtual Machines, additional work is needed to
assess its effect on the JVMs’ garbage collectors. Temporary objects like the ones
for closures and implicit wrappers, in particular, may be either stack-allocated or
optimized away entirely by modern just-in-time compilers. But whether the com-
plex translation from Scala source- to Java bytecode produces something that is
feasible for the JVM to analyze is an open question.

The Scala distribution also supports the Microsoft .NET platform,2 although as
of this writing the primary focus of the Scala compiler’s developers seems to be the
JVM backend. For practical reasons, the analyses performed as part of this thesis
have been restricted to the JVM platform, though, as the benchmark suite I de-
signed does not yet exist in a .NET variant. But given such a variant, future work
could compare and contrast the two platforms in the same fashion as I compared
two benchmark suites in Chapter 5. Also, it could be used to evaluate the perfor-
mance of competing virtual machines, e.g. Microsoft’s implementation of the CLR
with the Mono project’s, like it did for Java virtual machines in Chapter 6.

1 SIP-15 (Value Classes). See http://docs.scala-lang.org/sips/.
2 See http://www.scala-lang.org/node/168.

8.1 Directions for Future Work 153

http://docs.scala-lang.org/sips/
http://www.scala-lang.org/node/168

Optimizations and Tuning
This directly leads to another fruitful direction for future work: the develop-

ment of optimizations which are, if not language-specific,3 then at least geared
towards a specific language which exhibits different characteristics than Java itself.
Given the important role that method inlining plays for Scala performance (cf. Sec-
tion 6.4), making inlining heuristics more aware of some of the source language’s
usage patterns, e.g. mixin inheritance or the frequent use of first-class functions,
seems worthwhile.4 A very first step in this direction would be honouring the
@inline annotation available to Scala programmers; that way, the JVM would
guarantee that certain methods are inlined, relieving the Scala compiler of the
burden to implement inlining in its backend [Dra10].

Tuning the optimizing compiler in general and its inlining heuristic in particular
also seems to offer some potential for performance improvements. For example,
even a simple optimization like tuning the Jikes RVM’s compiler DNA already
resulted in statistically significant speedups for Scala (cf. Section 6.3). Fully au-
tomated approaches in particular [CO05, HGE10] promise to make this not only
feasible, but to also give rise to further insights into the factors that influence Scala
performance on the Java Virtual Machine.

Maintenance of the Scala Benchmark Suite
No benchmark suite stays relevant forever. Like Blackburn et al. have done for

the DaCapo benchmark suite [BGH+06], I plan to maintain the benchmark suite,
incorporate community feedback, and extend the suite to cover further application
domains once suitable Scala applications emerge. In the one and a half years after
the suite’s first public appearance in April 2011, the number of publicly available,
large-scale Scala applications has steadily increased, so it seems likely that the
suite’s next incarnation will be even broader in scope.

I will also maintain and extend the toolchain used to build the Scala benchmark
suite (cf. Section 3.3), so that it becomes easier for other researchers to build their
own benchmarks, possibly for further languages beyond Java or Scala.

The DaCapo Benchmark Suite, Release 13.x
The author of this thesis has since been invited to become a committer for

the next major overhaul of the DaCapo benchmark suite, tentatively called re-
lease 13.x. In addition to the usual maintenance tasks required to keep a large
benchmark suite up-to-date (updating benchmarks, retiring old ones) I plan to

3 Any optimization on the JVM is ipso facto applicable to all languages which target the JVM.
4 While still conducted in a Java environment, preliminary research by the author on making the

inlining heuristic aware of function-object-like behavior is encouraging [SJM11].

154 8 Conclusions and Future Directions

adapt the lessons learned from the Scala benchmark suite’s build toolchain (cf.
Section 3.3) to the DaCapo suite. Moreover, I believe that the tools and techniques
honed while analyzing the Scala benchmark suite will prove valuable when evalu-
ating new benchmarks for inclusion into release 13.x. Finally, my experience with
benchmarks based on testing frameworks (cf. Section 3.2.3) suggests the inclu-
sion of one such benchmark, presumably built around JUnit, to account for the
emergence of test-driven development in that suite as well.

8.1 Directions for Future Work 155

Bibliography

[AAB+05] Bowen Alpern, Steve Augart, Stephen M. Blackburn, Maria Butrico,
Antony Cocchi, Perry Cheng, Julian Dolby, Stephen Fink, David Grove,
Michael Hind, Kathryn S. McKinley, MarkMergen, J. Eliot B. Moss, Ton
Ngo, and Vivek Sarkar. The Jikes virtual machine research project:
Building an open-source research community. IBM Systems Journal,
44:399–417, 2005. doi:10.1147/sj.442.0399.

[ABB+12] Danilo Ansaloni, Walter Binder, Christoph Bockisch, Eric Bodden,
Kardelen Hatun, Lukáš Marek, Zhengwei Qi, Aibek Sarimbekov, An-
dreas Sewe, Petr Tůma, and Yudi Zheng. Challenges for refinement
and composition of instrumentations: Position paper. In Thomas
Gschwind, Flavio De Paoli, Volker Gruhn, and Matthias Book, ed-
itors, Software Composition, volume 7306 of Lecture Notes in Com-
puter Science, pages 86–96. Springer Berlin / Heidelberg, 2012. doi:
10.1007/978-3-642-30564-1_6.

[ABL97] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hard-
ware performance counters with flow and context sensitive profiling.
In Proceedings of the Conference on Programming Language Design and
Implementation (PLDI), 1997. doi:10.1145/258915.258924.

[ACFG01] Bowen Alpern, Anthony Cocchi, Stephen Fink, and David Grove. Effi-
cient implementation of Java interfaces: invokeinterface considered
harmless. In Proceedings of the 16th Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2001.
doi:10.1145/504282.504291.

[ADG+99] Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knippel, Y.S. Ra-
makrishna, and Derek White. An efficient meta-lock for implementing
ubiquitous synchronization. Technical report, Sun Microsystems, Inc.,
1999.

[AFG+00] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Pe-
ter F. Sweeney. Adaptive optimization in the Jalapeño JVM. In Proceed-
ings of the 15th Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2000. doi:10.1145/353171.
353175.

157

http://dx.doi.org/10.1147/sj.442.0399
http://dx.doi.org/10.1007/978-3-642-30564-1_6
http://dx.doi.org/10.1007/978-3-642-30564-1_6
http://dx.doi.org/10.1145/258915.258924
http://dx.doi.org/10.1145/504282.504291
http://dx.doi.org/10.1145/353171.353175
http://dx.doi.org/10.1145/353171.353175

[AFG+05] M. Arnold, S.J. Fink, D. Grove, M. Hind, and P.F. Sweeney. A survey
of adaptive optimization in virtual machines. Proceedings of the IEEE,
93(2):449–466, 2005. doi:10.1109/JPROC.2004.840305.

[AKW88] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The AWK
Programming Language. Addison-Wesley, 1988.

[Ayc03] John Aycock. A brief history of just-in-time. ACM Computing Sur-
veys (CSUR), 35(2):97–113, 2003. doi:10.1145/857076.857077.

[BCF+10] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie, and Jérôme Siméon, editors. XQuery 1.0: An XML
Query Language. World Wide Web Consortium, 2nd edition, 2010.

[BCM04] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Myths
and realities: the performance impact of garbage collection. In
Proceedings of the Joint Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS/Performance), 2004. doi:10.1145/
1005686.1005693.

[BCW+10] Michael Bebenita, Mason Chang, Gregor Wagner, Andreas Gal, Chris-
tian Wimmer, and Michael Franz. Trace-based compilation in execu-
tion environments without interpreters. In Proceedings of the 8th Con-
ference on the Principles and Practice of Programming in Java (PPPJ),
2010. doi:10.1145/1852761.1852771.

[Bel97] Doug Bell. Make Java fast: Optimize! JavaWorld, 2(4),
1997. URL: http://www.javaworld.com/javaworld/jw-04-1997/
jw-04-optimize.html.

[BFG06] David Bacon, Stephen Fink, and David Grove. Space- and time-
efficient implementation of the Java object model. In Proceedings of the
20th European Conference on Object-Oriented Programming (ECOOP),
2006. doi:10.1007/3-540-47993-7_5.

[BGH+06] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M.
Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Fein-
berg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosk-
ing, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. The DaCapo benchmarks: Java benchmarking development
and analysis. In Proceedings of the 21st Conference on Object-Oriented

158 Bibliography

http://dx.doi.org/10.1109/JPROC.2004.840305
http://dx.doi.org/10.1145/857076.857077
http://dx.doi.org/10.1145/1005686.1005693
http://dx.doi.org/10.1145/1005686.1005693
http://dx.doi.org/10.1145/1852761.1852771
http://www.javaworld.com/javaworld/jw-04-1997/jw-04-optimize.html
http://www.javaworld.com/javaworld/jw-04-1997/jw-04-optimize.html
http://dx.doi.org/10.1007/3-540-47993-7_5

Programming, Systems, Languages, and Applications (OOPSLA), 2006.
doi:10.1145/1167473.1167488.

[BHMV09] Walter Binder, Jarle Hulaas, Philippe Moret, and Alex Villazón.
Platform-independent profiling in a virtual execution environment.
Software: Practice and Experience, 39(1):47–79, 2009. doi:10.1002/
spe.890.

[BKMS98] David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano.
Thin locks: featherweight synchronization for Java. In Proceedings
of the Conference on Programming Language Design and Implementa-
tion (PLDI), 1998. doi:10.1145/277650.277734.

[Blo08] Joshua Bloch. Effective Java. Sun Microsystems, Inc., 2nd edition,
2008.

[BMG+08] Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner, Chris Hoff-
mann, Asjad M. Khan, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking,
Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanovik, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. Wake up and smell the coffee: evaluation methodology for
the 21st century. Communications of the ACM, 51(8):83–89, 2008.
doi:10.1145/1378704.1378723.

[BN99] Mathias Braux and Jacques Noyé. Towards partially evaluating re-
flection in Java. In Proceedings of the Workshop on Partial Evalua-
tion and Semantics-Based Program Manipulation (PEPM), 1999. doi:
10.1145/328690.328693.

[BSS+11] Eric Bodden, Andreas Sewe, Jan Sinschek, Mira Mezini, and Hela
Oueslati. Taming reflection: Aiding static analysis in the presence
of reflection and custom class loaders. In Proceedings of the 33rd
International Conference on Software Engineering (ICSE), 2011. doi:
10.1145/1985793.1985827.

[BSSM10] Eric Bodden, Andreas Sewe, Jan Sinschek, and Mira Mezini. Taming
reflection (extended version): Static analysis in the presence of reflec-
tion and custom class loaders. Technical Report TUD-CS-2010-0066,
CASED, 2010.

Bibliography 159

http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1002/spe.890
http://dx.doi.org/10.1002/spe.890
http://dx.doi.org/10.1145/277650.277734
http://dx.doi.org/10.1145/1378704.1378723
http://dx.doi.org/10.1145/328690.328693
http://dx.doi.org/10.1145/328690.328693
http://dx.doi.org/10.1145/1985793.1985827
http://dx.doi.org/10.1145/1985793.1985827

[BSW+00] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Davey. A
benchmark suite for high performance Java. Concurrency: Practice and
Experience, 12(6):375–388, 2000. doi:10.1002/1096-9128(200005)
12:6<375::AID-CPE480>3.0.CO;2-M.

[Chi07] Yuji Chiba. Redundant boxing elimination by a dynamic compiler for
Java. In Proceedings of the 5th Conference on the Principles and Prac-
tice of Programming in Java (PPPJ), 2007. doi:10.1145/1294325.
1294355.

[CK94] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20(6):476–493,
1994. doi:10.1109/32.295895.

[CMS07] Christian Collberg, Ginger Myles, and Michael Stepp. An empirical
study of Java bytecode programs. Software: Practice and Experience,
37(6):581–641, 2007. doi:10.1002/spe.v37:6.

[CO05] John Cavazos and Michael F. P. O’Boyle. Automatic tuning of inlin-
ing heuristics. In Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing (SC), 2005. doi:10.1109/SC.2005.14.

[Cor98] Standard Performance Evaluation Corporation. SPEC JVM98 bench-
marks, 1998. URL: http://www.spec.org/jvm98/.

[Cor08] Standard Performance Evaluation Corporation. SPECjvm2008, 2008.
URL: http://www.spec.org/jvm2008/.

[DA99a] David Detlefs and Ole Agesen. Inlining of virtual methods. In Pro-
ceedings of the 5th European Conference on Object-Oriented Program-
ming (ECOOP), 1999. doi:10.1007/3-540-48743-3_12.

[DA99b] David Detlefs and Ole Agesen. Inlining of virtual methods. In Pro-
ceedings of the 13th European Conference on Object-Oriented Program-
ming (ECOOP), 1999. doi:10.1007/3-540-48743-3_12.

[DDHV03] Bruno Dufour, Karel Driesen, Laurie Hendren, and Clark Verbrugge.
Dynamic metrics for Java. In Proceedings of the 18th Conference
on Object-Oriented Programing, Systems, Languages, and Applica-
tions (OOPSLA), 2003. doi:10.1145/949305.949320.

160 Bibliography

http://dx.doi.org/10.1002/1096-9128(200005)12:6<375::AID-CPE480>3.0.CO;2-M
http://dx.doi.org/10.1002/1096-9128(200005)12:6<375::AID-CPE480>3.0.CO;2-M
http://dx.doi.org/10.1145/1294325.1294355
http://dx.doi.org/10.1145/1294325.1294355
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1002/spe.v37:6
http://dx.doi.org/10.1109/SC.2005.14
http://www.spec.org/jvm98/
http://www.spec.org/jvm2008/
http://dx.doi.org/10.1007/3-540-48743-3_12
http://dx.doi.org/10.1007/3-540-48743-3_12
http://dx.doi.org/10.1145/949305.949320

[DFD10] Vinicius H. S. Durelli, Katia R. Felizardo, and Marcio E. Delamaro.
Systematic mapping study on high-level language virtual machines. In
Proceedings of the 4th Workshop on Virtual Machines and Intermediate
Languages (VMIL), 2010. doi:10.1145/1941054.1941058.

[DGH+04] Bruno Dufour, Christopher Goard, Laurie Hendren, Oege de Moor,
Ganesh Sittampalam, and Clark Verbrugge. Measuring the dynamic
behaviour of AspectJ programs. In Proceedings of the 19th Confer-
ence on Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA), 2004. doi:10.1145/1028976.1028990.

[DH99] Sylvia Dieckmann and Urs Hölzle. A study of the allocation behavior
of the SPECjvm98 Java benchmarks. In Proceedings of the 5th European
Conference on Object-Oriented Programming (ECOOP), 1999. doi:10.
1007/3-540-48743-3_5.

[DHPW01] Charles Daly, Jane Horgan, James Power, and John Waldron. Platform
independent dynamic Java Virtual Machine analysis: the Java Grande
Forum benchmark suite. In Proceedings of the 2001 joint ACM-ISCOPE
Conference on Java Grande, 2001. doi:10.1145/376656.376826.

[DO09a] Iulian Dragos and Martin Odersky. Compiling generics through user-
directed type specialization. In Proceedings of the 4th Workshop on
the Implementation, Compilation, Optimization of Object-Oriented Lan-
guages and Programming Systems (ICOOOLPS), 2009. doi:10.1145/
1565824.1565830.

[DO09b] Gilles Dubochet and Martin Odersky. Compiling structural types on the
JVM: a comparison of reflective and generative techniques from Scala’s
perspective. In Proceedings of the 4th Workshop on the Implementation,
Compilation, Optimization of Object-Oriented Languages and Program-
ming Systems (ICOOOLPS), 2009. doi:10.1145/1565824.1565829.

[Doe03] Osvaldo Doederlein. The tale of Java performance. Journal of Object
Technology (JOT), 2(5):17–40, 2003.

[Dra08] Iulian Dragos. Optimizing higher-order functions in Scala. In
Proceedings of the 3rd Workshop on the Implementation, Compila-
tion, Optimization of Object-Oriented Languages and Programming Sys-
tems (ICOOOLPS), 2008.

Bibliography 161

http://dx.doi.org/10.1145/1941054.1941058
http://dx.doi.org/10.1145/1028976.1028990
http://dx.doi.org/10.1007/3-540-48743-3_5
http://dx.doi.org/10.1007/3-540-48743-3_5
http://dx.doi.org/10.1145/376656.376826
http://dx.doi.org/10.1145/1565824.1565830
http://dx.doi.org/10.1145/1565824.1565830
http://dx.doi.org/10.1145/1565824.1565829

[Dra10] Iulian Dragos. Compiling Scala for Performance. PhD thesis,
École Polytechnique Fédérale de Lausanne, 2010. doi:10.5075/

epfl-thesis-4820.

[DRS08] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. A scalable
technique for characterizing the usage of temporaries in framework-
intensive Java applications. In Proceedings of the 16th Symposium
on Foundations of Software Engineering (FSE), 2008. doi:10.1145/
1453101.1453111.

[ECM10] ECMA. Common Language Infrastructure (CLI): Partitions I to VI. ECMA
International, 5th edition, 2010.

[EGDB03] Lieven Eeckhout, Andy Georges, and Koen De Bosschere. How Java
programs interact with virtual machines at the microarchitectural
level. In Proceedings of the 18th Conference on Object-Oriented Pro-
graming, Systems, Languages, and Applications (OOPSLA), 2003. doi:
10.1145/949305.949321.

[ES11] Michael Eichberg and Andreas Sewe. Encoding the Java Virtual Ma-
chine’s instruction set. Electronic Notes in Theoretical Computer Science,
264(4):35–50, 2011. doi:10.1016/j.entcs.2011.02.004.

[FQ03] S.J. Fink and Feng Qian. Design, implementation and evaluation of
adaptive recompilation with on-stack replacement. In Proceedings of
the Symposium on Code Generation and Optimization (CGO), 2003.
doi:10.1109/CGO.2003.1191549.

[GBE07] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rig-
orous Java performance evaluation. In Proceedings of the 22nd Confer-
ence on Object-Oriented Programing, Systems, Languages, and Applica-
tions (OOPSLA), 2007. doi:10.1145/1297027.1297033.

[GJS+11] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley.
The Java™Language Specification. Oracle America, Inc., Java 7 SE edi-
tion, 2011.

[GPB+06] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David
Holmes, and Doug Lea. Java Concurrency in Practice. Addison-Wesley
Longman Publishing Co., Inc., 2006.

162 Bibliography

http://dx.doi.org/10.5075/epfl-thesis-4820
http://dx.doi.org/10.5075/epfl-thesis-4820
http://dx.doi.org/10.1145/1453101.1453111
http://dx.doi.org/10.1145/1453101.1453111
http://dx.doi.org/10.1145/949305.949321
http://dx.doi.org/10.1145/949305.949321
http://dx.doi.org/10.1016/j.entcs.2011.02.004
http://dx.doi.org/10.1109/CGO.2003.1191549
http://dx.doi.org/10.1145/1297027.1297033

[GPW05] David Gregg, James Power, and John Waldron. A method-level com-
parison of the Java Grande and SPEC JVM98 benchmark suites. Con-
currency and Computation: Practice and Experience, 17(7-8):757–773,
2005. doi:10.1002/cpe.v17:7/8.

[HBM+06] Matthew Hertz, Stephen M. Blackburn, J. Eliot B. Moss, Kathryn S.
McKinley, and Darko Stefanović. Generating object lifetime traces
with Merlin. ACM Transactions on Programming Languages and
Systems (TOPLAS), 28(3):476–516, 2006. doi:10.1145/1133651.
1133654.

[HC99] Nathan M. Hanish and William E. Cohen. Hardware support for pro-
filing Java programs. In Proceedings of the Workshop on Hardware Sup-
port for Objects and Microarchitectures for Java (WHSO), 1999.

[HCU91] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing
dynamically-typed object-oriented languages with polymorphic inline
caches. In Proceedings of the 5th European Conference on Object-
Oriented Programming (ECOOP), 1991. doi:10.1007/BFb0057013.

[HE07] Kenneth Hoste and Lieven Eeckhout. Microarchitecture-independent
workload characterization. IEEE Micro, 27(3):63–72, 2007. doi:10.
1109/MM.2007.56.

[HGE10] Kenneth Hoste, Andy Georges, and Lieven Eeckhout. Automated just-
in-time compiler tuning. In Proceedings of the 8th Symposium on Code
Generation and Optimization (CGO), 2010. doi:10.1145/1772954.
1772965.

[HHR95] Richard E. Hank, Wen-Mei W. Hwu, and B. Ramakrishna Rau. Region-
based compilation: an introduction and motivation. In Proceedings of
the 28th Symposium on Microarchitecture (MICRO), 1995.

[HP09] Christian Haack and Erik Poll. Type-based object immutability with
flexible initialization. In Proceedings of the 23rd European Confer-
ence on Object-Oriented Programming (ECOOP), 2009. doi:10.1007/
978-3-642-03013-0_24.

[Hun11] Robert Hundt. Loop recognition in C++/Java/Go/Scala. In Proceedings
of the 2nd Scala Workshop (ScalaDays), 2011.

Bibliography 163

http://dx.doi.org/10.1002/cpe.v17:7/8
http://dx.doi.org/10.1145/1133651.1133654
http://dx.doi.org/10.1145/1133651.1133654
http://dx.doi.org/10.1007/BFb0057013
http://dx.doi.org/10.1109/MM.2007.56
http://dx.doi.org/10.1109/MM.2007.56
http://dx.doi.org/10.1145/1772954.1772965
http://dx.doi.org/10.1145/1772954.1772965
http://dx.doi.org/10.1007/978-3-642-03013-0_24
http://dx.doi.org/10.1007/978-3-642-03013-0_24

[JBHM11] Ivan Jibaja, Stephen M. Blackburn, Mohammad Haghighat, and
Kathryn McKinley. Deferred gratification: Engineering for high per-
formance garbage collection from the get go. In Proceedings of the
Workshop on Memory Systems Performance and Correctness (MSPC),
2011. doi:10.1145/1988915.1988930.

[JR08] Richard E. Jones and Chris Ryder. A study of Java object demograph-
ics. In Proceedings of the 7th International Symposium on Memory Man-
agement (ISMM), 2008. doi:10.1145/1375634.1375652.

[KHM+11] Tomas Kalibera, Jeff Hagelberg, Petr Maj, Filip Pizlo, Ben Titzer, and
Jan Vitek. A family of real-time Java benchmarks. Concurrency and
Computation: Practice and Experience, 23(14):1679–1700, 2011. doi:
10.1002/cpe.1677.

[KMJV12] Tomas Kalibera, Matthew Mole, Richard Jones, and Jan Vitek. A black-
box approach to understanding concurrency in DaCapo. In Proceedings
of the 27th Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), 2012. (to appear).

[KSA09] Rajesh K. Karmani, Amin Shali, and Gul Agha. Actor frameworks
for the JVM platform: a comparative analysis. In Proceedings of
the 7th Conference on the Principles and Practice of Programming in
Java (PPPJ), 2009. doi:10.1145/1596655.1596658.

[KWM+08] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck,
Thomas Rodriguez, Kenneth Russell, and David Cox. Design of the
Java HotSpot™ client compiler for Java 6. ACM Transactions on Ar-
chitecture and Code Optimization (TACO), 5(1):7:1–7:32, 2008. doi:
10.1145/1369396.1370017.

[LS03] Ghulam Lashari and Suresh Srinivas. Characterizing Java™application
performance. In Proceedings of the 17th International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2003. doi:10.1109/IPDPS.
2003.1213265.

[LYBB11] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. Java
Virtual Machine Specification. Oracle America, Inc., Java 7 SE edition,
2011.

[MDHS10] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.
Sweeney. Evaluating the accuracy of Java profilers. In Proceedings

164 Bibliography

http://dx.doi.org/10.1145/1988915.1988930
http://dx.doi.org/10.1145/1375634.1375652
http://dx.doi.org/10.1002/cpe.1677
http://dx.doi.org/10.1002/cpe.1677
http://dx.doi.org/10.1145/1596655.1596658
http://dx.doi.org/10.1145/1369396.1370017
http://dx.doi.org/10.1145/1369396.1370017
http://dx.doi.org/10.1109/IPDPS.2003.1213265
http://dx.doi.org/10.1109/IPDPS.2003.1213265

of the Conference on Programming Language Design and Implementa-
tion (PLDI), 2010. doi:10.1145/1806596.1806618.

[MJK12] Matthew Mole, Richard Jones, and Tomas Kalibera. A study of sharing
definitions in thread-local heaps (position paper). In Proceedings of
the 7th Workshop on the Implementation, Compilation, Optimization
of Object-Oriented Languages and Programming Systems (ICOOOLPS),
2012.

[MPO08] Adriaan Moors, Frank Piessens, and Martin Odersky. Generics of a
higher kind. In Proceedings of the 23rd Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2008.
doi:10.1145/1449764.1449798.

[MSS09] Andrew McCallum, Karl Schultz, and Sameer Singh. FACTORIE: Prob-
abilistic programming via imperatively defined factor graphs. Advances
on Neural Information Processing Systems, 2009.

[MVZ+12] Lukas Marek, Alex Villazón, Yudi Zheng, Danilo Ansaloni, Walter
Binder, and Zhengwei Qi. DiSL: a domain-specific language for byte-
code instrumentation. In Proceedings of the 11th Conference on Aspect-
Oriented Software Development (AOSD), 2012.

[OMK+10] Kazunori Ogata, Dai Mikurube, Kiyokuni Kawachiya, Scott Trent, and
Tamiya Onodera. A study of Java’s non-Java memory. In Proceed-
ings of the 25th Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2010. doi:10.1145/1869459.
1869477.

[OSV10] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala.
Artima, Inc., 2nd edition, 2010.

[OZ05] Martin Odersky and Matthias Zenger. Scalable component abstrac-
tions. In Proceedings of the 20th Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), 2005.
doi:10.1145/1094811.1094815.

[PBKM00] Sara Porat, Marina Biberstein, Larry Koved, and Bilha Mendelson. Au-
tomatic detection of immutable fields in Java. In Proceedings of the
2000 Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON), 2000.

Bibliography 165

http://dx.doi.org/10.1145/1806596.1806618
http://dx.doi.org/10.1145/1449764.1449798
http://dx.doi.org/10.1145/1869459.1869477
http://dx.doi.org/10.1145/1869459.1869477
http://dx.doi.org/10.1145/1094811.1094815

[Pea01] K. Pearson. On lines and planes of closest fit to systems of points in
space. Philosophical Magazine, 2(6):559–572, 1901.

[PFH11] Filip Pizlo, Daniel Frampton, and Antony L. Hosking. Fine-grained
adaptive biased locking. In Proceedings of the 9th Conference on
Principles and Practice of Programming in Java (PPPJ), 2011. doi:
10.1145/2093157.2093184.

[Pha12] Ngoc Duy Pham. Scala Benchmarking Suite: Scala performance regres-
sion pinpointing. Bachelor thesis, Vietnam National University, 2012.

[PM00] Roldan Pozo and Bruce Miller. SciMark 2.0 benchmarks, 2000. URL:
http://math.nist.gov/scimark2/.

[PS05] Igor Pechtchanski and Vivek Sarkar. Immutability specification and its
applications. Concurrency and Computation: Practice and Experience,
17(5–6):639–662, 2005. doi:10.1002/cpe.853.

[PVC01] Michael Paleczny, Christopher Vick, and Cliff Click. The Java Hotspot™
server compiler. In Proceedings of the Java Virtual Machine Research and
Technology Symposium (JVM ’01), 2001.

[RBC+11] John Rose, Ola Bini, William R. Cook, Rémi Forax, Samuele Pedroni,
and Jochen Theodorou. JSR-292: Supporting Dynamically Typed Lan-
guages on the Java Platform, 2011. URL: http://jcp.org/en/jsr/
detail?id=292.

[RD06] Kenneth Russell and David Detlefs. Eliminating synchronization-
related atomic operations with biased locking and bulk rebiasing.
In Proceedings of the 21st Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), 2006. doi:
10.1145/1167473.1167496.

[RGM11] Nathan P. Ricci, Samuel Z. Guyer, and J. Eliot B. Moss. Elephant Tracks:
generating program traces with object death records. In Proceed-
ings of the 9th Conference on Principles and Practice of Programming
in Java (PPPJ), 2011. doi:10.1145/2093157.2093178.

[RLBV10] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An
analysis of the dynamic behavior of JavaScript programs. In Proceed-
ings of the Conference on Programming Language Design and Implemen-
tation (PLDI), 2010. doi:10.1145/1806596.1806598.

166 Bibliography

http://dx.doi.org/10.1145/2093157.2093184
http://dx.doi.org/10.1145/2093157.2093184
http://math.nist.gov/scimark2/
http://dx.doi.org/10.1002/cpe.853
http://jcp.org/en/jsr/detail?id=292
http://jcp.org/en/jsr/detail?id=292
http://dx.doi.org/10.1145/1167473.1167496
http://dx.doi.org/10.1145/1167473.1167496
http://dx.doi.org/10.1145/2093157.2093178
http://dx.doi.org/10.1145/1806596.1806598

[RLZ10] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G. Zorn. JS-
Meter: Comparing the behavior of JavaScript benchmarks with real
Web applications. In Proceedings of the USENIX Conference on Web Ap-
plication Development (WebApps), 2010.

[RMO09] Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing first-class
polymorphic delimited continuations by a type-directed selective CPS-
transform. In Proceedings of the 14th International Conference on Func-
tional Programming (ICFP), 2009. doi:10.1145/1596550.1596596.

[RO10] Lukas Rytz and Martin Odersky. Named and default arguments for
polymorphic object-oriented languages: a discussion on the design im-
plemented in the scala language. In Proceedings of the Symposium on
Applied Computing (SAC), 2010. doi:10.1145/1774088.1774529.

[Ros09] John R. Rose. Bytecodes meet combinators: invokedynamic on the
JVM. In Proceedings of the 3rd Workshop on Virtual Machines and In-
termediate Languages (VMIL), 2009. doi:10.1145/1711506.1711508.

[Rou98] Mark Roulo. Accelerate your Java apps! JavaWorld, 3(9),
1998. URL: http://www.javaworld.com/javaworld/jw-09-1998/
jw-09-speed.html.

[RRC+09] Daniel Ramage, Evan Rosen, Jason Chuang, Christopher D. Manning,
and Daniel A. McFarland. Topic modeling for the social sciences. In
Proceedings of the NIPS Workshop on Applications for Topic Models: Text
and Beyond, 2009.

[RZW08] Ian Rogers, Jisheng Zhao, and Ian Watson. Approaches to reflective
method invocation. In Proceedings of the 3rd Workshop on Implemen-
tation, Compilation, Optimization of Object-Oriented Languages, Pro-
grams and Systems (ICOOOLPS), 2008.

[SAB08] Ajeet Shankar, Matthew Arnold, and Rastislav Bodik. Jolt: lightweight
dynamic analysis and removal of object churn. In Proceedings of the
23rd Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPLSA), 2008. doi:10.1145/1449955.1449775.

[SBF12] Rifat Shahriyar, Stephen M. Blackburn, and Daniel Frampton. Down
for the count? Getting reference counting back in the ring. In Proceed-
ings of the International Symposium on Memory Management (ISMM),
2012. doi:10.1145/2258996.2259008.

Bibliography 167

http://dx.doi.org/10.1145/1596550.1596596
http://dx.doi.org/10.1145/1774088.1774529
http://dx.doi.org/10.1145/1711506.1711508
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-speed.html
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-speed.html
http://dx.doi.org/10.1145/1449955.1449775
http://dx.doi.org/10.1145/2258996.2259008

[Sch05] Michel Schinz. Compiling Scala for the Java Virtual Machine. PhD the-
sis, École Polytechnique Fédérale de Lausanne, 2005. doi:10.5075/
epfl-thesis-3302.

[SCWP09] Kumar Shiv, Kingsum Chow, Yanping Wang, and Dmitry Petrochenko.
SPECjvm2008 performance characterization. In David Kaeli and
Kai Sachs, editors, Computer Performance Evaluation and Bench-
marking, volume 5419 of Lecture Notes in Computer Science,
pages 17–35. Springer Berlin / Heidelberg, 2009. doi:10.1007/

978-3-540-93799-9_2.

[Sew10] Andreas Sewe. Scala
?
≡ Java mod JVM. In Proceedings of the Work-in-

Progress Session at the 8th Conference on the Principles and Practice of
Programming in Java (PPPJ), volume 692 of CEUR Workshop Proceed-
ings, 2010.

[Sin03] Jeremy Singer. JVM versus CLR: a comparative study. In Proceedings
of the 2nd Conference on the Principles and Practice of Programming in
Java (PPPJ), 2003.

[SJM11] Andreas Sewe, Jannik Jochem, and Mira Mezini. Next in line, please!
exploiting the indirect benefits of inlining by accurately predicting fur-
ther inlining. In Proceedings of the 5th Workshop on Virtual Machines
and Intermediate Languages (VMIL), 2011. doi:10.1145/2095050.
2095102.

[Slo08] A. M. Sloane. Experiences with domain-specific language embedding
in Scala. In Proceedings of the 2nd Workshop on Domain-Specific Pro-
gram Development (DSPD), 2008.

[SMB+11] Aibek Sarimbekov, Philippe Moret, Walter Binder, Andreas Sewe, and
Mira Mezini. Complete and platform-independent calling context pro-
filing for the Java Virtual Machine. Electronic Notes in Theoretical Com-
puter Science, 279(1):61–74, 2011. doi:10.1016/j.entcs.2011.11.
006.

[SMS+12] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, Danilo Ansaloni, Wal-
ter Binder, Nathan Ricci, and Samuel Z. Guyer. new Scala() instanceof
Java: A comparison of the memory behaviour of Java and Scala pro-
grams. In Proceedings of the International Symposium on Memory Man-
agement (ISMM), 2012. doi:10.1145/2258996.2259010.

168 Bibliography

http://dx.doi.org/10.5075/epfl-thesis-3302
http://dx.doi.org/10.5075/epfl-thesis-3302
http://dx.doi.org/10.1007/978-3-540-93799-9_2
http://dx.doi.org/10.1007/978-3-540-93799-9_2
http://dx.doi.org/10.1145/2095050.2095102
http://dx.doi.org/10.1145/2095050.2095102
http://dx.doi.org/10.1016/j.entcs.2011.11.006
http://dx.doi.org/10.1016/j.entcs.2011.11.006
http://dx.doi.org/10.1145/2258996.2259010

[SMSB11] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. Da
Capo con Scala: Design and analysis of a Scala benchmark suite for the
Java Virtual Machine. In Proceedings of the 26th Conference on Object-
Oriented Programing, Systems, Languages, and Applications (OOPSLA),
2011. doi:10.1145/2048066.2048118.

[SPU10] Martin Schoeberl, Thomas B. Preusser, and Sascha Uhrig. The
embedded Java benchmark suite JemBench. In Proceedings of the
8th Workshop on Java Technologies for Real-Time and Embedded Sys-
tems (JTRES), 2010. doi:10.1145/1850771.1850789.

[SSB+11] Aibek Sarimbekov, Andreas Sewe, Walter Binder, Philippe Moret, Mar-
tin Schoeberl, and Mira Mezini. Portable and accurate collection of
calling-context-sensitive bytecode metrics for the Java Virtual Ma-
chine. In Proceedings of the 9th Conference on the Principles and Prac-
tice of Programming in Java (PPPJ), 2011. doi:10.1145/2093157.
2093160.

[SSB+12] Aibek Sarimbekov, Andreas Sewe, Walter Binder, Philippe Moret, and
Mira Mezini. JP2: Call-site aware calling context profiling for the
Java Virtual Machine. Science of Computer Programming, 2012. doi:
10.1016/j.scico.2011.11.003.

[SYN03] Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. A region-
based compilation technique for a Java just-in-time compiler. In Pro-
ceedings of the Conference on Programming Language Design and Imple-
mentation (PLDI), 2003. doi:10.1145/781131.781166.

[TDL12] Prabhat Totoo, Pantazis Deligiannis, and Hans-Wolfgang Loidl. Haskell
vs. F# vs. Scala: A high-level language features and parallelism sup-
port comparison. In Proceedings of the Workshop on Functional High-
Performance Computing (FHPC), 2012.

[TJZS10] Kai Tian, Yunlian Jiang, Eddy Z. Zhang, and Xipeng Shen. An input-
centric paradigm for program dynamic optimizations. In Proceedings
of the 25th Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), 2010. doi:10.1145/1869459.
1869471.

[TR10] Christian Thalinger and John Rose. Optimizing invokedynamic. In
Proceedings of the 8th Conference on the Principles and Practice of Pro-
gramming in Java (PPPJ), 2010. doi:10.1145/1852761.1852763.

Bibliography 169

http://dx.doi.org/10.1145/2048066.2048118
http://dx.doi.org/10.1145/1850771.1850789
http://dx.doi.org/10.1145/2093157.2093160
http://dx.doi.org/10.1145/2093157.2093160
http://dx.doi.org/10.1016/j.scico.2011.11.003
http://dx.doi.org/10.1016/j.scico.2011.11.003
http://dx.doi.org/10.1145/781131.781166
http://dx.doi.org/10.1145/1869459.1869471
http://dx.doi.org/10.1145/1869459.1869471
http://dx.doi.org/10.1145/1852761.1852763

[Wha99] John Whaley. Dynamic optimization through the use of automatic run-
time specialization. Master’s thesis, Massachusetts Institute of Technol-
ogy, 1999.

[Yan06] Jing Yang. Statistical analysis of inlining heuristics in Jikes RVM. Re-
port, University of Virginia, 2006. URL: http://www.cs.virginia.
edu/~jy8y/publications/stat51306.pdf.

[YBF+11] Xi Yang, Stephen M. Blackburn, Daniel Frampton, Jennifer B. Sartor,
and Kathryn S. McKinley. Why nothing matters: the impact of zeroing.
In Proceedings of the 26th Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2011. doi:10.1145/
2048066.2048092.

[ZAM+12] Yudi Zheng, Danilo Ansaloni, Lukas Marek, Andreas Sewe, Walter
Binder, Alex Villazón, Petr Tuma, Zhengwei Qi, and Mira Mezini.
Turbo DiSL: Partial evaluation for high-level bytecode instrumenta-
tion. In Carlo Furia and Sebastian Nanz, editors, Objects, Models,
Components, Patterns, volume 7305 of Lecture Notes in Computer
Science, pages 353–368. Springer Berlin / Heidelberg, 2012. doi:
10.1007/978-3-642-30561-0_24.

170 Bibliography

http://www.cs.virginia.edu/~jy8y/publications/stat51306.pdf
http://www.cs.virginia.edu/~jy8y/publications/stat51306.pdf
http://dx.doi.org/10.1145/2048066.2048092
http://dx.doi.org/10.1145/2048066.2048092
http://dx.doi.org/10.1007/978-3-642-30561-0_24
http://dx.doi.org/10.1007/978-3-642-30561-0_24

	Introduction
	Contributions of this Thesis
	The Need for a Scala Benchmark Suite
	The Need for Rapid Prototyping of Dynamic Analyses
	The Need for VM-Independent Metrics

	Structure of this Thesis

	Background
	The Java Virtual Machine
	The Scala Language
	The Translation of Scala Features to Java Bytecode
	Translating Traits
	Translating First-Class Functions
	Translating Singleton Objects and Rich Primitives

	Designing a Scala Benchmark Suite
	Choosing a Benchmark Harness
	Choosing Representative Workloads
	Covered Application Domains
	Code Size
	Code Sources
	The dummy Benchmark

	Choosing a Build Toolchain

	Rapidly Prototyping Dynamic Analyses
	Approaches
	Re-using Dedicated Profilers: JP2
	Re-purposing Existing Tools: TamiFlex
	Developing Tailored Profilers in a DSL: DiSL

	Discussion

	A Comparison of Java and Scala Benchmarks Using VM-independent Metrics
	The Argument for VM-independent, Dynamic Metrics
	Profilers
	Threats to Validity
	Results
	Instruction Mix
	Call-Site Polymorphism
	Stack Usage and Recursion
	Argument Passing
	Method and Basic Block Hotness
	Use of Reflection
	Use of Boxed Types
	Garbage-Collector Workload
	Object Churn
	Object Sizes
	Immutability
	Zero Initialization
	Sharing
	Synchronization
	Use of Identity Hash-Codes

	Summary

	An Analysis of the Impact of Scala Code on High-Performance JVMs
	Experimental Setup
	Choosing Heap Sizes
	Statistically Rigorous Methodology

	Startup and Steady-State Performance
	The Effect of Scala Code on Just-in-Time Compilers
	The Effect of Method Inlining on the Performance of Scala Code
	Discussion

	Related Work
	Benchmark Suites
	Workload Characterization
	Scala Performance

	Conclusions and Future Directions
	Directions for Future Work

	Bibliography

