2,322 research outputs found

    Novel Formulation and Application of Model Predictive Control.

    Get PDF
    Model predictive control (MPC) has been extensively studied in academia and widely accepted in industry. This research has focused on the novel formulation of model predictive controllers for systems that can be decomposed according to their nonlinearity properties and several novel MPC applications including bioreactors modeled by population balance equations (PBE), gas pipeline networks, and cryogenic distillation columns. Two applications from air separation industries are studied. A representative gas pipeline network is modeled based on first principles. The full-order model is ill-conditioned, and reduced-order models are constructed using time-scale decomposition arguments. A linear model predictive control (LMPC) strategy is then developed based on the reduced-order model. The second application is a cryogenic distillation column. A low-order dynamic model based on nonlinear wave theory is developed by tracking the movement of the wave front. The low-order model is compared to a first-principles model developed with the commercial simulator HYSYS.Plant. On-line model adaptation is proposed to overcome the most restrictive modeling assumption. Extensions for multiple column modeling and nonlinear model predictive control (NMPC) also are discussed. The third application is a continuous yeast bioreactor. The autonomous oscillations phenomenon is modeled by coupling PBE model of the cell mass distribution to the rate limiting substrate mass balance. A controller design model is obtained by linearizing and temporally discretizing the ODES derived from spatial discretization of the PBE model. The MPC controller regulate the discretized cell number distribution by manipulating the dilution rate and the feed substrate concentration. A novel plant-wide control strategy is developed based on integration of LMPC and NMPC. It is motivated by the fact that most plants that can be decomposed into approximately linear subsystems and highly nonlinear subsystems. LMPCs and NMPCs are applied to the respective subsystems. A sequential solution algorithm is developed to minimize the amount of unknown information in the MPC design. Three coordination approaches are developed to reduce the amount of information unavailable due to the sequential MPC solution of the coupled subsystems and applied to a reaction/separation process. Furthermore, a multi-rate approach is developed to exploit time-scale differences in the subsystems

    Automation and Control Architecture for Hybrid Pipeline Robots

    Get PDF
    The aim of this research project, towards the automation of the Hybrid Pipeline Robot (HPR), is the development of a control architecture and strategy, based on reconfiguration of the control strategy for speed-controlled pipeline operations and self-recovering action, while performing energy and time management. The HPR is a turbine powered pipeline device where the flow energy is converted to mechanical energy for traction of the crawler vehicle. Thus, the device is flow dependent, compromising the autonomy, and the range of tasks it can perform. The control strategy proposes pipeline operations supervised by a speed control, while optimizing the energy, solved as a multi-objective optimization problem. The states of robot cruising and self recovering, are controlled by solving a neuro-dynamic programming algorithm for energy and time optimization, The robust operation of the robot includes a self-recovering state either after completion of the mission, or as a result of failures leading to the loss of the robot inside the pipeline, and to guaranteeing the HPR autonomy and operations even under adverse pipeline conditions Two of the proposed models, system identification and tracking system, based on Artificial Neural Networks, have been simulated with trial data. Despite the satisfactory results, it is necessary to measure a full set of robot’s parameters for simulating the complete control strategy. To solve the problem, an instrumentation system, consisting on a set of probes and a signal conditioning board, was designed and developed, customized for the HPR’s mechanical and environmental constraints. As a result, the contribution of this research project to the Hybrid Pipeline Robot is to add the capabilities of energy management, for improving the vehicle autonomy, increasing the distances the device can travel inside the pipelines; the speed control for broadening the range of operations; and the self-recovery capability for improving the reliability of the device in pipeline operations, lowering the risk of potential loss of the robot inside the pipeline, causing the degradation of pipeline performance. All that means the pipeline robot can target new market sectors that before were prohibitive

    Applied Analysis and Synthesis of Complex Systems: Proceedings of the IIASA-Kyoto University Joint Seminar, June 28-29, 2004

    Get PDF
    This two-day seminar aimed at introducing the new development of the COE by Kyoto University to IIASA and discussing general modeling methodologies for complex systems consisting of many elements, mostly via nonlinear, large-scale interactions. We aimed at clarifying fundamental principles in complex phenomena as well as utilizing and synthesizing the knowledge derived out of them. The 21st Century COE (Center of Excellence) Program is an initiative by the Japanese Ministry of Education, Culture, Science and Technology (MEXT) to support universities establishing discipline-specific international centers for education and research, and to enhance the universities to be the world's apex of excellence with international competitiveness in the specific research areas. Our program of "Research and Education on Complex Functional Mechanical Systems" is successfully selected to be awarded the fund for carrying out new research and education as Centers of Excellence in the field of mechanical engineering in 2003 (five-year project), and is expected to lead Japanese research and education, and endeavor to be the top in the world. The program covers general backgrounds in diverse fields as well as a more in-depth grasp of specific branches such as complex system modeling and analysis of the problems including: nonlinear dynamics, micro-mesoscopic physics, turbulent transport phenomena, atmosphere-ocean systems, robots, human-system interactions, and behaviors of nano-composites and biomaterials. Fundamentals of those complex functional mechanical systems are macroscopic phenomena of complex systems consisting of microscopic elements, mostly via nonlinear, large-scale interactions, which typically present collective behavior such as self-organization, pattern formation, etc. Such phenomena can be observed or created in every aspect of modern technologies. Especially, we are focusing upon; turbulent transport phenomena in climate modeling, dynamical and chaotic behaviors in control systems and human-machine systems, and behaviors of mechanical materials with complex structures. As a partial attainment of this program, IIASA and Kyoto University have exchanged Consortia Agreement at the beginning of the program in 2003, and this seminar was held to introduce the outline of the COE program of Kyoto University to IIASA researchers and to deepen the shared understandings on novel complex system modeling and analysis, including novel climate modeling and carbonic cycle management, through joint academic activities by mechanical engineers and system engineers. In this seminar, we invited a distinguished researcher in Europe as a keynote speaker and our works attained so far in the project were be presented by the core members of the project as well as by the other contributing members who participated in the project. All IIASA research staff and participants of YSSP (Young Scientist Summer Program) were cordially invited to attend this seminar to discuss general modeling methodologies for complex systems

    On Approximation of Linear Network Systems

    Get PDF

    On Approximation of Linear Network Systems

    Get PDF

    Modelling for Control of Free Molecular Flow Processes

    Get PDF
    • …
    corecore