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M.u Genicot Université Catholique de Louvain
P.-A. Absil Université Catholique de Louvain
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R. Reyes-Báez University of Groningen
A. van der Schaft University of Groningen
B. Jayawardhana University of Groningen

ThM05 Ghana
Medical Applications

Chair: Athanasios Antoulas 11.00-13.05

ThM05-1 11.00-11.25
Testosterone regulation: A new mathematical model 130
H. Taghvaafrd University of Groningen
A. V. Proskurnikov University of Groningen
Ming Cao University of Groningen

12



35th Benelux Meeting on Systems and Control Book of Abstracts

ThM05-2 11.25-11.50
Identifying a C-arc medical X-ray system: A 2D-
LRM approach . . . . . . . . . . . . . . . . . . . 131
A. van der Maas Eindhoven University of Technology
R. van der Maas Eindhoven University of Technology
R. Voorhoeve Eindhoven University of Technology
T. Oomen

ThM05-3 11.50-12.15
Improving the selection of differentially expressed
genes by spatiotemporal ICA . . . . . . . . . . . 132
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2D Regularization for LTV systems using a single measurement:
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1 Introduction and problem formulation

This abstract presents a methodology to obtain a nonpara-
metric two-dimensional impulse response function (IRF) es-
timate ĥ[t,τ] of a linear time varying (LTV) system using
2D regularization. An example of an LTV IRF can be seen
in Fig.1.a.
Unlike the linear time invariant systems where the IRF is
unique, the time varying impulse response is not restricted
to only one solution because the number of parameters is
much higher than the number of data samples. The user
can impose additional constraints to decrease this freedom.
In the proposed case smoothness and exponential decaying
are used over the system time t (direction of the impulse re-
sponses, referring to the behavior) and smoothing constraint
is used over the global time τ (referring to the system mem-
ory). The excess degrees of freedom can be removed by
2D regularization using these constains [1][3]. A further
issue is that a measurement of an LTV system cannot be
usually repeated under the same conditions. Therefore it is
needed to be able to estimate by using a single experiment
with transient. Last but not least, when the 2D regulariza-
tion is used, the computational time and the memory needs
are quadratically growing with the number of samples and
with the length of longest considered IRF. A simple method
is developed to avoid the above-mentioned problem.

2 An example

In this Section a example is observed. A second order time
varying low-pass filter is shown in Fig. 1.a. It is is noisless
observed with transient. The filter is excited by a full band
random phase multisine [2].
Fig. 1.b. illustrate the non-uniqness issues by showing the
results of this Maximum Likelihood estimate. To decrease
the degrees of freedom a special 2D regularization is used.
Fig. 1.d. shows the results of the proposed method without
transient elimination [3]. Fig. 1.c. shows the results of the
proposed method with transient elimination [4].

3 Summary

In this work a powerful time domain estimation method is
developed for smooth LTV systems. This technique is illus-
trative, flexible and user friendly. With respect to the sys-
tem dynamics using the proposed method, it is possible 1)

Figure 1: a) the true underlying system. It is noiseless observed
with transient b) Maximum Likelihood estimate of the
underlying system c) 2D regularized estimate using the
transient elimination method d) 2D regularized esti-
mate without using the transient elimination method

to decrease the effect of the disturbing noise 2) eliminate the
undesired transient term 3) estimate from large datasets 4)
estimate from a single experiment.
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1 Introduction

In natural and social sciences, it is often crucial to infer
the structure of a network from measurements of its collec-
tive dynamics. While network identification has recently at-
tracted considerable interest, the many methods proposed so
far in dynamical systems theory require measuring all the
units of the network, which is out of reach in large real
systems. In contrast, we propose a method that focuses
on the spectral properties of the network—instead of full
topology—making possible the use of a few local measure-
ments to uncover global topological properties. More details
on this work can be found in [2].

2 Problem statement

We consider a set ofn nonlinear dynamical units

ẋk = F(xk)+G(xk)uk ∈ Rm, k = 1, . . . ,n

that interact in a network through a diffusive coupling
uk = −∑n

j=1Lk jH(xk), where Lk j are the entries of the
Laplacian matrixL of the network. Assuming that the
network dynamics converge to an equilibrium state, i.e.
limt→∞[x1(t) · · ·xn(t)] = limt→∞ X(t) = X∗, we address the
following spectral network identificationproblem: infer
the eigenvalues ofL from p ≪ n measurementsfl (X(t)),
l = 1, . . . , p, where the measurement functionsfl typically
depend on a few number of states (possibly one).

3 Theoretical results

The measurementsfl (X(t)) ≡ U t fl are related to the action
of the so-called Koopman operatorU t . Using the Dynamic
Mode Decomposition algorithm, one can extract from these
measurements the spectrum ofU t [1]. In this work, we
prove and characterize a bijection between the spectrum of
the Koopman operator (which is measured) and the spec-
trum of the Laplacian matrix (which is inferred), thereby
showing that the spectral network identification problem
is feasible. For large networks, inferring every individual
eigenvalue of the Laplacian matrix is out of reach. In this
case, we show that one can estimate the spectral Laplacian
momentsMk(L) = 1

ntrace(Lk) instead, which are related to
the distribution of vertex degrees. This approach is also
well-suited to heterogeneous populations.

4 Applications

Through the spectral network identification framework, key
global properties of the network can be inferred with a few
local measurements. For instance, measuring only one ver-
tex in a (directed, weighted) network, we can estimate the
average number of connections with a good accuracy, even
when the measured vertex is weakly connected to the rest of
the network. This framework also provides a way to esti-
mate the minimum and maximal vertex degree, through the
estimation of the spectral radius and spectral gap in undi-
rected networks. This can be used to detect efficiently the
addition of a new vertex connected with an edge to a remote
location in the network (see Figure).
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The present approach is also used successfully to measure
whether two units influence each other indirectly, and thus
belong to the same connected component of the network.
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1 Introduction

Optimal input design (OID) consists of finding the most in-
formative input sequence out of the set of possible excita-
tion signals. An input sequence is more informative if the
derived estimated model has a lower model error, which de-
pends on the model bias and variance. The set of possible
excitation signals is often defined through constraints, which
express the physical limitation of the measurement setup and
a fixed value of the experiment cost.

2 Problem Statement

In this work, we evaluate the performance of different op-
timization strategies that compute the D-Optimal input de-
sign for two simple Wiener systems, which are depicted in
figure 1. The first system is discreet and consists of a finite-
impulse-response (FIR) filter followed by a static polyno-
mial nonlinearity, while the second system consists of a con-
tinuous second order system (SoS) followed by a static poly-
nomial nonlinearity.

FIR Poly

PolySoS

+

+

Figure 1: The two example systems

It is assumed that only the output measurements are cor-
rupted by noise and that this noise is Gaussian, white, inde-
pendently distributed. The set of possible excitation signals
is restricted to signals that are periodic and band limited.

3 Solution Method

The first example system is part of a larger class of non-
linear systems called the nonlinear finite memory systems.
For these systems a convex OID method is available that is
numerically tractable if the memory of the system is short
[3, 1, 2].
The second example system falls in the class of infinite
memory nonlinear systems, which is a class of systems for
which no general OID method is known. One way to ap-

proach the design problem is to approximate the infinite
memory system with a finite memory system. However
technical difficulties arise due to the memory length needed
in order to get a good approximation.
We perform a brute force nonlinear optimization with re-
spect to the samples of the input signal for both systems.
Special care should be taken while choosing the optimiza-
tion/design parameters (e.g. sampling time, signal duration,
initial values, etc.) since small changes can have a high im-
pact onto the design performance.

4 Results

From the experience obtained from these two case stud-
ies we derive generalizations for the class of systems to
which the example systems belong. Special attention goes to
guidelines to choose correct optimization/design parameters
when brute force optimization is performed and techniques
to extend the OID method presented in [3, 1, 2] in order to
handle longer system memories.
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1 Introduction

Wind turbines are equipped with condition monitoring sys-
tems that allow for a safer operation and a reduction of main-
tenance costs thanks to their feature of early detection of
faults. Most of these systems are signal-based, however
a model-based approach could enhance the performance,
for example, by allowing a proper accommodation of faults
through control adaptation. This project aims at designing a
model-based fault diagnosis system with focus on the blade
pitch system with hydraulic actuators, now that this system
is characterized by a high failure rate. For this purpose, a
physical model of the hydraulic pitch actuator [1] is ana-
lyzed. This model allows the simulation of different faults:
abnormal bearing friction (due to damages on the pitch bear-
ing) and high air/water content in cylinders (due to degrada-
tion of the hydraulic oil).

2 Results

This project proposes active fault detection and a system
identification method that takes into account the effects pro-
duced by feedback, disturbances (like the pitching moment
Mp1 and the bearing friction moment Mb1), transients and the
nonlinear nature of the pitch actuator. The proposed method
(Fig. 1, 2) consists in applying a full random phase mul-
tisine (βpMS) on top of the reference pitch angle (βprefPS)
and using frequency domain identification (the Local Poly-
nomial Method and the Sample Maximum Likelihood es-
timator [2]) to obtain a continuous-time transfer function
model of the pitch actuator (GML(s)). In this way, fault ef-
fects on the system are considered as a change in the model
parameters and this information is used to devise a method
for fault detection and isolation, which includes as well a
first attempt for fault magnitude estimation (Fig. 3).

In addition, this work makes use of a wind turbine simu-
lator based on the characteristics of a 1.25 MW real wind
turbine (using the FAST/AeroDyn software). By means of
this simulator, fictitious data representing the healthy/faulty
operation of the pitch system can be generated. Also, the
simulator allows testing the impact of the active fault detec-
tion on the operation of the wind turbine.

In conclusion, this project proves the feasibility and effec-
tiveness of the proposed model-based fault diagnosis sys-
tem. In fact, it is possible to detect and isolate faults in the

Figure 1: System Identification on hydraulic pitch actuator

Figure 2: Frequency Response Functions (+:FRF , - -: std(FRF))
and Transfer Functions (–:T F , x: Residuals)

pitch actuator while maintaining a limited impact on the op-
eration of the wind turbine. Future work includes the study
of the effect of wind changes and the sensitivity to measure-
ment noise.

Figure 3: Fault detection, isolation and magnitude estimation
(based on the complex poles of GML(s) )
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1 Introduction

In the field of system identification, one special type of
nonlinear models are the so-called block-oriented mod-
els, consisting of linear time-invariant blocks and nonlinear
static blocks. More specifically, this presentation will fo-
cus its attention on the parallel Wiener-Hammerstein mod-
els. When identifying these types of systems, a multiple-
input-multiple-output polynomial should be decoupled, that
was obtained from noisy measurements. In our work, an
earlier developed decoupling algorithm with good results in
the noiseless case is generalized to the noisy case.

2 Algorithm

Let f be a multivariate polynomial vector function under the
influence of noise, whose coefficients are approximated and
let Σf denote the covariance matrix on these coefficients.
We wish to decouple this function by finding transforma-
tion matrices V and W, such that f can be expressed as
f(u) = W · g(VT · u), where the internal vector function g
is a set of r univariate functions: every component gi of g
is only dependent on one variable xi, which is the i-th com-
ponent of the internal variable x = VT ·u. Figure 1 shows a
graphical representation of this decoupling procedure.

The earlier developed algorithm described in [1] uses
first-order derivative information of f and involves the
so-called Canonical Polyadic (CP) Decomposition of a
tensor, which is, loosely speaking, a generalization of
the singular value decomposition for two-dimensional
matrices to multidimensional arrays of numbers, see [2].
In our work, a weight matrix based on the covari-
ance matrix Σf is included during the CP decomposition.

u1

...
um

y1

...
yn

f(u) →
u1

...
um

y1

...
yn

f(u)

g1(x1)

gr(xr)

VT W

x1

...

xr

...

Σf

Figure 1: Decoupling of the multivariate function f by taking the covariance matrix Σf into account.

This generalizes the CP decomposition to a Weighted CP
decomposition, which takes the variances of and covariances
between the elements of the tensor to be decomposed into
account.

3 Conclusions

In the Wiener-Hammerstein identification setting, the model
errors diminish using the weighted CP decomposition. The
weighted decoupling gives results which are at least as good
as the unweighted decoupling described in [1]. In the case
where the unweighted decoupling does not give satisfactory
results, the weighted decoupling diminishes model errors.
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1 Introduction
Due to the rapidly emerging field of cyber-physical sys-
tems (CPS) and, in particular, networked control systems
(NCSs), there is a strong need for novel analysis and syn-
thesis tools in control theory to guarantee safe and secure
operation despite the presence of possible malicious attacks.
One of the main concerns in NCSs regarding security are so-
called denial-of-service (DoS) attacks. These DoS attacks,
which are often induced by radio interference signals (also
referred to as jamming signals), typically cause periods in
time at which communication is not possible as illustrated
in Figure 1. Besides this resilience requirement, the control
strategy also needs to deal with inherent network-induced
imperfections such as limited communication resources. In
this work, we propose an output-based, resource-aware and
resilient control approach that aims to reduce the utilization
of communication resources while the desired stability and
performance criteria are maintained.

Figure 1: Schematic representation of a DoS sequence

2 Control Setup
The considered control setup consists of an interconnection
of a continuous-time plant P , a (dynamic) output-based
controller C and a network N subject to disturbances and
DoS attacks as depicted in Figure 2. Typically, the commu-
nication over the network N is packet-based which implies
that the output measurements y can only be transmitted at
discrete instants in time, i.e., at times t j, j ∈ N, satisfying
06 t0 < t1 < t2 < .. .. When a transmission is attempted and
no DoS attack is active, the value of ŷ is updated/jumps ac-
cording to ŷ+ = y. Otherwise, when the DoS is active, the
attempt fails and ŷ can not be updated and then ŷ+ = ŷ.

To deal with scarcity of the communication resources, we
consider a dynamic event-triggering mechanism, see also
[2], that takes the following form

t j+1 := inf{t > t j + τmiet | η(t)< 0},
for all j∈N, where τmiet ∈R>0 is an (enforced) lower bound
on the minimum inter-event time (MIET) and η a dynamical

variable. The evolution of the triggering variable η is given
by

η̇ = Ψ(o,η), η+ = η0(o)

where o represents the information locally available at the
ETM (see Figure 2) such as output y ∈ Rny and the trans-
mission error e := ŷ− y.

Figure 2: Schematic representation of the event-triggered
NCS

Since in practice, the resources of the attacker are limited, it
is reasonable to assume that the DoS attacks are constrained
in terms of frequency and duration, see also [1]. To be more
concrete, the DoS frequency and DoS duration constraints
for given DoS parameters τD,ν ,ς ∈ R>0 and T ∈ R>1, are
satisfied if for all τ, t ∈ R>0 with t > τ

n(τ, t)6 ν +
t− τ
τD

and |Ξ(τ, t)|6 ς +
t− τ

T
, (1)

respectively, where n(τ, t) denotes the number of DoS off/on
transitions occurring on the interval [τ, t) and |Ξ(τ, t)| the
total length of the DoS attacks active on the interval [τ, t).

3 Main Result

Given the system as described above with DoS parameters
ν , τD, ς and T , if τmiet and the functions Ψ, η0 are well de-
signed in the sense that they satisfy the conditions proposed
in [3], then the resulting closed-loop system is UGES and, in
the presence of disturbances, has a finite peak-to-peak gain
and energy-to-peak gain.
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1 Introduction

Classical notions developed in systems and control theory
for external equivalence are transfer matrix equality and
state space equivalence. Within computer science the basic
notion has been called bisimulation relation [1]. In partic-
ular, it has been shown how for linear systems a notion of
bisimulation relation can be developed mimicking the no-
tion of bisimulation relation for transition systems, and di-
rectly extending classical notions of transfer matrix equality
and state space equivalence [2].
The present paper continues on these developments by ex-
tending the notion of bisimulation relation to general lin-
ear differential-algebraic systems. As in previous work on
bisimulation theory for input-state-output systems [3], we
explicitly allow for the possibility of ’non-determinism’ in
the sense that the state may evolve according to different
time-trajectories for the same values of the external vari-
ables.

2 Main results

Consider two systems given by

Σi :
Eiẋi = Aixi +Biui +Gidi, xi ∈Xi,ui ∈U ,di ∈Di

yi = Cixi, yi ∈ Y , i = 1,2.
(1)

where Ei,Ai ∈Rqi×ni and Bi ∈Rqi×m,Gi ∈Rqi×si ,Ci ∈Rp×ni

for i = 1,2, with Xi,Di, i = 1,2, the state space and dis-
turbance spaces, and U ,Y the common input and output
spaces. The consistent subset V ∗i for a system Σi is either
empty or given as the maximal subspace Vi ⊂ Rn satisfying

(i) AiVi ⊂ EiVi +Gi
(ii) imBi ⊂ EiVi +Gi

(2)

where Gi = imGi. It follows that V ∗i equals the set of all ini-
tial conditions x0i for which for every piecewise-continuous
input function ui(·) there exist a piecewise-continuous func-
tion di(·) and a continuous and piecewise-differentiable so-
lution trajectory xi(·) of Σi with x(0i) = x0i.
The fundamental definition of bisimulation relation is given
as follows.

Definition 2.1. A subspace R ⊂X1×X2, with πi(R) ⊂
V ∗i , i = 1,2, is a bisimulation relation between two systems
Σ1 and Σ2 with consistent subsets V ∗i , i = 1,2, if and only if

for all pairs of initial conditions (x1,x2) ∈R and any joint
input function u1(·) = u2(·) = u(·) ∈ U the following prop-
erties hold:

1. for every disturbance function d1(·) ∈ D1 for which
there exists a solution x1(·) of Σ1 (with x1(0) = x1)
of Σ1, there exists a disturbance function d2(·) ∈ D2
such that the resulting solution trajectoriy x2(·) of Σ2
(with x2(0) = x2) satisfy

(x1(t),x2(t)) ∈R, t ≥ 0, (3)

and conversely, for every disturbance function d2(·)
for which there exists a solution x2(·) of Σ2 (with
x2(0) = x2) of Σ2, there exists a disturbance function
d1(·) such that (3) holds.

2.
C1x1(t) =C2x2(t), t ≥ 0. (4)

Using the geometric notion of a controlled invariant sub-
space, a linear-algebraic characterization of a bisimulation
relation is given. This also leads to an algorithm for com-
puting the maximal bisimulation relation. We will also study
the implication of adding the condition of regularity to the
matrix pencil sE−A, and show how in this case bisimilarity
reduces to equality of transfer matrices.
Furthermore, by developing a one-sided version of bisimula-
tion relation, characterizations of simulation and abstraction
are obtained. Moreover, it is shown how state space reduc-
tion is performed by computing the maximal bisimulation
relation between the DAE system and itself.
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1 Introduction

Detecting and identifying faults in multi-agent systems is
particularly relevant, given the absence of a centralized ob-
server monitoring the whole network and the practical ap-
plications of such systems, where faults either in the agents
or in the communication structure can have serious conse-
quences.

In this work, we consider a class of linear dynamical systems
defined by an undirected graph containing faulty vertices
and observer vertices. Two disjoint sets of agents are iden-
tified in the network: those prone to failure (called “faulty”)
and those whose output is measurable (called “observer”).
Faults such as total communication and biased sensing can
be modelled in a straightforward way in this framework.
Fault detection is performed by an unknown input observer,
and stated in the geometric language of the pioneering work
by M.-A. Massoumnia in [2], i.e. output separability of fault
subspaces.

2 Problem statement

Let G = (V,E) be a simple and connected graph with the
vertex set

V = {1,2, . . . ,n}.

Two subsets of V will play an important role in the sequel.
We denote these sets by VF (faulty vertices) and VO (ob-
server vertices), see for example Figure 1. For simplicity,
we assume that these sets are disjoint and that the first q ver-
tices are faulty and the last s are observer vertices.

We consider systems of the form

ẋ = Xx+M f

y = Nx

where x is the state, f is the fault mode and y is the output
vector. The matrices X , M and N are related to the given
simple graph G and the pair (VF ,VO) in the following sense.
The matrices M and N are selection matrices that encode the
faulty vertices and observer vertices respectively:

M =

[
Iq

0n−q,q

]
and N =

[
0s,n−s Is

]
.

The matrix X is assumed to be a distance-information pre-
serving matrix with respect to the graph G = (V,E), that is,

(Xk)i, j

{
= 0 if dist(i, j)> k,
6= 0 if dist(i, j) = k

for k > 0, where dist(i, j) denotes the distance between ver-
tices i and j in the graph.

The problem that we address in this work amounts to set-
ting up an observer in order to detect if and which faults are
active.

First we present a characterization of the smallest condi-
tioned invariant subspaces that are generated by the faults.
These subspaces play a major role in the analysis of fault de-
tection as well as in the design of fault detectors. Based on
this characterization, we present a graph-topological suffi-
cient condition for the so-called output separability of these
subspaces, which is the crux of the fault detection problem,
for any distance-information preserving matrix X . This con-
dition is based on the distances between faulty agents and
observer vertices.

This work has been published in [1].

Figure 1: Graph with 10 vertices, including 2 faulty agents
(squares) and 3 observer vertices (diamonds).

References
[1] P. Rapisarda, A.R.F. Everts and M.K. Camlibel,
”Fault detection and isolation for systems defined over
graphs”, Proc. of the 54th IEEE Conference on Decision and
Control, Osaka, Japan, 2015.
[2] M.-A. Massoumnia, “A geometric approach to the
synthesis of failure detection filters”, IEEE Transactions on
Automatic Control, 31(9):839–846, 1986.

Book of Abstracts 35th Benelux Meeting on Systems and Control

24



Stabilization of planar slow-fast systems at non-hyperbolic points

H. Jardón-Kojakhmetov and J.M.A. Scherpen
Engineering and Technology Institute (ENTEG), University of Groningen,

Groningen, The Netherlands.
{h.jardon.kojakhmetov, j.m.a.scherpen}@rug.nl

1 Abstract

We study a particular class of ‘controlled’ slow-fast systems
of the form

ẋ = f (x,z,ε)+u(x,z,ε)
ε ż = g(x,z,ε),

(1)

where x ∈ R, z ∈ R and ε > 0 is a small parameter ε � 1.
Note that due to the presence of ε , the variable z evolves
much faster that x. Therefore, x and z are called the slow and
the fast variable respectively. Open loop slow-fast systems
(with u = 0) are frequently used to model phenomena with
two time scales. For ε > 0 a new time τ = t

ε can be defined.
In this way (1) is rewritten as

x′ = ε f (x,z,ε)+ εu(x,z,ε)
z′ = g(x,z,ε),

(2)

where now the prime denotes the derivate with respect to
τ . A first approach to study slow-fast systems is to analyze
their limit when ε→ 0. An important ingredient in the anal-
ysis of slow-fast systems is the critical manifold, which is
defined as the set of equilibrium points of (2) when ε = 0,
this is

S =
{
(x,z) ∈ R2 |g(x,z,0) = 0

}
. (3)

If the set S has only hyperbolic equilibria, it is called nor-
mally hyperbolic. It is known [2] that normally hyperbolic
manifolds persist under small C1-perturbations of the corre-
sponding vector field. This hyperbolicity property has been
the key factor in designing reduced controllers for slow-fast
systems. Briefly speaking, one first constructs controllers
for the limit (ε → 0) systems of (1) and (2). Then, due
to the persistence property it can be shown that small ε-
perturbations of these reduced controllers can be used in
combination to control a slow-fast system, see e.g. [5].

Contribution.

There are many phenomena in nature that are characterized
by a rapid transition between stable states of the system. Ex-
amples can be found in: electric circuits (like the van der
Pol oscillator), biology systems (like the heartbeat or the
nerve impulse), ecology (predator-pray models), chemistry,
and many others. The analysis of these rapid transitions and

related behavior such as relaxation oscillations and/or ca-
nards has attracted a lot of interest due to its potential ap-
plications. Mathematically speaking, these phenomena oc-
cur at non-hyperbolic points of the slow-fast system. In a
qualitative way, non-hyperbolic points are very sensitive to
small changes in the slow variables. From the control point
of view, since the strong property of hyperbolicity is lost,
the classical approach of control design cannot be used any-
more.

In our current research we apply a geometric tool called
blow up [1] to stabilize planar slow-fast systems at non-
hyperbolic points. Interestingly, the blow up technique pro-
vides a way to analyze a regular perturbation problem in-
stead of a singular one. Moreover, we show that the blow up
technique can be combined with Lyapunov based control de-
sign in order to stabilize non-hyperbolic points of slow-fast
systems. Our results open a wide range of interesting math-
ematical extensions of existing theories, and motivate many
potential applications of controllers for systems exhibiting
fast transitions [3, 4].
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1 Introduction

Switched system is an important subclass of hybrid systems
that consists of subsystems with continuous dynamics and
a rule, called switching law, to regulate the switching be-
havior between them. Switched system appears in a wide
range of applications, such as intelligent transportation sys-
tems, power electronics, and smart energy systems [1].There
are mainly two time-constraint switching strategies: i.e.,
dwell time (DT) and average dwell time (ADT) [2]. In DT
switching, the switching interval between two consecutive
discontinuities of the switching law should be larger than a
sufficiently large constant to guarantee the stability of the
switched system. In ADT switching, the switching inter-
val between two consecutive discontinuities of the switching
law should be sufficiently large in an average sense. This
means that very small intervals are allowed as soon as they
are compensated by large intervals.

2 Problem formulation and methodology

Recently, a new time-constraint switching strategy has been
proposed [3], which is called mode-dependent average dwell
time (MDADT). It exploits information of every subsystem,
such as the exponentially decreasing rate of its correspond-
ing Lyapunov function, instead of information of all sub-
systems in the average dwell-time case. Some research has
been conducted about MRAC of uncertain switched system.
However, not much attention has been paid to the time-
constraint switching laws for MRAC of uncertain switched
system considering the information of subsystems. More-
over, in ADT and MDADT switching, short switching inter-
vals might cause undesired behavior of the switched system.
Therefore, it is relevant to address the following question:
can we design a switching law that is less conservative than
DT and that also avoids undesired transient behavior of the
tracking error based on ADT and MDADT?
MRAC scheme for uncertain switched system is adopted
based on a mode-dependent dwell time (MDDT) switch-
ing law. Similar with mode-dependent average dwell time,
the main idea of MDDT is to design the switching law by
exploiting the information of every subsystem. Further-
more, notice that the information of the next subsystem to
be switched on is known in many practical problems, such

as the speeding up of an automobile power train [4]. To ad-
dress these cases, we propose a new time-dependent switch-
ing scheme: mode-mode-dependent dwell-time (MMDDT).
It not only exploits the information of the current subsystem
but also of the next subsystem. This can allow less conser-
vative switching laws than MDDT.

3 Conclusions and future work

Switching laws based on the mode-dependent dwell time
and the mode-mode-dependent dwell time have been devel-
oped, which are less conservative than ones based on the
dwell time. Globally uniformly ultimate boundedness of the
closed-loop switched system based on the proposed meth-
ods can be guaranteed. Moreover, the upper bound and the
ultimate bound of the tracking error have been proposed. Fi-
nally, numerical simulations demonstrate the effectiveness
of the proposed model reference adaptive control methods.
Future work will be focused on the extension of the results
about the behavior of the tracking error introduced in this
paper when the time-varying quadratic Lyapunov function
is used.
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1 Introduction

Automotive industry has focused its attention to Advanced
Driving Assistance Systems (ADAS) in the recent years.
Most of the car manufacturers are starting to incorporate this
kind of controllers in order to improve the drivers experi-
ence. Progressively, these systems are evolving from passive
warning signals to complex control systems that are able to
take control over the vehicle dynamics, improving vehicles
safety and comfort.

A crucial component that is needed for automated maneu-
vers such as lane changing or overtaking, is the trajectory
generation algorithm. For safe operation, the algorithm
needs to be sufficiently sophisticated to capture the real-
time complexity of the problem along the maneuver. How-
ever, available computational resources and measurements
are constrained by the typically low cost hardware utilized
in passenger cars.

Maximizing the driver comfort is one of the main priorities
of ADAS, alongside ensuring safety through collision avoid-
ance and stabilizing the vehicle dynamics. Driver comfort
is typically measured via the jerk levels perceived by the
passengers, very sudden movements are to be avoided. A
successful trajectory generator ought to effectively address
these priorities. We discuss viable approaches for the trajec-
tory generation problem for the specified scenario and com-
pare their performance in a simulation study.

Figure 1: Overtaking maneuver scheme

2 Approaches

The trajectory generator is implemented following a Re-
ceding Horizon philosophy. The objective is to minimize

jerk, which is a generally accepted approach to maximize
driver comfort. Two candidate strategies are considered for
a point-mass vehicle model driving a straight highway.

Firstly, a trapezoidal acceleration profile approach is consid-
ered. This kind of formulation allows to parameterize lateral
jerk explicitly along the maneuver. Despite being a strategy
in which collision avoidance constraints cannot be included,
this approach seems considerably attractive because of its
simplicity and low computational cost.

The second approach formulates the problem as a quadratic
program formulation (QP), previously introduced in [2].
This kind of formulation is attractive since, efficient embed-
ded solvers are available. The drawback of this approach is
that the collision avoidance constraints are tedious to prepro-
cess. There is a wide range of penalizing functions that can
be formulated in order to generate minimum-jerk trajecto-
ries, as well as methods to solve the QP. In [3] a comparison
between direct and in methods is presented; the quadratic
cost function incorporates a minimal jerk objective and pe-
nalizes deviations from a desired terminal state, in order to
enforce stability.

3 Validation

The generated trajectories from both approaches will be
compared in a simulation environment using a vehicle
model. Special attention is paid to driver comfort and safety,
as well as the complexity of the algorithm. Finally, an im-
portant factor considered, is the difficulty of the tuning pro-
cess for each algorithm, as this task consumes an consider-
able amount of time of the development process.
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1 Introduction
Water-flooding involves the injection of water in an oil reser-
voir to increase oil production. Dynamic optimization of
the water-flooding process has shown significant scope for
improvement of the economic life-cycle performance of oil
fields compared to a more conventional reactive strategy [1].
In these studies a financial measure, i.e., Net Present Value
(NPV), is maximized. One of the key challenges in this
model-based economic optimization is the high level of un-
certainty arising from varying economic conditions and the
limited knowledge of the model parameters. For improv-
ing robustness, different approaches, e.g., mean optimiza-
tion (MO) or mean-variance optimization (MVO) have been
proposed [3]. One of the drawbacks of the MVO approach
is the symmetric nature of the variance and hence the reduc-
tion of the best cases. In this work, we focus only on the
lower tail, i.e., the worst case(s) and aims to maximize the
lower tail of the economic objective function without heav-
ily compromising the best cases.

2 Robust optimization
In order to achieve asymmetric shaping of the NPV distribu-
tion, concepts from worst-case optimization and the theory
of risk (a risk averse mean-CVaR optimization) are consid-
ered with respect to the given economic uncertainty.

2.1 Worst-case optimization (WCO)
WCO assumes that the uncertainty is known only within cer-
tain bounds and the robust solution is optimal for any real-
ization of the uncertainty in the given set U . Hence it fo-
cuses only on the worst-case in U and solves a max-min (or
min-max) problem.

max
u

min
θi

Ji(u,θi) (1)

where u is the control input, Ji is NPV and θi is the uncer-
tainty ensemble.

2.2 Conditional Value-at-Risk
Conditional Value-at-Risk (CVaR) is a popular tool for man-
aging risk in finance. CVaR indicates average of the β -tail of
the worst cases of a distribution. It addresses the overly con-
servative solution of WCO by considering a class of worst
cases. The mean-CVaR optimization (MCVaRO) is formu-
lated as follows:

JMCVaR = JMO−ωJCVaR (2)

where JMO is the average NPV, JCVaR is CVaR risk with
given confidence level β and ω is the weighting on CVaR
term. Objective (2) aims at maximizing the average NPV
objective while minimizing the CVaR with a given ω [2].

3 Simulation examples
A scenario-based approach is used, where an ensemble of oil
price scenarios characterizes the economic uncertainty. The
MVO and MCVaRO strategies are applied to the uncertainty
ensemble, a pdf is drawn on NPV points and compared in
Fig. 1. It can be seen that MVO largely penalizes best cases
in order to improve the worst cases compared to MCVaRO.

(a) MCVaRO (b) MVO

Figure 1: Results comparison for MVO and MCVaRO
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1 Introduction

Iterative learning control (ILC) is widely used in control ap-
plications to improve performance of repetitive processes
[1]. The setup of a standard ILC is given by

u j+1(k) = Q(q) [u j(k)+L(q)e j(k+1)] ,

where u j(k) is the ILC input signal and e j(k) is the error
signal. The subscript j denotes the trial number. Q(q) and
L(q) are known in ILC literature as the Q-filter and learning
function, respectively. The choice of Q(q) and L(q) is the
main issue in the design of an ILC algorithm.

This work presents a novel multi-objective iterative learn-
ing control (ILC) design approach that realizes an optimal
trade-off between robust convergence, converged tracking
performance, convergence speed, and input constraints. Lin-
ear time-invariant single-input single-output systems repre-
sented by parametric as well as nonparametric models are
considered. The noncausal filter Q(q) and learning function
L(q) are simultaneously optimized by solving a convex op-
timization problem.

2 Multi-objective ILC design

We consider a linear discrete-time system that is subjected
to unstructured multiplicative uncertainty:

P∆(q) = P̂(q)(1+∆(q)W (q)) , ‖∆(q)‖∞ ≤ 1,

where P̂(q) is the nominal plant model and W (q) is the un-
certainty weight function.
Robust convergence [1]: The ILC system achieves robust
convergence if:

|Q(q)[1−L(q)P∆(q)]|= γ∗ < 1, ∀P∆(q).

And the smaller γ∗, the higher the convergence speed.
Robust performance [1]: The tracking performance of an
ILC system is based on the asymptotic value of the error
signal in the trial domain. Robust performance of ILC re-
quires the tracking performance specifications to be met for
all plants in the uncertainty set:

∣∣∣∣Wp(q)
1−Q(q)

1−Q(q)[1−L(q)P∆(q)]

∣∣∣∣≤ 1, ∀P∆(q),

where Wp(q) is the performance weight selected by the de-
signer.

The aforementioned ILC objectives are combined together
into one constrained optimization problem for Q(q) and
L(q):

minimize
Q(q), L(q)

convergence speed

subject to robust convergence
robust performance
input constraint.

The main idea is to optimize the convergence speed consid-
ering given tracking performance specification, and taking
into account robustness and input constraint. The problem is
reformulated as a convex problem, guaranteeing an efficient
and reliable computation of the global optimum and allow-
ing straightforward computation of trade-off curves between
different performance indices, e.g. as shown in Fig. 1 for the
non-minimal phase system considered in the numerical vali-
dation of our multi-objective approach and comparison with
a model-inversion based ILC design. These trade-off curves
assist the control engineer in selecting the desired controller
taking into account different objectives.
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Figure 1: Trade-off curve: converged tracking error vs con-
vergence speed
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1 Introduction

The dynamical model that describes the operations of com-
plex berthing process in a single container terminal has been
developed, as discussed in [2]. It also proposes a model pre-
dictive control (MPC)-based numerical optimization strat-
egy, as opposed to the traditional first-come first-served
(FCFS) in allocating berth position and quay crane (QC) to
the set of arriving ships.

2 Modeling framework

We apply the case to one of the projects of the Government
of Indonesia, so-called ”the sea highway”, that consists of
six major seaports, as can be seen in Figure 1. Every seaport
has different number of berth positions and QCs. We define
an arc or a link as the connection path between two seaports.
The number of containers moved and the transportation cost
also differs among each link. For instance, the number of
containers transported is the biggest in the Tg. Priuk-Tg.
Perak-Tg. Priuk link. The data of seaports’ equipment, con-
tainer demand, and transportation cost is obtained from [1].
Our goal is to apply the different strategy (FCFS or MPC)
applied to each seaport in the network and analyse the be-
havior of each strategy.

Tanjung 
Priuk

Tanjung 
Perak

Makassar SorongBelawan Batam

Figure 1: Six seaports of the ”Indonesian sea highway”. The di-
ameter of each circle represents the size of the seaport,
which directly relates to its number of berth positions
and QCs. The directed arcs show the direction of con-
tainer flows among seaports. The weigh of each arc
represents the number of container flow between the
particular two seaports.

3 Simulation results

A strategy of applying the MPC to all seaports may not be
favorable to some of them, due to the fact that MPC al-
location can lead dissatisfaction to their customers (ships).
Hence, we try to apply the MPC strategy only to ”impor-
tant” links. The importance of each link is obtanined from

Nagurney-Qiang (NQ) method, as cited in [3]. The result is
presented in Table 1.

Table 1: Importance value of each link in the network based on
Nagurney-Qiang method.

Link Importance Rank of
value importance

Belawan-Batam-Belawan 0.085 3
Batam-Tg. Priuk-Batam 0.022 4
Tg. Priuk-Tg. Perak-Tg. Priuk 0.492 1
Tg. Perak-Makassar-Tg. Perak 0.398 2
Makassar-Sorong-Makassar 0.003 5

In Table 2, we can see the behavior of each strategy. The cost
reduction is calculated from the traditional FCFS method.
By applying MPC only to seaports in rank 1 and 2, its cost
reduction does not much differ when compared to applying
MPC to all seaports. We can further analyse that even by
only applying MPC to seaports in rank 2, which has a rel-
ative big importance value, the cost reduction is still quite
significant. This is an interesting behavior, that the optimal
strategy can be wisely applied only to number of seaports
instead to the entire seaports in the network.

Table 2: Network cost of each different strategy.
Scenario Cost (Euro)
All seaports use FCFS 23,742,448
All seaports use MPC 20,292,606
Rank 1 & 2 use MPC, the rest use FCFS 20,695,268
Rank 1 use MPC, the rest use FCFS 21,245,822
Rank 2 use MPC, the rest use FCFS 21,791,657
Rank 3 use MPC, the rest use FCFS 23,432,178
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1 Introduction

Spoilage of fresh products can happen anytime due to the
changing environmental conditions and the varying nature
of perishables [1]. The transport of highly perishable goods
is then critical for preserving the quality of products within
supply chains. Food losses can be reduced via proper con-
trol strategies of logistics activities that use quality informa-
tion of products. However, existing approaches do not con-
sider product quality as an individual feature of each trans-
port unit (e.g., a container) [2], ignoring the fact that the per-
ishing feature can be different even for the same perishable
product. We are therefore developing a modeling approach
and a control strategy for perishables transport scheduling
from a container perspective. We consider a number of con-
tainers that each needs to go through a series of transport
stages (e.g. loading, shipping, etc.) before reaching their fi-
nal destination. The control question is then at what time the
containers should move from one transport stage to which
next one, in order to have the highest quality at the destina-
tion. We also consider the handling time and the capacity
for each stage due to efficiency and availability of handling
equipments. Moreover, the quality of perishables can de-
crease at varying rates during the procedure of logistics.

2 System modeling and predictive control approach

A discrete time model of the perishables container transport
process is proposed adopting a system and control perspec-
tive for logistic service providers. The containers are con-
sidered as dynamical components in the system, with state
variables representing the stage they are in and the quality
of the fresh products they carry. The stages they need to
go through are represented by a directed graph G = {N,E}
for each container, with N the nodes representing possible
stages and E the arcs representing possible transitions be-
tween stages. With each stage particular costs can be as-
sociated. Information of quality is considered as intrinsic
attribute of each container and can be influenced in differ-
ent ways in the different stages. The quality of the perish-
able goods is assumed to be non-negative. When entering a
stage, the container is being handled by certain equipment.
The handling time and capacity are limited by the equipment
used in each stage. As a result the containers cannot move to
the next stage before the handling is finished, and there can
only be a maximum amount of containers being handled in a
particular stage at the same time. The capacity and handling

time are hereby assumed to be static. It is moreover assumed
that quality of the perishable goods in each container can be
measured and that their quality decreases monotonically.

The controller measures the quality of fresh products in each
container, and decides when and where to move the contain-
ers using a model predictive control philosophy: by solving
an MIP problem with the objective of minimizing the to-
tal costs of all logistic activities and losses of quality for all
containers.

3 Computational experiments and conclusions

To test the proposed approach, different scenarios are set
up. We consider a particular transport system with three
stages. Quality of perishable goods in each container can de-
crease at different rates. For comparison we apply a quality-
unaware control strategy in which all containers are handled
regardless of quality of the product they carry. The proposed
control strategy shows that less costs can be achieved by
proper scheduling the transport activity considering the in-
formation of quality. Therefore we can see the importance
of involving quality information in perishables transport. As
impacts of quality information in transport and logistics are
being studied in more detail [3], more research is needed to
further investigate the utilization of quality information in
control strategies and interactions for different components
of transport systems. This will enable a quality-oriented, in-
telligent transport system [4].
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1 Available solutions and their limitations

Reference tracking under constraints is known to be diffi-
cult for classical control design methods. In last decades,
Model Predictive Control (MPC) practically monopolized
the constrained control applications. However, extension of
the MPC to reference tracking with stability and recursive
feasibility guarantees is not trivial, and in many cases too
complex to implement. Reference governor approach [2] is
a simpler solution to this problem, where a local stabilizing
controller is designed disregarding constraints and wrapped
into a reference adjustment loop. In this loop, an auxiliary
reference trajectory is created which converges to the actual
reference eventually, but ensures that the state and input tra-
jectories satisfy constraints at all times. Although reference
governors perform well for slowly varying references close
to the nominal one, the performance close to constrains can
be severely compromised.

Another constructive approach to constrained reference
tracking by linear systems is proposed in [1]. There, the
control action in the requested equilibrium state is interpo-
lated with the control action in a suitably chosen state on
the boundary of a positively invariant set for the system in
the closed-loop with a nominal stabilizing controller. The
interpolated control action ensures asymptotic convergence
of the system state to the requested equilibrium which can
be different from the nominal one. The downside of this ap-
proach is that the resulting control law is homogeneous for
any given reference, and the nominal control action within
the domain of attraction is not utilized, compromising the
performance close to the equilibrium state.

2 Proposed approach

The control design method developed in this paper looks for
inspiration to the reference governors and the method in [1],
and provides a middle ground solution to the tracking prob-
lem, see [4] for the preliminary results. More exactly, the
aim is to keep the locally optimal behavior of the reference
governor, and enjoy high performance close to constrains
where the method from [1] is more efficient. In this way, the
tracking controller inherits the non-homogeneous nature of

stabilizing one and ensures asymptotic tracking of stepwise
references without constraints violation.

Hereby, the method from [1] is extended via the reference
governor approach to tracking references outside the do-
main of attraction of the initial stabilizing controller. More-
over, a new interpolation scheme is proposed which engages
the states inside the domain of attraction, and consequently,
passes the non-homogeneity property of the stabilizing con-
troller to the tracking one.

Finally, the method is illustrated on the reference tracking
problem in a synchronous buck power converter with two
alternative designs for the stabilizing controller. The first
design employs Hybrid Polytopic Partition (HPP) frame-
work [3] and yields a discontinuous and non-homogeneous
controller from a homogeneous control Lyapunov func-
tion. MPC is considered as an alternative with a non-
homogeneous Lyapunov function for the nominal closed-
loop system. Hence, the proposed approach is not limited
by neither non-homogeneity of the stabilizing controller nor
by the non-homogeneity of the Lyapunov function guaran-
teeing stability for the nominal closed-loop.
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1 Introduction
Many systems consist of interconnections of similar
units or subsystems that only interact with their near-
est neighbors [1]. One of the main underlying assump-
tions hereby often is that the communication between
the subsystems is perfect, whereas in many applications
this assumption does not hold. In such “networked”
systems in which packet-based communication is used,
network-induced artifacts such as time-varying trans-
mission intervals (possibly due to packet losses or chan-
nel unavailability) are present next to scheduling pro-
tocols that determine which sensor, controller or actu-
ator node is allowed to communicate at a transmission
time. We study stability and performance for these
networked systems by considering interconnections con-
sisting of an infinite number of spatially invariant sub-
systems that use packet-based communication networks
for the exchange of information.

2 A hybrid systems approach
We consider the system configuration as depicted in
Fig. 1, consisting of an infinite number of subsystems
or “basic building blocks” P(s) that are all identical
and where the communication between the subsystems
occurs via packet-based communication networks N (s)
with s ∈ Z, which captures the infinite spatial extent.

P(s)P(s − 1) P(s + 1)

Network N (s)

v+(s)

w−(s) w+(s)

v−(s)
z(s) d(s)

Network N (s − 1)

w+(s-1)w−(s-1)

v−(s-1)
v+(s-1)

z(s-1)

d(s-1)

Network N (s+ 1)

v−(s+1)
v+(s+1)

z(s+1)

d(s+1)

w+(s+1)w−(s+1)

H(s)

Figure 1: Infinite networked interconnection, where each plant
P(s) has its own communication network N (s) to communicate
with its neighbors, s ∈ Z. The overall networked subsystem H(s)
is the combination of the plant P(s) and its network N (s).

Inspired by [2], we can model each “networked” subsys-
tem as a hybrid subsystem given by

H(s) :

{
ξ̇(s) = F (ξ, d)(s), τ(s) ∈ [0, τmati]

ξ+(s) ∈ G(ξ(s)), τ(s) ∈ [δ,∞)
, (1)

where ξ(s) is the state of the subsystem, d(t, s) a (ex-
ternal) disturbance input, and τ(s) a timer, which is
part of the state ξ(s).

3 Stability and performance analysis
For the general setup of (1), local Lyapunov-based
conditions (local in the sense that they only involve
the local dynamics of one subsystem in the intercon-
nection and information about the local communica-
tion network) are obtained, which lead to a bound on
the maximally allowable transmission interval (MATI)
τmati such that a global Lyapunov function guarantee-
ing UGES or Lp-stability can be constructed for the
overall infinite-dimensional interconnected system.

4 Example: A string of vehicles
We consider an infinite string of spatially invariant vehi-
cles as in Fig. 2. To maintain a constant time headway
h (time between the vehicles), wireless communication
is used to transmit velocity, acceleration and jerk data
from the vehicle at s to the following vehicle at s+ 1.

P(s + 1)

N (s) N (s − 1)N (s+ 1)

w+(s) w+(s-1)w+(s+1) v+(s+1) v+(s)v+(s+2) v+(s-1)

P(s)P(s + 2) P(s − 1)

Figure 2: A string of vehicles.

Using the obtained stability analysis, values for τmati

guaranteeing UGES of the infinite string are obtained.
These are shown in Fig. 3 for various time headways.
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Figure 3: Upper bounds for τmati guaranteeing UGES.
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1 Abstract

This work is concerned with the controller design for net-
works of switching servers with setup times, e.g. manufac-
turing systems or urban road networks (traffic light control).
Control of these networks is difficult, since using controllers
that are stable for a server in isolation might render the net-
work unstable. Sofar, in literature, most people first propose
a policy, and then study the resulting behavior of the network
under this policy.

In this work we propose an entirely different way of looking
at the problem of controlling a network of switching servers
with setup times. Instead of starting from a policy and then
analyzing the proposed policy, we start from a priori speci-
fied desired network behavior. Using this desired behavior
for the network under consideration as a starting point, we
look for a policy which guarantees convergence of the sys-
tem towards this desired behavior.

Figure 1: A T-junction

As an example consider the traffic light control of an isolated
intersection, see Figure 1.

Before we develop a controller for this intersection we first
determine an optimal periodic fixed time schedule using a
novel group-based approach. By adding an objective func-
tion to the mathematical model of [1], we can obtain a mixed
integer programming problem (MIP). Solving this MIP re-
sults in a periodic schedule as depicted in Figure 2.

Next step is to determine a controller which stabilizes the
system towards this given optimal periodic orbit. The pro-

Figure 2: Optimal periodic schedule for the T-junction

posed controller periodically repeats the phases of the pe-
riodic orbit, where each phase is equipped with its phase
control rule which determines when a phase ends. Such a
phase control rule implies a dynamical operator which maps
the state at the beginning of a phase to the state at the end
of a phase. The monodromy operator is a similar map for
the entire cycle. We propose phase control rules which are
such that not only the optimal periodic orbit is a fixed point
of the monodromy operator, but also all solutions converge
to this fixed point. To that end we use the ideas presented in
[2]. This approach can also be applied in a network setting
for manufacturing systems where we have control over the
service rate.

Future work consists of extending the optimization approach
for determining optimal periodic behavior from an isolated
intersection to a network of intersections. Also, we are look-
ing for suitable phase control rules in case we have no con-
trol over the service rate, as typically is the case in the setting
of traffic light control.
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1 Abstract

In this work, we study the problem of stabilization with
guaranteed safety for affine nonlinear system. We extend
the idea of IDA-PBC (Interconnection and Damping As-
signment - Passivity-Based Control) technique to solve this
problem. In particular, we show that the desired equilibrium
of the closed-loop system is asymptotically stable and the
state trajectories stay away from the given unsafe state.

2 Incorporating safety aspect into IDA-PBC

Energy is common notion that widely used in all domain
of systems. One of the well-known energy-based con-
troller is IDA-PBC (Interconnection and Damping Assign-
ment - Passivity-Based Control). In IDA-PBC, the energy
exchange between physical elements and the dissipated en-
ergy are encapsulated in the interconnection and damping
matrices in the port-Hamiltonian framework.

We investigate the generalization of IDA-PBC to solve the
problem of stabilization with guaranteed safety. Here, safety
means that all admissible state trajectories do not violate
system constraints or enter a set of unsafe states. The incor-
poration of safety aspect into the stabilization of the closed-
loop system has been considered before in [2, 6, 4, 1, 5].
In [4, 1, 5], the well-known Control Lyapunov Function-
based control method is combined with the Control Barrier
Function-based control method which is proposed in [7] to
solve the problem. The proposed control method in [4, 5]
does not impose unboundedness of energy function on the
boundary of the set of unsafe states as imposed in [2, 6].

We propose an energy-based method for solving this prob-
lem that offers a nice energy interpretation. The main ap-
proach behind our proposed method is to assign a desired
energy function such that it has a minimum at the desired
equilibrium point and has local maxima in the set of unsafe
states. Thus with an appropriate interconnection and damp-
ing matrices, the closed-loop system will converge to the
minima (that includes the desired one) while avoiding the
region of concavity where the unsafe state belongs to. If the
minimum is not unique, this approach results in local stabil-
ity with guaranteed safety. To obtain the global result, we

propose a hybrid control strategy that combines the global
stability result of IDA-PBC with respect to the set of equi-
libria and another state-feedback controller that can steer the
system from the set of undesired equilibria to the desired
one.
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We consider a network of physically interconnected dynam-
ical systems for which the goal is to solve an optimal reg-
ulation problem in the presence of input saturation. Based
on Lyapunov arguments we propose distributed controllers
which guarantee global practical convergence to the desired
optimal steady state.

1 Model

Inspired by [1], we consider a network of physically linked
undamped dynamical systems which can be represented by
a graph G = (E ,V ), where |E | = m and |V | = n. This
graph is represented by a incidence matrix B ∈ Rn×m and
each node i has an input (up)i and a disturbance di, along
with a state variable xi, which may represent a storage level.
The edges E represent transportation links, which intercon-
nect the nodes, and we denote the flow on link j by (ue) j.
The dynamic model is as follows:

ẋ = Bue +up +d

y = x− x̄,

where x,up,y ∈ Rn, ue ∈ Rm and d ∈ Rn. The input up and
the flow rates ue are considered to be controllable inputs and
the disturbance d is regarded as an unknown constant. Fi-
nally, we regard x̄ ∈ Rn as the desired setpoint for x.

2 Optimality

Building upon [2], we consider a control problem in which
we desire that distributed controllers convergence to an op-
timal steady state. To this end we define the optimal steady
state as the solution of an optimization problem. The cost
function we consider is given by

C(up) = s+ rT up +
1
2

uT
p Qup,

where s∈R, r∈Rn and Q∈Rn×n. Furthermore we want the
total disturbance to match the total input at steady state, i.e.
1T

n (up− d) = 0. For this reason we consider the following
optimization problem:

minimize
up

C(up)

subject to 1T
n (up +d) = 0.

This implies, after standard calculation, that the optimal
steady state is characterized as

up =−Q−1
(
1n
1T

n (d−Q−1r)
1T

n Q−11n
+ r
)
. (1)

3 Main result

On top of optimality condition (1), we consider a heteroge-
neous saturation on both ue and up. In particular, we enforce
positivity constraints on the link flows, i.e. the network is re-
stricted to unidirectional flows. This results in the following
control problem:

Problem. Design distributed controllers that regulate the
flows on the edges ue and input up at the nodes such that

lim
t→∞
||x− x̄|| ≤ ε1

lim
t→∞
||up−up|| ≤ ε2,

for any given positive arbitrarily small numbers ε1 and ε2,
where up is as in (1) and x̄ ∈Rn is a given constant setpoint,
and

u−p ≤up ≤ u+p
0≤ue ≤ u+e ,

for all t ≥ 0.

We provide two distributed controllers, one that regulates
the input on each node and one that controls the flows on the
edges. Finally we provide sufficient conditions for global
asymptotic practical stability based on Lyapunov arguments.
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1 Abstract

A popular way of stabilizing beam-like models is to apply
collocated control and measurement action. In many cases,
by a suitable choice of an extended state space, even col-
located systems with boundary control action can be formu-
lated as systems with bounded control. This results in a state
linear system Σ(A,B,B∗,0) on the state space Z, where A the
infinitesimal generator of a contraction C0-semigroup and
B ∈L (U,Z), U is another Hilbert space.

For the above class of systems we show that non-linear
damping will result in a globally asymptotically closed loop
system, provided that the linearized control law will ensure
asymptotic stability.

To illustrate our approach we use an example of Slemrod [2].
It was motivated by the SCOLE-related model from Bailey
and Hubbard [1] of one of the arms of a satellite, consisting
of a central hub with four flexible beams attached to it.
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1 Framework

A pure diffusion system is discretized by means of the finite
difference method. The resulting finite-dimensional system
belongs to a class of systems for which it is possible to pa-
rameterize all positively stabilizing feedbacks. A feedback
(row) matrix k is said to be positively stabilizing for such
system if the resulting closed-loop system is positive and
internally (exponentially) stable. The convergence of the
feedback control scheme is then studied in order to extend
the latter to the nominal system. The analysis involves posi-
tive control theory [1], consistency and stability study of the
numerical scheme [2], and state space approach [3].

2 Main result

The considered pure diffusion system is described by the
parabolic partial differential equation

∂x
∂ t

= Da
∂ 2x
∂ z2

with Neumann boundary conditions{
∂x
∂ z (t,0) = u(t)
∂x
∂ z (t,L) = 0

where Da is the axial dispersion coefficient, L is the do-
main length and u is the input. Discretizing the system by
means of the finite difference method (with n discretization
points zi, i = 1, ...,n) leads to a finite-dimensional approxi-
mating system. Both the nominal system and the discretized
one are positive and unstable. First we parameterize the
set of all (infinitely many) feedbacks that positively stabi-
lize the approximating system, then we show the conver-
gence of the finite difference scheme by use of a standard
approach and, for a specific given feedback, by state space
approach. This method leads to a positive and stable closed-
loop PDE system with boundary control of state feedback
type u(t) = κx(t,0).

3 Numerical simulations

The parameterization has been coded in MATLAB as an algo-
rithm that provides the user with positively stabilizing feed-
backs for the discretized system for a sufficiently small dis-
cretization step. The numerical results are dependent upon
the choice of parameter values. For example, considering
L = 1, Da = 1 and n = 21 and choosing the all-ones eigen-
vector corresponding to the Frobenius unstable eigenvalue

λ = 0 as initial condition yields the state trajectories shown
in Figure 1, which illustrate that the closed-loop system is
positive and that it is stable unlike the open-loop system.
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Figure 1: State trajectories in closed-loop

4 Perspectives

Next steps in this work are - among others - to find
conditions so that the discretized feedback automatically
converges to a positively stabilizing feedback for the
nominal PDE system, to optimize the choice of a positively
stabilizing feedback with respect to some given criterion,
to design observer based compensators and to apply the
results to a specific interesting application (bioreactor
models, population dynamics models,...). These questions
are currently under investigation.
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1 Introduction

Piezoelectric materials are used in many control and
sensing applications via a strip of piezoelectric ma-
terial also known as a piezoelectric beam. Applica-
tions can be vibration control in (complex) mechanical
structures and on-line measurement or compensation
in high-precision technology for shape control of beams
and surfaces. To manipulate or observe the electric-
field of the beam, a plate capacitor can be used, see
Fig. 1. The behavior of piezoelectric beams depends
on the interaction between the electrical, magnetic and
mechanical effects and is non trivial. Many different
assumptions for the mechanical part of the beam and
the electric-field can be used. For stabilization, and
more generally, controller design, a finite-dimensional
approximation must be used.

2 Approach

In this work the linear Euler-Bernoulli model [2] for
the mechanical behavior is used with both the quasi-
static electric-field assumption [4] and the dynamic
electromagnetic-field assumption, described by both [6]
and [8] in different frameworks. The abstracted math-
ematical models are put in the port-Hamiltonian (pH)
framework [7]. Subsequently, the spatial-discretization
procedure, described in [3], is applied for further anal-
ysis and results again in a pH-system.

3 Contribution

The contribution of this work is the investigation of the
influence of the type of approximation on stabilization
and controlled system performance. The obtained mod-
els are compared to other (pH) models, described in [1],
[5], and [6] on the basis of different modeling assump-
tions and their influence on stabilization and control-
lability for the infinite- and finite-dimensional systems.
The stability properties of the approximated linear pH-
models are investigated and compared to the original
infinite-dimensional model. The energy functions of the
various models are also compared.

Figure 1: Piezoelectric beam depiction
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1 Introduction

The performance of ASML’s wafer scanners is mainly mea-
sured in terms of speed and resolution. The company is
therefore aiming at reducing feature sizes on chips, while
at the same time increasing machine throughput. As a re-
sult error margins become smaller, while both the power and
bandwidth of signals increase.

Thermally induced deformations of various components are
a significant source of errors in wafer scanners [1] [2]. In
practice, low complexity models are used for real time con-
trol purposes, because high complexity models are gener-
ally not fast enough. These low complexity models have a
limited accuracy, which therefore limits the system perfor-
mance. For this reason the use of high resolution, multi-
physics models for control purposes is proposed.

2 Modeling of heat transfer and thermal expansion

Thermal diffusion is described by a partial differential equa-
tion, which can be described by an infinite dimensional sys-
tem. A finite dimensional approximation of these systems
can be created using the finite elements method. For linear
thermal expansion the thermally induced deformations z can
be modeled by a linear mapping of the temperature states T ,
which is described by z = AT . In order for these models
to be accurate, generally � 104 states are required, which
leads to slow and complex models. Because of this, these
models are generally only used for simulation and analysis
purposes [3].

3 Control based on low complexity models

Consider the system interconnection in Fig. 1. The plant
is subject to disturbances d (e.g. heat fluxes), has inputs u
(e.g. heater power set-points) and measured outputs y (e.g.
measured temperatures). The deformations z cannot be mea-
sured continuously.

In general, low order lumped elements models are used in
thermal control. These low order models describe thermal
behavior relatively well, but lack the spatial resolution re-
quired to determine the resulting deformations z accurately.
For this reason the control objective is defined on y, which
can be measured accurately [3]. With this approach, some
norm on the deformations ||z|| is reduced by reducing ||T ||.
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Figure 1: Assumed closed-loop system interconnection

4 The advantage of high complexity models

High complexity models on the other hand are capable of
determining the deformations z accurately. Therefore, it is
possible to reduce ||z|| = ||AT || directly. In this way the
entire null space of A can be utilized instead of just working
towards the trivial solution ||T || = 0. Moreover, in some
cases it is desired to minimize a weighted norm of z. As a
result, extra freedom in the control of the temperature states
is introduced, which can be used to improve the controlled
system performance.

5 Future Work

For control of thermally induced deformations, high com-
plexity models can theoretically be used to increase the sys-
tem performance. However, these models are generally not
fast enough. Model reduction can be used to overcome this
problem, but utilizing these reduced models for real time
control is not trivial [2]. As a first step, model reduction for
this type of systems will therefore be investigated. The aim
is to develop an accurate thermo-mechanical model that is
5−10 times faster than real time.
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1 Abstract

The implementation of lightweight high-performance
motion systems in lithography and other applications
imposes lower requirements on actuators, amplifiers
and cooling. However, the decreased stiffness of
lightweight designs increases the effect of structural
flexibilities especially when the point of interest is not at
a fixed location. This is for example occurring when po-
sitioning a silicon wafer during exposure. The present
work addresses the problem of compliance compensa-
tion in flexible structures, when the performance loca-
tion is time-varying. The compliance is derived using
the frequency domain representation of the solution of
the partial differential equation (PDE) describing the
structure, which yields its exact compliance function.
The advantage is that an exact function at every posi-
tion of the structure is obtained, without the need for
interpolation.

During the production of silicon chips, a silicon wafer
is placed on top of the wafer stage of the litho-
graphic system. A source emanating extreme ultravio-
let (EUV) light passes through the reticle stage contain-
ing the blueprint, and an optical column with projec-
tion lenses, before it exposes the photo-sensitive layers
of the wafer’s surface. Assuming that the wafer stage is
a lightweight structure, i.e. its dynamics are dependent
substantially on position, during exposure the time-
varying performance location induces time-varying dy-
namics, which need to be compensated.

The contribution in this work is twofold. Firstly, it
introduces a position-dependent compliance compen-
sation method which accounts for the compliant part
of the flexible dynamics in motion systems, includ-
ing cases with a time-varying performance location, a
situation met during wafer exposure. A second con-
tribution is that the spatially continuous dynamics of
the flexible structure (Euler-Bernoulli beam) is derived
from a partial differential equation (PDE) describing
this beam. The PDE representation is exploited to de-
rive the position-dependent compliance function of the

beam, which gives the exact compliance on every po-
sition. The method is validated in a continuous-time
simulation environment, using a simulation model con-
taining a single flexible mode, corrected to obtain the
compliance of the original infinite-dimensional model.
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1 Introduction

In model order reduction, the Petrov-Galerkin projection [1]
of linear partial differential equations (PDEs) faces two dif-
ferent problems. On the one hand, there is not a system-
atic methodology for the selection of the residual projec-
tion subspace. This fact has influenced the advent of a par-
ticular case of Petrov-Galerkin (the Galerkin-based projec-
tions) where the residual and the solution projection spaces
are equual [2]. On the other hand, the Petrov-Galerkin pro-
jections lack of a systematic procedure for the inclusion of
boundary information in the construction of the reduced or-
der model.

In this work, we introduce new developments in both as-
pects. Firstly, we have introduced the concept of Proper
Residual Projection for Petrov-Galerkin methods where the
selection of the optimal residual projection is translated into
an optimization problem. Secondly, Dirichlet and Neumann
boundary conditions are included in the reduced order for-
mulation by a successive application of the Gauss theorem.
The methodologies have been tested for the projection of a
parabolic PDE. For this application case, the numerical re-
sults indicates that the proper residual projection generates
a stable reduced-order dynamical system that resembles ac-
curately the behavior of the original PDE.

2 A proper residual projection

Here we select a residual projection space (test space) such
that the residual seminorm of the projected (and finite di-
mensional) solution of the PDE onto the signal space is min-
imized. Let R(u) be a residual operator and let the solution
of a PDE u satisfy R(u) = 0. Let the projection of u into the
signal space to be denoted by uh = Φa. Then, we select a
test space that minimizes the following cost function:

J(uh) = ‖uh‖2
R = ‖R(Φa)‖2 (1)

A global minimum can be found by applying optimality con-
ditions on the previous optimization problem.

3 Boundary conditions in the reduced order model

It is well understood that a weak formulation of PDEs, and
an application of the Gauss theorem may naturally include
the Neumann boundary conditions in the reduced-order for-
mulation [3]. Neumann boundary conditions correspond to
values of the vector field defined by the gradient of u at the
boundaries, and as the Gauss theorem relates the divergence
of a vector field inside a domain with the vector field itself
at the boundary, the treatment of Neumann information in
the reduced order formulation is straightforward. The case
of Dirichlet boundary conditions is more delicate. However,
with a proper algebraic modification, Dirichlet information
can be treated as any other type of boundary condition in the
weak formulation of the PDE.

4 Conclusions

We have proved that there exists a test space the mini-
mize the residual norm of the signal projection, in addition
we present a methodology to include Dirichlet and Neu-
mann boundary conditions in the reduced order formula-
tion. These results aim to establish a systematic method-
ology for system projections and model order reduction of
linear PDEs.
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1 Introduction

Li-ion batteries are commonly employed in various appli-
cations owing to their high energy density and long service
life. Li-ion battery models are used for analyzing batter-
ies and enabling power control in applications. The Doyle-
Fuller-Newman (DFN) model is a popular one, which repre-
sents relevant solid-state and electrolyte diffusion dynamics
and accurately predicts current/voltage response. Unfortu-
nately, solving the full DFN model requires significant com-
putation time, which prohibits using it in real-time applica-
tions. The objective of the present work is to apply Model
Order Reduction (MOR) techniques to obtain a Reduced-
Order Model (ROM) for the DFN model. The ROM is ex-
pected to give considerable reduction in computation time,
while preserving the accuracy of the input/output behavior.

2 Mathematical Modeling of the Lithium-ion Batteries

The DFN model is a physics-based electrochemical battery
model, which is composed of several Partial Differential E-
quations (PDEs) describing the physics of the Li-ion con-
centrations and conservation of charge in both the solid and
electrolyte phases along with the Butler-Volmer equation de-
scribing surface kinetic limitations [1]. Analytically solv-
ing this set of nonlinear PDEs is not possible. Still, spatial
and temporal discretization methods, e.g., the finite-volume
method and the Euler method, respectively, can be applied to
obtain solutions by solving algebraic equations of the form:

Ax(t)+ f (x(t)) = 0, (1)

where A ∈ Rn×n, x(t) ∈ Rn, and f (·) is a nonlinear function.
The numerical solution can be obtained by solving (1) recur-
sively. However, the discretized model generally contains a
large number of states, leading to long computation time,
which renders the model unsuited for real-time application.
Therefore, MOR can be applied to reduce the order n in (1).

3 Model Order Reduction

The aim of MOR techniques is to generate a model of the
system with k ≪ n states, while still accurately describing
the behavior of the original system. Many MOR strategies
are based on projecting the states of the original system onto
a suitably selected reduced-order state space. Among avail-
able MORs, the Proper Orthogonal Decomposition (POD)

has been commonly used. By projecting (1) onto V ∈ Rn×k

based on POD method, (1) becomes

V T AV x(t)+V T f (V x(t)) = 0. (2)

The term V T AV x(t) in (2) is now of low dimension. How-
ever, f (V x(t)) still requires n function evaluations. The dis-
crete empirical interpolation method (DEIM), therefore, is
able to reduce the order of f (V x(t)). The approximation
from projecting f (τ) onto the subspace is of the form

f (τ) ≈ Uc(τ), (3)

where U = [u1, . . . ,um] ∈ Rn×m and c(τ) is the corresponding
coefficient vector. The coefficient vector c(τ) is obtained by
the DEIM algorithm [2].

In this work, the POD and the DEIM approaches are com-
bined and applied to the DFN model, leading to a model
that has small computation time. Moreover, it is possible to
trace key physical variables by backward projection. Sev-
eral ROMs with different reductions k, m are obtained. In
the original system, n = 368 is selected, which takes 795 s
to run the simulation from SOC 100% to SOC 0%. In the
POD-DEIM algorithm, k = 2 and m = 4 is finally selected,
which takes only 17 s to run the simulation. Figure 1 illus-
trates behavior of full and ROM. The normalized root mean
square error between the output voltage of original model
and ROM is 1.9 ·10−3.

Time(sec)
0 100 200 300 400 500 600 700 800 900 1000 1100

V
ol

ta
ge

 (
V

)

0

1

2

3

4

C
ur

re
nt

(A
)

-30

0

30

60

90

Current
Voltage(2 states)
Voltage(368 states)

Figure 1: Full and reduced-order model simulation results
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Structure-preserving model reduction of network systems is
investigated. The underlying system is defined on a con-
nected undirected graph and given as

{
Mẋ =−Lx+Bu,
y = x. (1)

In the model, L ∈ Rn×n is the so-called graph Laplacian
associated with a connected undirected graph. x ∈ Rn and
M := diag(m1,m2, · · · ,mn) ∈ Rn×n. u ∈ R is the external
input. This kind of system can easily become a high dimen-
sional system with a growing number of nodes. Therefore,
one of the important issue concerns model reduction.

Note that the graph topology is uniquely determined by
the structure of its Laplacian matrix [1]. Thus, it is cru-
cial to preserve the properties of L in the reduced-order
model. In [1], we propose a model reduction procedure us-
ing clustering-based projection

x(t)≈ Px̂(t), (2)

where x̂ ∈ Rr and P ∈ Rn×r. P is generated by the result
of clustering. The main idea of such clustering process is
first to evaluate how similar the behaviors of all nodes on the
graph are in terms of the H∞-norms of their difference trans-
fer functions and then to recursively aggregate those nodes
having closer behavior into a same cluster. This method al-
lows for an insightful physical interpretation and the con-
sensus property of the network system is preserved. The
resulting reduced-order model can be written as

{
M̂ ˙̂x =−L̂x̂+ B̂u,
ŷ = Px̂,

(3)

where, M̂ := PT MP, L̂ := PT LP, and B̂ := PT B. Note that M̂
is again a diagonal positive matrix and L̂ is again a Laplacian
matrix of a connected undirected graph with less number of
vertices. Therefore, the network structure is preserved.

Moreover, we have the following theorem.

Theorem 1 Consider a network system (1) and its reduced-
order model (3) resulting from a arbitrary clustering P.
Then, both systems reach consensus. Furthermore,

lim
t→∞

y(t) = lim
t→∞

ŷ(t) =
1n1T

n B
1T

n M1n
. (4)
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g2 − ĝ2
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Figure 1: The magnitude of the approximation error.

where 1n denotes a n-entries vector of all ones. y(t) and ŷ(t)
are the impulse responses of the systems (sM +L)−1B and
P(sM̂+ L̂)−1B̂, respectively.

From above theorem, both the original and new systems
converge to a same final value when t → ∞ which implies
that the reduced-order model preserves the consensus of the
network.

Furthermore, the error of the model reduction is studied.
Specifically, the explicit error of a one-step aggregation is
presented and then the computable bounds on the error are
derived. An illustrate example is shown in Fig. 1 where
we consider a network system with four nodes. By one step
clustering, the node 3 and 4 are aggregated which gives us a
three-dimensional new system. let

[
g1 g2 g3 g4

]T
= (sM+L)−1B, (5)

[
ĝ1 ĝ2 ĝ3

]T
= (sM̂+ L̂)−1B̂. (6)

We plot the approximation errors in Fig. 1.

Future work includes extension to second-order networks
and to network systems with subsystems of higher-order lin-
ear dynamics.
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1 Introduction

In this paper we study the tracking control problem of
a flexible-joint robot. In particular, we are interested in
controllers that only have access to position measurements.
Although this setup is well known in the Lagrangian
framework, e.g. [4], here we propose to use the port-
Hamiltonian framework instead. We shall compare both
methodologies and point out the advantages provided by
the port-Hamiltonian formalism.

Remark 1. One of our main contributions is to show
that, as in the Lagrangian framework, model order reduc-
tion based on singular perturbations can also be used, in
the port-Hamiltonian framework, to design controllers of
flexible-joint robots. As it is expected and under some
classical assumptions, the reduced order model of a (port-
Hamiltonian modeled) flexible-joint robot results in a port-
Hamiltonian model which coincides with that of a rigid
robot.

2 Preliminaries

A singularly perturbed ordinary differential equation is
usually written as

ẋ = f (x,z,ε)
ε ż = g(x,z,ε),

(1)

where x ∈Rm, z ∈Rn and ε > 0 is a small parameter ε� 1.
Under the time rescaling τ = t

ε , system (1) can be rewritten
as

x′ = ε f (x,z,ε)
z′ = g(x,z,ε).

(2)

There are two reduced subsystems associated to (1) and (2)
and are defined by taking the limit ε → 0, these are

ẋ = f (x,z,0)
0 = g(x,z,0),

(3)

which corresponds to (1), and

x′ = 0
z′ = g(x,z,0),

(4)

which is related to (2). It is well known, e.g. [2, 3], that
under the hyperbolicity condition

∣∣∣
∣∣∣ ∂g

∂ z

∣∣∣
∣∣∣ 6= 0, the dynamics

of (1) are ε-close to the dynamics provided by (3) and (4).
In general terms, this implies that a control design strategy
is to synthesize controllers u0 for the reduced systems and
therefore (1) can be controlled by a small perturbation uε =
u0 +O(ε) of u0.

3 Contribution

Modeling: we show that the port-Hamiltonian model of a
flexible-joint robot can be written in the classical format of
singular perturbations, that is

q̇s = fs(qs,q f , ps, p f ,u,ε)
ε q̇ f = f f (qs,q f , ps, p f ,u,ε)

ṗs = gs(qs,q f , ps, p f ,u,ε)
ε ṗ f = g f (qs,q f , ps, p f ,u,ε),

(5)

where (qs, ps) correspond to generalized coordinates of the
slow subsystem (coinciding with a rigid robot), and (q f , p f )
correspond to generalized coordinates of the fast subsystem,
and u denotes the controller.
Model order reduction: due to the singular perturbation
format of the port-Hamiltonian model, it is possible to
obtain two reduced subsystems, one slow and one fast.
Controller synthesis: using persistence arguments from
singular perturbation theory, e.g. [2], we can implement
controllers based on rigid robots such as the ones in [1].
Such controllers would work on the flexible-joint robot, but
they can be improved using the fast subsystem obtained in
the model order reduction step.
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1 Introduction

The rush for data collection over the past decade has lead
to an evolution of the way many datasets are represented.
A flat matrix, limited to two dimensions, is no longer suit-
able in some applications where more complex abstractions
are required. Social networks, biomedical, audio or imaging
datasets, among others, now often have to deal with more
than two dimensions. To better exploit the potential of these
multi-dimensional datasets, higher-order tensors have natu-
rally taken over matrices. Taking more than two dimensions
into account makes the analysis of the tensors both more in-
formative and more challenging than in the case of matrices.

Tensor factorization (i.e., tensor decomposition) has
emerged as one of the key tools to investigate these datasets
[1]. Generalizing the concept of matrix factorization, it aims
to capture the underlying structure of the data by modelling
the tensor as a sum of components. These components can
be used for various purposes, from early visualization to lat-
est classification task.

As a natural extension of individual tensor decomposition,
the problem of decomposing two or more tensors conjointly
is of great interest in many applications where more than
one source of information is available. A joint analysis of
different datasets that record similar phenomena has the po-
tential to draw a more complete picture of the underlying
structure of the data. An efficient gradient-based optimiza-
tion approach to perform this coupled decomposition task
with tensors of different orders was introduced by Acar et
al. [2].

Among the many challenges arising when performing such
coupled analysis, the difficulty to deal with the presence of
both shared and unshared (i.e., dataset-specific) components
among the datasets remains a concern. Because of the pres-
ence of the unshared sources, the results can be both in-

consistent and largely dependent of the initialization, which
calls for more robust methods.

2 Robust coupled tensor decomposition

In this work, a general framework, using the algorithm de-
veloped in [2], is built to extract more reliable components.
We aim to tackle the lack of robustness in coupled tensor
decomposition by comparing the components resulting from
the individual decompositions and from the joint decompo-
sition.

More specifically, individual decompositions are first per-
formed (A) and the resulting components from both tensors
are compared to detect similarities. Based on these similar-
ity measures, some components are constrained to be shared
and a joint decomposition is performed (B), initialized with
the components extracted in (A). The differences between
the components of (A) and of (B) are analysed, the number
of components and the initializations for (A) are adapted and
the process is repeated until convergence.

It results in both a more reliable and a more versatile joint
decomposition method, with (i) a variable number of com-
ponents, (ii) both shared and unshared components and (iii)
components that are retrieved in both the individual and in
the joint decompositions.
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Abstract

An increasing interest in complex networked systems has
been observed in the past decade. Even with the availabil-
ity of huge computational power and sophisticated tools for
analysis, model reduction remains an important problem in
the theory of networked systems. Here, the goal is to find
systems of reduced complexity that closely approximate the
behavior of the original complex network. The direct ap-
plication of existing model reduction techniques for linear
time invariant systems to these networked system destroys
the interaction structure of the network. In this abstract we
approximate networked multi-agent systems using model re-
duction techniques that remove certain edges from the net-
work graph, preserving some of the network topology, and
give expressions for the resulting approximation error.

In this abstract, the network is given by interconnected
identical dynamical systems called agents. The the net-
work graph is the unweighted graph G = (V,E), with agents
V = {1,2, . . . ,n} and edge set E . While the edges are undi-
rected, in this abstract we assign an arbitrary orientation to
each edge. The set of neighbors of agent i is denoted Ni.
Each agent is a symmetrical system and has state xi ∈ Rp,
input ui and output yi in Rm, and dynamics

ẋi = Axi +Bui, yi = BT xi

where ui is the diffusive coupling given by ui = ∑ j∈Ni y j−yi

and A = AT . The overall network dynamics with state x =
col(x1,x2, . . . ,xn) ∈ Rnp is then given by

ẋ = (I⊗A−L⊗BBT )x (1)

where L is the Laplacian matrix of the graph G. We assume
that the system reaches consensus, or equivalently that the
matrix A−λiBBT is Hurwitz for all nonzero eigenvalues λi
for i = 2, . . . ,n of L. To compare the system (1) to an ap-
proximating system, we assign a virtual input d and a virtual
output z to the system. We obtain the following two-port
consensus model:

ẋ = (I⊗A−L⊗BBT )x+(I⊗ I)d, z = (ET ⊗ I)x. (2)

The output z represents the disagreement over every edge in
the graph. Using ideas from [1], we will look at a minimal
representation of system (2). First we choose a spanning
tree T of G, then we look at the representation Σ given by

ξ̇ = (I⊗A−Le(I+T T T )⊗BBT )ξ +(ET
T ⊗I)d, z= ξ , (3)

1Johann Bernoulli Institute for Mathematics and Computer Science,
University of Groningen, P.O. Box 407, 9700 AK Groningen, The Nether-
lands

where Le = ET
T ET is a positive-definite matrix and T =

(ET
T ET )

−1ET
T Ec. The matrix ET is the incidence matrix

of T and the matrix Ec contains the columns of the inci-
dence matrix E of G representing the edges that are not in
T , which close the cycles in G. The state ξ ∈ R|ET |p repre-
sents the disagreement along the edges in the edge set ET of
the spanning tree T . The matrix Le(I +T T T ) is called the
essential edge Laplacian of G. Now, the goal is to approxi-
mate system Σ by a less complex system Σ̂, whose network
graph Ĝ is a subgraph of G. In this abstract, we restrict
ourselves to the case that Ĝ = T . The system (3) is then
approximated by system Σ̂ given by

ẇ = (I⊗A−Le⊗BBT )w+(ET
T ⊗ I)d, ẑ = w. (4)

We assume that the unforced reduced model also reaches
consensus, i.e. the matrix A−µiBBT is Hurwitz for all eigen-
values µi (i = 2, . . . ,n) of Le. Note that the eigenvalues µi
are exactly the nonzero eigenvalues of the Laplacian matrix
of T . Next, we can compute the approximation error, which
is the H2-norm of the error system that maps the input d to
the error z− ẑ. An expression for the approximation error
in the case that the original graph consists of a tree and a
single extra edge, and hence T = c ∈ R|ET |, is given in the
following theorem.

Theorem. Let Σ be a network consisting of a tree T and a
single edge such that the graph has one cycle c. The absolute
approximation error then satisfies

||Σ− Σ̂||22

=
1
2 ∑

i, j
(xT

i c)
2 λ 2

i

σ2
i j

yT
i jB(I +

n

∑
k=2

λk(xT
k c)

2
Gk(−σi j))

−1

BT yi j

+
1
2

n

∑
i=2

(1− (vT
i c)2

l(c)
)µi tr(µiBBT −A)

−1

− 1
2

n

∑
i=2

λi tr(λiBBT −A)
−1

where λi (µi) and xi (vi) are the e.v. and normalized eigen-
vectors of Le ([I + ccT ]

1
2 Le[I + ccT ]

1
2 ), σi j and yi j are the

e.v. and normalized eigenvectors of A− λiBBT , l(c) is the
length (number of edges) of the cycle c, and Gk(s) =

BT (sI−A+λkBBT )
−1B.
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1 Introduction

Measurement techniques have fundamental speed and accu-
racy limitations. The speed and precision of a measurement
device used in monitoring and control tasks determines the
quality of the available data, which in turn limits the accu-
racy of models derived from the data. A method, called data
driven fast measurement (DDFM), is proposed to overcome
the hardware constraints. This method performs model free
real-time processing of the signals measured.

2 Step input estimation problem

The metrology problem of a speeding up a measurement de-
vice is modeled as an input estimation problem for a dynam-
ical system with step input. The step level is the unknown
(to-be-measured) quantity, the output is the known (mea-
sured) quantity, and the input-output relation represents the
unknown measurement process dynamics.

Problem: Given output observations

y = (y(1), . . . ,y(T )), y(t) ∈ Rp,

of a stable linear time-invariant system with known dc-gain
G ∈ Rp×m, generated by step input u = ūs, where s is the unit
step function, find the input step value ū ∈ Rm.

3 Data driven fast measurement

A dynamic compensator performs on-line identification and
model based design. The DDFM method is a model-free ap-
proach that bypasses the parameter identification and com-
pensator design and finds directly the quantity of interest ū.

We assume that the unknown measurement process is a lin-
ear time-invariant system of order n. The set Bs of all output
signal, generated by step inputs, is an autonomous system of
order n+m, where m poles are at one.

Considering the unit difference operator ∆ defined by

∆y(t) := y(t)− y(t − 1).

The behavior ∆Bs is linear time-invariant autonomous of
order n and Bs = ∆Bs + ȳs, for some ȳ ∈ Rp. Therefore,
for any y ∈ Bs that corresponds to a step input ūs, we have:

y = ȳs+ ∆y, where ȳ = Gū and ∆y ∈ ∆Bs (1)

Using (1), we obtain the system of linear equations:






G
...
G


 H (∆y)




[
ū
ℓ

]
=




y(n+ 1)
...

y(T )


 , (2)

where H (∆y) is the block-Hankel matrix with n columns,
constructed from ∆y. The quantity of interest ū is computed
directly from the data by solving (2) recursively.

4 Practical implementation

The DDFM algorithm is implemented on a digital signal
processor (NXT Lego brick). As a test bed we use tempera-
ture measurement. The estimation error e := ū− û is shown
as a function of time. Here ū is the steady state value and û
is the current prediction of ū. The following methods are
compared: 1) direct measurement of the sensor, 2) estimate
of the measured quantity, obtained by the DDFM method, 3)
estimate of the measured quantity, obtained by the Kalman
filter, designed using on a model of the measurement pro-
cessed, identified offline from the measured data.

The results of a particular experiment are shown below. Ini-
tially, the Kalman filter gives the best estimate but has bias.
The DDFM method has slower response than the Kalman
filter but has no bias and improves the raw measurement.
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1 Introduction

Kernel-based regularization techniques are constantly gain-
ing attention in the identification world, due to their success
in modeling the impulse response of linear systems, see e.g.
[1]. In this work, instead, the problem of estimating a reg-
ularized impulse response model is studied from a different
perspective [2]. The aim is to provide an intuitive interpre-
tation of regularization problems from an engineering point
of view.

2 Methodology

To achieve this, the estimation problem is analyzed focusing
on the cost function. The main idea is to define the reg-
ularization matrix as a filtering operation on the estimated
parameters before they enter the cost function. Since the
regularization term can be seen as a penalty term on the
model complexity, the regularization matrix should include
the properties that one needs to penalize in order to get an
accurate description of the system [2]. Figure 1 illustrates
this idea on a band-pass system modeling example.

This filter-based approach is not only useful to get more in-
sight about the existing kernel techniques from an engineer-
ing point of view, but can also be exploited to design new
user-friendly regularization methods, by including the avail-
able prior information about the system, directly at the cost
function level.

3 Results

The proposed approach allows one to deal in an effective
way with low-pass, band-pass, and high-pass systems. Fur-
thermore, the filter structure used to build the regulariza-
tion term makes it also possible to model resonance sys-
tems by means of a flexible design algorithm. The effec-
tiveness of the proposed approach is illustrated by means of
Monte Carlo simulations on different modeling examples.
The obtained results show that the filter-based approach out-
performs the standard least squares method and the existing
kernel-based regularization approaches in all the considered
examples (see Figure 2 for the results on a band-pass system
example), and offers an intuitive way to accurately model
low-pass, band-pass, and high-pass systems [2].
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Figure 1: True system (dashed black line), and filter used to com-
pensate for the system behaviour in the regularization
term (solid blue line).
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Figure 2: Validation error obtained with the filtering approach,
compared with the state-of-the-art TC and DC kernels.
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1 Introduction

The success of the next generation systems, from consumer
electronics, aerospace systems to the modern transportation
systems rely on their energy consumption, efficiency and li-
fetime (both calendar life and cycling life). One of the most
crucial (important) components and still one of the weakest
links in such systems is the main energy storage component
i.e. the battery or battery pack [1]. Lithium ion batteries
(LiB) have gained acceptance into the consumer electronic,
power grid, automotive and aerospace worlds as compared
to other types of batteries because their high energy and high
power density render them an excellent option for energy
storage, particularly in hybrid and electric vehicles as well
as an ideal candidate for a wide variety of applications. In
order to develop a complete dynamic model of a lithium
ion battery that is suitable for virtual-prototyping of portable
battery-powered systems, accurate estimation of the state of
charge (SOC) and state of health (SOH) is required, which
in-turn depends on the quality of the models which are used
for the estimation of these quantities. Temperature is known
to have a significant impact on the performance, safety, and
cycle lifetime of LiB [2–4]. In order to correctly predict (or
simulate) the short-term electric response of a LiB cell , it is
neccessary to accommodate the effect of temperature in the
dynamic model of the LiB cell. In this paper, a data-driven
polynomial nonlinear state-space (PNLSS) model structure
is proposed, which can accommodate the effect of tempera-
ture change when the battery operates in the nonlinear re-
gime of its electrical operation.

2 Nonlinear modelling

In order to identify the discrete-time nonlinear model for the
battery, the polynomial nonlinear state-space model struc-
ture [5] is selected :

x(t+1)= Ax(t)+ Bu(t)+ Eζ(t) (1)
y(t)= Cx(t)+Du(t)+ Fη(t) (2)

The coefficients of the linear terms in x(t) ∈ Rna and u(t)
are given by the matrices A ∈ Rna×na and B ∈ Rna×nu in
the state equation, C ∈ Rny×na and D ∈ Rny×nu in the out-
put equation. The vectors ζ(t) ∈Rnζ and η(t) ∈Rnη contain
nonlinear monomials in x(t) and u(t) of degree two up
to a chosen degree P . The coefficients associated with
these nonlinear terms are given by the matrices E ∈ Rna×nζ

and F ∈ Rny×nη . For the identification, a discrete-time li-
near model is fitted on non-parametric data and this linear
discrete-time model was converted in to a state-space form
before optimizing it to identify in least-square sense a nonli-
near state-space model. Fig.1 shows a comparison between
the response (output error) of a linear model and the PNLSS
model (after accommodating the effect of temperature, a
step change from 25◦ C to 40◦ C) in the desired frequency
band of interest with respect to the output measurement. It
can be seen that the PNLSS model performs significantly
better than the linear model in the frequency band of inter-
est.

FIGURE 1: Output error comparison : Temperature de-
pendent PNLSS model vs. Linear model
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1 Introduction
Heavy-duty diesel engine manufacturers are challenged to
decrease fuel consumption while NOx emissions are strictly
regulated. Therefore, these engines are equipped with an
increasing number of sensors and actuators, such as an ex-
haust gas recirculation (EGR) valve and a variable geome-
try turbine (VGT). This provides advanced means to con-
trol the combustion process. To systematically design such
multivariable controllers, a model-based approach is pur-
sued. The required models can be obtained through first-
principles modeling or system identification [4]. However,
first-principles models are often very complex, expensive,
and inaccurate for high performance control design.

2 Approach
The approach considered in this research is based on a non-
parametric model of the system, similar to [4], followed by
a multivariable parametric model [3] fitted upon these mea-
surements. Hence, an accurate model can be identified that
is also suitable for model based control techniques. Further-
more, the local rational method (LRM) [1, 2] is employed
to perform the non-parametric identification. Compared to
classical spectral identification methods, the LRM has supe-
rior suppression of leakage (transient) errors and it contains
noise averaging properties that are at least as good as time-
domain windowing techniques [1].

3 Results
The engine dynamic behaviour is strongly varying at dif-
ferent operating points (engine speed, load, ambient condi-
tions), which need to be identified independently. Conse-
quently, the “fast” method adaptation of the LRM is applied
to approximate the local dynamics as this method allows a
full identification of the multivariable plant with a single ex-
periment, leading to essential time reduction compared to
other multivariable identification techniques. The LRM lo-
cally approximates the transient and the plant G by a rational
function, shown in (1).

G(ωk+rE ) =
N(ωk+rE )

D(ωk+rE )
=

∑nG
s=0 gs(k)rs

E

1+∑nD
s=1 ds(k)rs

E
(1)

This rational function, consisting of a polynomial numerator
and denominator of order nG and nD respectively, estimates
the response at frequency ωk by a least squares fit through
the local window rE of adjoining excited frequencies. Fig-
ure 1 shows an LRM estimation based on three periods of

a 100s multisine, compared to a robust measurement con-
sisting of 26 experiments of six 100s multisine periods each.
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Figure 1: Magnitude bode plots of the LRM estimate, the robust
estimate and the parametric model of the plant from
EGR and VGT to NOx and exhaust manifold pressure.

The LRM estimate is a close approximation of the robust
benchmark, the covariances (not shown) are estimated with
similar precision. A parametric modelling procedure [3] ca-
pable of identifying the common dynamics of the system is
applied to the LRM estimation. The resulting parametric fit
is shown in Figure 1 as well.

4 Future work
In future work, more control inputs will be included in the
model such as fuel injection timing, quantity and pressure,
extending the system size up to 6-by-6 elements. Further-
more, a broader range of operating points will be identified
and a multivariable controller will be synthesized.
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1 Introduction

This presentation discusses the estimation of nonpara-
metric noise and frequency response matrix (FRM)
models for multiple-input-multiple-output(MIMO) sys-
tems. [1] introduced the local polynomial method
(LPM) for dynamic multivariable systems excited by
arbitrary signals. [2] extended this work to MIMO sys-
tems excited by periodic signals in presence of both in-
put and output noise (i.e. an errors-in-variables frame-
work). The local polynomial methods result in a non-
parametrical suppression of the noise and system tran-
sients (leakage errors) in the frequency response matrix
and noise (co-)variance estimates. For lightly damped
systems they can either significantly reduce the mea-
surement time or, for a given experiment duration,
significantly increase the frequency resolution of the
FRM estimate. Although the objective is to apply the
methodology to an experimental set-up, namely an ac-
tive vibration isolation system (AVIS), the discussion
here is limited to a series of simulations dealing with
critical features.

2 The local polynomial method

The LPM builds on the assumption that the input-
output discrete Fourier transform (DFT) spectra U(k),
Y (k) of the input-output signals u(t) and y(t) are re-
lated as

U(k) = U0(k) +NU (k)
Y (k) = G(Ωk)U0(k) +NY (k)

NU (k) = HU (k)EU (k) + TU (Ωk)
NY (k) = HY (k)EU (k) + TY (Ωk)

TZ(ΩkP ) =

[
TY (ΩkP )
TU (ΩkP )

]
,

where Ω = e−jωTs is the frequency variable in discrete
time with Ωk = 2πkfs, and fs = 1/Ts is the sampling
frequency.

Both G, and TZ are rational functions in Ωk that can

be approximated locally at DFT frequencies kP+m for
k = 0, 1, ..., N/2− 1 and m = 1, 2, ...P − 1:

TZ(ΩkP+m) = TZ(ΩkP )+
R∑

r=1

tr(k)mr+
1√
PN

O(N
−(R+1)
1 )

with P the number of periods of the periodic signals, N
the number of samples per period, and N1 = NP/m.

3 Objectives

The simulations will provide insight into critical aspects
of the methodoly for the particular case of a lightly
damped mechanical MIMO system . This includes the
design of appropriate input signals, and the choice of
the parameters in the local polynomial method. Of
particular interest is the impact these decision variables
will have on the quality of the obtained FRF estimates
around the resonance frequencies. As such, this work is
the first stage in the process of using the LPM for the
identification of the benchmark example of an industrial
AVIS [3] with 8 inputs and 6 outputs..
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1 Introduction

In the coming years, the exploitation of Renewable Energy
Sources (RES), i.e. wind and solar sources, will increase
significantly. Comparing to fossil-fuel sources, RES are pro-
duced and distributed in a more decentralized fashion and
their availability mainly depends on the climate and weather
conditions. As a result, the current energy systems are fac-
ing new challenges [2, 4]. For instance, the distribution
network system should cope with the effects of RES in or-
der to maintain the desired voltage levels and prevent the
network bottlenecks which can occur as a result of a sur-
plus of RES generation and/or high consumption. Dealing
with these challenges, the price-based (market-based) ap-
proach provides a promising framework in which consumers
and producers will be motivated, by means of economic in-
centives, to transform to controllable (price-elastic) compo-
nents, which react to price signals to obtain and maintain the
desired behavior of the grid [1, 3]. In this talk, we present a
price-based mechanism for the distribution system in order
to maintain the voltage at each bus within its desired bounds
and to deal with (active power) congestion.

2 Price-based (optimal) control

We consider a radial distribution network composed of n
buses and m branches and model the network as a connected,
undirected graph with n nodes and m edges. The nodal ac-
tive and reactive powers obey the AC power flow model

Pi = ∑n
j=1 ViVjYi j cos(δi−δ j−θi j),

Qi = ∑n
j=1 ViVjYi j sin(δi−δ j−θi j),

(1)

where Vi 6 δi and Yi j 6 θi j are the complex voltage of bus i and
the admittance between nodes i and j, respectively. We for-
mulate our objective as a distributed optimal control prob-
lem with constraints on active, reactive power flows and the
voltage bounds. The output of the optimal controller are the
price signals. It is assumed that there is a network oper-
ator who communicates the price signals with the control-
lable units. Our current research is focused on designing the
optimal price-based control algorithm and validating the al-
gorithm by means of simulating a benchmark system. The
case study is composed of a standard IEEE 37 distribution
bus connected to price-elastic /-inelastic loads and a few dis-
tributed generation units (DG). Each DG unit is composed

of a RES production source together with an inverter and a
storage system. For RES production, we consider a variable
speed wind-turbine and a few PV systems. Figure 1 shows
the physical model together with the controller.

Figure 1: Price-based control scheme for the distribution grid.

3 Concluding remarks

This research is currently focused on designing a real-time
price-based control for power distribution network. Next
step is to use the controller output (shadow prices) in order
to design time-varying network tariffs [1]. Moreover, one
of the future avenues is to analyze and improve our design
to provide a fault-tolerant structure for switching between
grid-connected and islanded modes.
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1 Introduction

A microgrid is a network of connected power sources and
loads in a small area which can be seen as one entity within
the wide area power system. Considering such a network as
a building block of the power grid is mainly motivated by
preventing blackouts. The microgrid is capable of discon-
necting itself from the main grid in case of a fault in the main
grid and reconnecting when the fault is resolved, and it typi-
cally includes synchronous generators, inverters, and loads.
Inverters are divided into three categories. The first cate-
gory, ”Grid-forming” inverters, act as a voltage source with
fixed frequency and amplitude. ”Grid-feeding” inverters
form the second category, working as current sources such
that their voltage follow the frequency of the grid/microgrid.
The third category contains sources that are designed to con-
tribute to the regulation and stability of the microgrid, which
are called ”grid-supporting”. This category includes both
Voltage Source Inverters (VSI) and Current Source Inverters
(CSI). Grid-supporting VSIs are capable of self-regulation
and therefore the network consisting of these inverters syn-
chronize in frequency [1]. These devices measure power
they inject to the grid and determine the output voltage
amplitude and frequency according to these measured val-
ues. Counter-wise, grid-supporting CSIs measure the volt-
age amplitude and frequency, in order to inject a desired
amount of active and reactive power accordingly [3].

2 Problem Statement

A large number of articles have triggered deploying grid-
supporting VSIs. These inverters generate their own fre-
quencies and then synchronize in the steady state with a pro-
portionally shared power. In the next step, generations are
increased/decreased regarding to the increased/decreased
load (secondary layer). We are looking for an alternative
microgrid architecture that can fulfill all aims at once.

3 Solution Method

We propose a microgrid with a master-slave architecture in
which a synchronous generator acts as the master and cur-
rent source grid-supporting CSIs act as the slaves (Figure 1).
Following its nature, such a network is synchronized at all
times and stable under constant power loads [2].
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Figure 1: The proposed method applies to any topology of the mi-
crogrid power network graph. Synchronous Generator
(SG) acts as the master, and Inverters (I) act as slaves.
The dark blue nodes represent power loads (L).
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Figure 2: Implementation of the proposed inverter

4 Implementation

Figure 2 depicts the schematic of the proposed current
source inverter. With such devices, frequency regulation and
power sharing can be achieved without any communication.

References
[1] Nima Monshizadeh and Claudio De Persis. Output
agreement in networks with unmatched disturbances and al-
gebraic constraints. CoRR, abs/1504.03609, 2015.

[2] Pooya Monshizadeh, Claudio De Persis, Nima Mon-
shizadeh, and Arjan van der Schaft. A communication-
free master-slave microgrid with power sharing. CoRR,
abs/1509.08847, 2015.

[3] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodriguez.
Control of power converters in ac microgrids. Power Elec-
tronics, IEEE Transactions on, 27(11):4734–4749, Nov
2012.

Book of Abstracts 35th Benelux Meeting on Systems and Control

54



Topological conditions on the stability of networked systems with
damped and undamped nodes

Filip Koerts
University of Groningen
f.j.koerts@rug.nl

Arjan van der Schaft
University of Groningen

a.j.van.der.schaft@rug.nl

Claudio de Persis
University of Groningen
c.de.persis@rug.nl

Mathias Buerger
University of Stuttgart

mathias.buerger@ist.uni-stuttgart.de

1 Problem formulation

We consider a linear mass-spring-damper system with dy-
namics

Ms̈ =−Rṡ−BWBT s+ c,

where the system parameters are the diagonal positive def-
inite matrices M and W of mass values and edge weights
respectively, the positive-semidefinite matrix R with nonneg-
ative resistance values and a constant input c. B represents the
node-edge incidence matrix of the underlying graph G . We
assume that G is connected and there is at least one damped
and one undamped node.

We say that the system reaches consensus if the velocity of
the nodes converges to an agreement value in the long run,
i.e. when limt→∞ ṡ(t)→ 1β for some β ∈ R. By defining
node states p = Mṡ and edge states q = BT s, the consensus
problem is shown to be equivalent to global asymptotic sta-
bility (GAS) of the closed-loop system of the node and edge
systems induced by the state variables. After a linear shift of
this system, the dynamics become independent of c.

Suppose that we only know the underlying damping graph,
i.e. the incidence matrix B and the set of damped nodes,
but do not know the system matrices W , M and R precisely.
The parameter independent stability problem asks whether
systems with a given underlying damping graph are GAS for
all system parameters. In this case we say that the damping
graph is parameter independent GAS, abbreviated PI-GAS.

The conceptual linear mass-spring-damper system that is
used in this stability analysis allows for powerful applications
such as power systems and multi-vehicle systems.

2 Results

The parameter independent stability problem is equivalent to
the richly balanced coloring problem. In this graph coloring
problem, damped nodes are colored black and G admits a
richly balanced colored graph if the undamped nodes can be
colored black, blue or red in such a way that (i) every black
node b is balanced, i.e. either b has only black neighbors, or it
has at least one red and at least one blue neighbor (in that case,
b is richly balanced) and (ii) not all nodes in G are black. G is
PI-GAS if and only if it there exists a richly balanced colored

graph of G . By a reduction from the boolean satisfiability
problem, the problem is shown to be NP-complete.

A sufficient condition for G being PI-GAS is that it satisfies
the zero forcing property. This happens if G only consists of
black nodes after repeatedly applying the blackening rule of
selecting a black node that has precisely one white neighbor
and coloring this white neighbor black. For the special case
that G is a tree graph, the zero forcing property is also a
necessary condition for PI-GAS.

Despite of the complexity of the problem, we can do better
than a brute-force search on all nodes. For a given combina-
tion of colors of undamped nodes that are incident to a set of
chords (i.e. an edge that does not belong to a certain span-
ning tree of G ), it can be verified in linear time if there exists
a coloring of the remaining undamped nodes that creates a
richly balanced colored graph. The proof for this relies on (i)
two forcing rules that are necessary implications to balance
a colored graph and (ii) a procedure to color all undamped
nodes red or blue of a tree graph to which the zero forcing
algorithm is applied. In this way, the parameter independent
stability problem for networks with few fundamental cycles
is easily solved.

Figure 1: The figure on the left shows a damping graph where
black and white nodes represent damped and undamped
nodes, respectively. For the given combination of colors of
the chord nodes (squares in the right figure), the chord node
coloring algorithm colors the remaining undamped nodes
such that a richly balanced colored graph is created.
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1 Introduction

In the intuitive modelling of the power network, the gener-
ators and the loads are located at different subset of nodes.
This corresponds to the so-called structure preserving model
which is naturally expressed in terms of differential al-
gebraic equations (DAE). The algebraic constraints in the
structure preserving model are associated with the load dy-
namics.

Motivated by the fact the presence of the algebraic con-
straints hinders the analysis and control of power networks,
several aggregated models are reported in the literature
where each bus of the grid is associated with certain load
and generation. The advantage of these aggregated models
is mainly due to the fact that they are described by ordinary
differential equations (ODE) which facilitates the analysis
of the network. However, the explicit relationship between
the aggregated model and the original structure preserved
model is often missing, which restricts the validity and ap-
plicability of the results.

Aiming at simplified ODE description of the model together
with respecting the heterogenous structure of the power net-
work has endorsed the use of Kron reduced models; see e.g.
[2]. In the Kron reduction method, the variables which are
exclusive to the algebraic constraints are solved in terms of
the rest of the variables. This results in a reduced graph,
the (loopy) Laplaican matrix of which is the Schur comple-
ment of the (loopy) Laplacian matrix of the original graph.
By construction, the Kron reduction technique restricts the
class of the applicable load dynamics to linear loads.

The algebraic constraints can also be solved in the case of
frequency dependent loads where the active power drawn
by each load consists of a constant term and a frequency-
dependent term [1],[3]. However, in the popular class of
constant power loads, the algebraic constraints are “proper”,
meaning that they are not explicitly solvable.

In this talk, first we revisit the Kron reduction method for
the linear case, where the Schur complement of the Lapla-
cian matrix (which is again a Laplacian) naturally appears in
the network dynamics. It turns out that the usual decompo-
sition of the reduced Laplacian matrix leads to a state space
realization which contains merely partial information of the
original power network, and the frequency behavior of the
loads is not visible. As a remedy for this problem, we intro-
duce a new matrix, namely the projected pseudo incidence

matrix, which yields a novel decomposition of the reduced
Laplacian. Then, we derive reduced order models captur-
ing the behavior of the original structure preserved model.
Next, we turn our attention to the nonlinear case where the
algebraic constraints are not readily solvable. Again by the
use of the projected pseudo incidence matrix, we propose
explicit reduced models expressed in terms of ordinary dif-
ferential equations. We identify the loads embedded in the
proposed reduced network by unveiling the conserved quan-
tity of the system.

2 Main Result

We start with the differential algebraic system

θ̇G = ωG (1a)

Mω̇G =−AωG−BGΓsin(BT θ)+u (1b)

0 =−BLΓsin(BT θ)+ p (1c)

and obtain the follwoing reduced model of ordinary differ-
ential equations:

η̇ = BT
S (η)ωG (2a)

Mω̇G =−AωG−BGΓsin(η)+u. (2b)

We show that under mild conditions, the systems above ad-
mit identical solutions. Here, θG is the vector of voltage an-
gles, ωG is the frequency, MG denotes the angular momen-
tum of the generators, A is diagonal and collects the damp-
ing coefficients, the matrix B denotes the incidence matrix
of the graph of the power network and B = col(BG,BL), Γ is
a positive definite matrix, u is the control input and p is the
vector of constant power loads.
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We study the distributed optimal control of power networks
under intermittent interruptions in communication, referred
to hereafter as Denial of Service (DoS). Stability of the
solutions under both DoS and non-DoS conditions can be
achieved using suitable controllers. We characterize the du-
ration of those DoS-intervals for which optimality of the so-
lution achieved by the controllers is still guaranteed.

1 Introduction

During day-to-day operation of a power network, fluctu-
ations occur in the power load and production at various
places in the network. As a result, the frequency of power
observed by the consumer can be different from its nomi-
nal value. This can damage sensitive electronics, and should
therefore be avoided.

Traditionally, droop control and automatic generation con-
trol are used to retain power quality. More recently, dis-
tributed control schemes have been proposed [1], which
provide for optimal regulation, meaning that more capable
generators compensate for more load elsewhere in the net-
work. Communication between the controllers is required
to achieve this optimality.

2 Setting

We study power networks, modeled using second-order
Kuramoto-like oscillators, given in vector form as

η̇ = B⊤ω
ω̇ = −Aω −BΓ(sinη)−u+d.

Here, η denotes the vector of differences of rotor angles on
each edge and ω is the vector of frequency deviations at
the generators. A and Γ are positive-definite diagonal ma-
trices representing droop coefficients and susceptances of
the power lines, respectively; B denotes the incidence ma-
trix and d is the vector of loads at the generators. Control
is possible by way of the power generation vector u. The
control goal is then to steer the frequency deviation from the
nominal frequency, denoted by ω , to 0 asymptotically.

The distributed controller proposed in [1] can be denoted by

ξ̇ = −Lcξ −Q−1ω

u = Q−1ξ ,

in which Lc is the Laplacian matrix of the communication
graph, and Q denotes the diagonal, positive definite matrix
associated with the quadratic cost of power generation at
each node.

Previous work has shown already, using LaSalle–Lyapunov
arguments, that the power network is locally asymptotically
stable under suitable assumptions [1].

Economic optimality of the solution requires additionally
that the control variable ξ converges to

ξ̄ = Q−11
1⊤d

1⊤Q−11
,

which is the total power demand optimally divided among
the generators. The steady state achieved by the controllers
above is optimal in this sense.

3 Denial of Service

We consider the scenario in which, for various reasons, the
communication network may not always be available. For
example, natural disasters or adversarial intervention may
disrupt the network at unpredictable times, for unknown du-
rations. We model this condition, called Denial of Service,
as a series of intervals during which Lc is replaced by the
zero matrix.

In this work, we aim to relate the optimality of the solution
to the availability of the communication network.

We derive a bound on the maximum total length of all DoS
intervals for which we can still guarantee asymptotic con-
vergence to the optimal solution.

References
[1] S. Trip, M. Bürger and C. De Persis. An internal
model approach to frequency regulation in power grids. Au-
tomatica, 64:240–253, 2016.

[2] C. De Persis and P. Tesi. Input-to-state Stabilizing
Control under Denial-of-Service. Transactions on Auto-
matic Control, 27-03-2015.

[3] C. De Persis and P. Tesi. Resilient Control under
Denial-Of-Service. Proceedings of the 19th IFAC World
Congress, 2014, pp. 134–139.

35th Benelux Meeting on Systems and Control Book of Abstracts

57



A Scenario Approach for Probabilistic Fault Detection Threshold
Design for Uncertain Nonlinear Systems

Vahab Rostampour, Riccardo M.G. Ferrari, Robert Babuška, and Tamás Keviczky
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Abstract

Advanced model-based fault diagnosis methods have
emerged in important industrial sectors, such as aerospace,
as fundamental tools for guaranteeing high operational
readiness levels and reducing unneeded maintenance costs.
A key problem to be solved for widespread industrial adop-
tion is the development of robust methods providing satis-
factory, and easy to tune performances in terms of the so-
called false positive and false negative alarm ratios, with re-
spect to true negative and true positive ones, respectively.
A major culprit leading to false alarms are the unavoidable
model and measurement uncertainties, which are dealt with
by a careful choice of the residual generators, and by design-
ing robust fault detection thresholds, that ideally are only
exceeded in the presence of faults. In the case of linear sys-
tems, and under some conditions also for nonlinear systems
[1], geometric approaches exist that can lead to residuals that
are perfectly decoupled from the uncertainties, thus making
the problem of threshold design trivial. For general nonlin-
ear systems, thresholds are usually designed by assuming
the existence of a known, static or dynamic upper bound
on the uncertainties magnitude, thus obtaining a guarantee
for zero false positive alarms by design. Such a powerful
property often comes at the cost of very conservative thresh-
olds, often leading to high false negative ratios, though some
of these can be characterized by suitable detectability theo-
rems. The key reason behind the conservativeness is that the
uncertainty bounds must account also for large, but possibly
rare values taken by the uncertainties. This problem in prac-
tical situations is exacerbated by the fact that tight dynamic
bounds on the uncertainties are seldom known, thus leading
to users choosing excessively high and static bounds in or-
der to guarantee the worst case condition. This highlights
the necessity of formulating stochastic variants of standard
fault detection threshold problems, while ensuring perfor-
mance guarantees by means of probabilistic designs.

This paper aims to relax the condition on the absence of false
positives, by introducing fault detection thresholds with
probabilistic, rather than deterministic, guarantees. This will
lead in general to lower thresholds, which will allow bet-
ter detectability of faults with small magnitudes, with only a
marginal presence of false positive alarms due to the fact that
very rare values of the uncertainties are excluded from the
threshold design process. The probability of false positives,

as it will be shown, will be a tunable design parameter in
the proposed procedure, so that a user may choose from the
probabilistic metric space. Though the scientific literature
already produced some works on fault detection thresholds
with probabilistic guarantees (see [2, 3, 4, 5], etc), an inno-
vative feature of the proposed approach is that the problem
of guaranteeing a given probability of false positives, whilst
minimizing the amount of false negatives, will be solved at
the same time. We will in fact use a scenario approach in
order to determine the optimal threshold as the solution of a
chance-constrained optimization problem, which minimizes
the probability of false negatives while respecting a user-set
bound on the probability of false positives, for a given class
of faults. An added advantage coming from the use of a sce-
nario approach, with important practical implications, is that
the requirements on the knowledge of tight (or probabilistic)
bounds on the uncertainties is replaced by the requirement to
hold a sufficiently high number of samples of the residual in
healthy conditions, this number being in turn dependent on
the given level of false positives and false negatives desired.
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Université catholique de Louvain, Belgium

Email: {adrien.taylor, francois.glineur, julien.hendrickx}@uclouvain.be

1 Introduction
In this work, we exploit the performance estimation (PE) [2,
5, 6] methodology for doing algorithmic design. This
methodology aims at automatically establishing exact
bounds on the convergence of fixed-step first-order algo-
rithms for convex optimization problems. In addition to its
capability of improvement of existing bounds, this frame-
work can be used for the development of improved methods.

Using the PE approach, we propose an extension of the
optimized gradient method [3, 4], originally designed for
smooth unconstrained convex optimization, for possibly
handling constraints, or a proximal term. This new algo-
rithm is very similar to a variant of the celebrated FISTA [1],
but has a worst-case behaviour which is about twice better.

2 Composite convex optimization
We consider the following minimization problem, which we
qualify as the composite convex optimization problem:

min
x∈Rd

f (x)+h(x),

where both f and h are convex functions. In this setting,
we assume that f is a smooth function whose gradient can
be computed, while h is a possibly nonsmooth function for
which we assume one can compute the following proximal
operator (implicit gradient method):

proxλh (y) = argmin
x∈Rd

{
h(x)+

1
2λ
‖y− x‖2

2

}
.

Note that when h is the indicator function of some convex
set, the proximal operator performs a projection on that set,
so that this class of problems includes constrained problems.

3 PE for composite convex optimization
In [5, 6], we adapt the PE approach [2] for obtaining the
exact worst-case values for a class of first-order methods for
composite convex optimization — whereas previous works
focused on upper bounds [2, 3]. The idea is that given an
algorithm of that class, one can generate the problem (that
is, convex functions f and h) on which the given algorithm
behaves the worst according to some chosen performance
criteria (such as objective function accuracy, or distance to
the solution).

This technique is applicable for the class of so-called fixed-
step linear gradient methods [6], which basically includes

the majority of existing first-order methods provided they
use fixed step lengths, including classical gradient meth-
ods, accelerated variants (including variants for constrained
problems), proximal gradient, conditional gradient, subgra-
dient methods, etc.

4 Algorithmic design
Using the PE approach, it is therefore possible to obtain
the exact worst-case behaviours of algorithms in the class
of fixed-step linear gradient methods. This approach opens
the door for tuning the algorithms in order to obtain better
performing methods. As an example, this has been done an-
alytically for fixed-step gradient methods for smooth uncon-
strained optimization in [2, 3] and resulted in the so-called
optimized gradient method (OGM) — which is optimal for
a weaker (relaxed) version of the PE approach.

Using PE for composite convex optimization, we propose
a non-standard extension of OGM for the composite case.
This extension has a worst-case behaviour which is about
twice better than the celebrated fast iterative shrinkage-
thresholding algorithm (FISTA) [1].
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1 Introduction

We consider the problem of efficiently averaging a set of
N symmetric positive definite (SPD) matrices. This task
appears in various applications, e.g., in medical imaging,
mechanics (elasticity tensor estimation), video-tracking and
radar detection. These two last applications justify the need
to develop fast algorithms to solve this problem.

The geometric mean is usually preferred to the arithmetic
mean for SPD matrices. However, the definition of the ge-
ometric mean of a set of SPD matrices is far from trivial.
To be considered as a geometric mean, a matrix mean has
to fulfill a list of criteria (usually refered to as the ALM
list). This results in a unique definition of the 2-variable
geometric mean, which corresponds to the center of the
geodesic binding the two matrices (in the sense of the affine-
invariant metric), but several definitions have been proposed
for the geometric mean of more than two matrices. The
most widespread multi-variable geometric mean is probably
the Riemannian center of mass of the matrices (also termed
Karcher mean).

The main shortcoming of these geometric means is that they
are expensive to compute. Therefore, several approximate
geometric means (operators satisfying most of the ALM
properties) have been proposed in the literature, e.g., the
CHEAP mean [1] and the Circular mean [2]. We propose
here another family of approximate geometric means which
all rely on a progressive merging method described next.

2 The Progressive Merging algorithm

The Progressive Merging algorithm consists in successively
replacing couples of matrices by one matrix corresponding
to their weighted geometric mean. The result of this al-
gorithm, denoted here PM(A1, . . . ,AN), is also termed “in-
ductive mean" in the literature. The PM algorithm does not
qualify as a geometric mean because it does not satisfy the
ALM property of invariance under permutation. Moreover,
we have observed empirically that it tends to overemphasize
the last matrices in its argument list. Our proposed family of
methods offers a framework to remedy these drawbacks.

3 Approximate matrix geometric means

The approximate geometric means that we propose fit in the
following scheme. Given data matrices A1, . . . ,AN in Pn (the
set of SDP matrices of size n):

1. Consider a list p = (p1, . . . , pk) of permutations of
1, . . . ,N.

2. Compute Bi = PM(A1, . . . ,AN , pi), i = 1, . . . ,k, where
PM is the inductive mean.

3. Return M(B1, . . . ,Bk) where M is some matrix mean.

We investigate various ways to build the permutation list
p, as well as several matrix means M. The resulting algo-
rithms are named according to the pattern <p>-PM-<M>,
where <p> indicates the permutation generation mechanism
and <M> refers to the choice of M. For a more accurate
description of our algorithms, see [3].

4 Performances analysis

We compare <p>-PM-<M> algorithms with state-of-the-art
methods according to two criteria: distance to the Karcher
mean and computation time. We observe that some of the
algorithms we propose are nondominated, i.e., none of the
other algorithms achieve both higher precision and lower
computation time. We also notice that the advantage of the
new algorithms becomes stronger when the size or the con-
dition number of the data matrices gets large. It is also in-
teresting to note that the <p>-PM-PM methods solely rely
on the two-variable weighted geometric mean, a favorable
situation towards an extension to sets other than Pn.

We also prove that our estimate geometric means satisfy, de-
pending on the choice of <p> and <M>, from seven to nine
criteria among the ten criteria of the ALM list.
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1 Introduction

Tensor decompositions are becoming increasingly popu-
lar in various scientific fields [4, 1], including signal pro-
cessing, higher-order statistics, and chemometrics. This is
due to their useful properties, namely, uniqueness and thus
interpretability of the factors, ability to work with high-
dimensional data directly, and ability to work with multiple
data sets simultaneously (data fusion), among others.

Tensor methods are slowly entering the systems and control
world [2, 5, 10] but their potential has not yet been fully
utilized. We present an overview of re-occuring problems in
systems and control where the powerful tensor techniques
can be applied successfully, with the hope to increase their
impact on the community.

2 Resolved problems

Often, a number of matrices are collected, mostly one matrix
at a time instant, and their simultaneous diagonalization is
required in order to proceed. Most of the diagonalizing tech-
niques are based on orthogonal transformations; however,
in many practical applications the required matrices are not
necessarily orthogonal. This seemingly difficult problem is
readily solved by the so-called canonical polyadic decompo-
sition of the tensor build from the given matrices. We have
recently used this equivalence for two totally different prob-
lems, namely for decoupling static nonlinearities in block-
oriented system identification [2], and for calibration [7].

We briefly list a few more applications of tensors in systems
and control. There is a one-to-one correspondence between
homogeneous polynomials and symmetric tensors, which
has been used in [8]. Hierarchical tensor decompositions
are often used when numerically solving high-dimensional
partial differential equations. Such decompositions are able
to deal with the ‘curse of dimensionality’ [6, 3]. Further,
data fusion techniques are particularly useful when having
a number of (partially) related data sets. Tensors have also
proven useful for sum-of-exponentials modeling and com-
mon dynamics estimation [5]. Higher-order singular value
decomposition has been used for modeling linear parameter-
varying systems, for data compression and for approxima-
tion of ND systems [10].

3 Final remarks

Tensor methods have a lot to offer to the systems and control
community. Moreover, they can readily be used – there al-
ready exist a number of tensor toolboxes for MATLAB. No-
tably, the Tensorlab [9] has been developed in our network.
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Introduction

The tokamak is the furthest developed nuclear fusion device
in which a ionized gas (plasma) is confined using magnetic
fields. Such a tokamak requires a plasma control system
(PCS) to help ensure that physics goals are met while re-
maining within operational and machine limits. Several con-
trol tasks need to be executed simultaneously which share a
limited set of actuators. The priority of these control tasks
and the availability of actuators may change suddenly due
to events in plasma or hardware [1]. As such, actuator man-
agement is required to determine actuator requests to real-
ize controller requests for a given actuator availability. Ini-
tial work on actuator management for the ASDEX-Upgrade
tokamak was done using brute force computing [2]. In this
work we propose a Mixed Integer Quadratic Programming
(MIQP) approach to efficiently solve this actuator manage-
ment problem.

Actuator management overview

In a tokamak, multiple distributed power sources are present
to heat and drive current in the plasma. As an example,
the Electron Cyclotron heating system for the future toka-
mak ITER uses electro-magnetic waves to locally heat and
drive current in the plasma. This EC system consists of 24
sources that are connected to 11 steerable launchers that de-
termine the deposition location in the plasma, where me-
chanical switches for each source determine connection op-
tions to launchers.

An overview of the actuator manager and its interfaces is
given in Figure 1. Based on the provided controller requests
with their corresponding priorities, and using the state of the
actuators and the plasma, the actuator management block
determines the source powers, launcher deposition locations
and switch settings. The actuator management block uses
an actuator availability description in terms of constraints
and a performance measure (cost function) with penalties on
e.g. error between requested and delivered power, launcher
movements, and non-idle sources.

 
 
 

Shared Actuator Management 
Optimal allocation of sources and launchers 
to realize controller requests for a given 
actuator availability: 

• Optimal: according to performance 
measure (cost function) 

• Actuator availability: in format of 
constraints  

 
 
 
 

Multiple controller requests with  
controller priorities 
• Desired power and current deposition 

(profile) at desired locations in plasma 

Actuator requests e.g.: 
• Source powers 
• Launcher depostion locations 
• Source-launcher connection switches 

Actuator state 
and constraints 
e.g. Pmin, Pmax 

Plasma state: 
e.g. temperature 

Figure 1: Overview of Shared Actuator Management.

MIQP-problem formulation

This actuator management problem with cost function and
constraints can be formulated as a standard MIQP-problem:

minimize J(z) = zT Hz+ f T z,
z

subject to Aineqz≤ bineq,
Aeqz = beq,
zi ∈ {0,1}, i ∈ Inb

(1)

where Inb is the set of indices corresponding to binary vari-
ables. These MIQP-problems can be solved efficiently using
existing MIQP-solvers.

Results and conclusions

Results of representative test cases for the TCV tokamak and
the future ITER tokamak show the potential of this MIQP-
approach. The required computational time is compatible
with (control) timescales of these tokamaks and scales fa-
vorable for increasing problem size compared to brute force
computing [2].
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Most of the existing approaches to optimal damping and
tracking of polyharmonic signals employ the performance
indices that are independent of the control variable, as exem-
plified by the “cheap servomechanism problem” [1]. In the
recent papers by V.A. Yakubovich and A.V. Proskurnikov,
see e.g. [2, 3], another type of optimal linear-quadratic prob-
lems was considered where the cost functionals “penalize”
the average powers of both state and control variables. For
external signals with known spectrum the approach, elabo-
rated in [2], allows to design a “universal controller”, which
delivers the optimal process independent of the signal’s am-
plitudes (which can be uncertain). However, limitation of
this result is the necessity to know the spectrum of the signal,
which defines the coefficients of the controller. To overcome
this limitation, we use the adaptive approach, complement-
ing our systems with a frequency observer [4]. For simplic-
ity, we confine ourselves to the case of uncertain sinusoidal
signals d(t) = a0 +a1 sin(ωt +φ).

The Yakubovich “optimal universal” controllers

Given a linear stable plant with known coefficients

ẋ(t) = Ax(t)+Bu(t)+Ed(t), y =Cx(t)+Dd(t), (1)

in [2] a class of controllers (2) was proposed

N(p)u(t) = M(p)y(t), p = d/dt, (2)

that optimizes the quadratic performance index

J[x(·),u(·),d(·)] = lim
T→∞

1
T

∫ T

0
F [x(t),u(t),d(t)]dt, (3)

for an arbitrary signal d(t) = ∑N
j=1 d jeiω jt with known ω j.

Here N,M are matrix polynomials and detN 6= 0 and F is a
quadratic form. The controller’s coefficients are given by

M(p) = δ (p)r0(p), N(p) = M(p)CA−1
p B+ρ(p)Im,

where Ap = pIn−A, δ (p) = detAp, r0(p) is a matrix poly-
nomial and ρ(p) is a scalar Hurwitz polynomial, satisfying
the interpolation conditions [2] with known matrices R j

δ (iω j)r0(iω j)[D+CA−1
iω j

E] = ρ(iω j)R j. (4)

Here R j depends on the plant (1), {ω j}N
j=1 and the form F .

Adaptive optimal controller

Assume now that d(t) = a0 +a1 sin(ωt +φ), where ai,φ ,ω
are uncertain. We consider a time-varying controller

M̂(p, ω̂)= δ (p)r̂0(p, ω̂), N̂(p, ω̂)= M̂(p, ω̂)CA−1
p B+ρ(p)Im,

where ω̂(t) is the output of the adaptive frequency estimator
[4]. This estimator is designed as follows

ω̂ =
√∣∣θ̂

∣∣, θ̂ = χ + kξ̇ ξ̈ , χ̇ =−kξ̇ 2θ̂ − kθ̈ 2, k > 0 (5)

(p+λ )2ξ (t) = λ 2ỹ(t), λ > 0. (6)

Here ỹ(s) is the “disturbance driven” part of the output, i.e.

ỹ(t) = y(t)−W (p)u(t), W (p) =C(pI−A)−1B.

That estimator guarantees [4] that |ω− ω̂| ≤
ρ1e−β1t , ρ1,β1 > 0, ∀t ≥ 0.

Numerical example

As an example we present a simple task for the rejection of
the harmonic signal in the linear plant

(p2 + p+1)y(p) = u(t)+d(t) (7)

We simulate the behavior for the signal d(t) = 3+ 5sinωt.
Here ω = 2 for t < 25, and then is switched to ω = 1.5. The
quadratic form is F [x(·),u(·),d(·)] = y2 +0.1u2.
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0 20 40 60

ω̂
(t
)

0

0.5

1

1.5

2

2.5

Figure 1: Frequency ω̂(t)
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Figure 2: Output y(t)
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1 Introduction

We consider a networked control system in which a remote
controller queries the plant’s sensors for measurement data
and decides when to transmit control inputs to the plant’s
actuators. The goal is to keep transmissions to a mini-
mum while guaranteeing that the closed-loop performance
is within acceptable bounds.

2 Problem Formulation
We consider the remote control of a linear discrete-time sys-
tem as depicted in Figure 1. The plant model is assumed to
be given by

xk+1 = Axk +Bûk + vk

ŷk =Cxk + rk,
(1)

where xk ∈ Rnx , ûk ∈ Rnu and ŷk ∈ Rny denote the state, the
input, and the output, respectively and vk and rk denote the
state disturbance and measurement noise at time k ∈N0. We
assume that the disturbance and noise processes are Gaus-
sian zero-mean, independent sequences of random vectors
with covariances Φv and Φr, respectively. The initial state is
assumed to be either a Gaussian random variable with mean
x̂0 and covariance Θ0 or known in which case x0 equals x̂0
and Θ0 = 0.

The transmissions in the networks are modeled by intro-
ducing σk = (βk,γk) ∈ {0,1}2,k ∈ N0, as a decision vector
where βk = 1 (or γk = 1) indicates the occurrence of a trans-
mission through the network from sensor to controller (or
from controller to actuator) at time k and βk = 0 (or γk = 0)
otherwise. We also consider that a standard zero-order hold
device holds the most recently received value of the con-
trol action at the actuator side (in case no new control input
is transmitted). Let uk (or yk) denote the sent (or received)
value by the controller at time k ∈ N0 when a transmission
occurs. We write uk = /0 (or yk = /0) to denote the case when
at time k ∈ N0 no new values are transmitted. Moreover in
order to control the plant, we consider the following cost to
be minimized

lim
N→∞

1
N
E[

N−1

∑
k=0

(xT
k Qxk + ûT

k Rûk)] (2)

where Q � 0,R � 0 are proper (positive definite) weighting
matrices.

3 Proposed algorithm and results

The main result of the paper will be explained with the
help of Figure 1. The event-triggering control block (ETC)
consists of three functions of the information up to time k,

ŷk
Plant

Network 1

ETC

Network 2

h(Σk) > ζ

[
x̂k|k−1
ûk−1

]T
Γ

[
x̂k|k−1
ûk−1

]
> λk

yk

uk

ûk

βk

γk

SensorsActuators

Figure 1: Overall setup and proposed policies: sensor query de-
pends only on the Kalman filter covariance matrices Σk,
while the control update transmissions are scheduled
based on the Kalman filter state estimate x̂k|k−1, and
the previously sent control input ûk−1.

namely: (i) the estimator, which computes estimates of the
state x̂k|k−1, (ii) the controller, which computes control ac-
tions, and (iii) the scheduler, which makes the transmission
decisions. The proposed event-triggered control policies for
sensor query and control input transmissions are derived us-
ing approximate dynamic programming (in particular, roll-
out techniques). This policy can be separated into an offline
scheme for sensor query and an online scheme to sched-
ule control input transmissions. In the online scheme de-
termining the controller-to-actuator transmissions, the deci-
sions are based on the state and control estimates, which are
not known a priori and can be obtained via the time-varying
Kalman filter. In the offline scheme for sensor query, trans-
missions are based on the covariances of the Kalman filter
state estimates, which are known a priori. Interestingly, we
can interpret this offline scheme as a policy in which trans-
missions occur when a function of the covariance of the
Kalman filter exceeds a given threshold. The main advan-
tage of our approach is that we can show that this event-
triggered policy is stable (in a mean-square sense) and leads
to performance guarantees in terms of the cost of all-time
transmission policy (see [1] for details).
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1 Introduction

In networked control systems with bandwidth-limited com-
munications, the application of traditional periodic sam-
pling results into over-provisioning in communication com-
ponents. To tackle this issue, researchers have proposed a
new class of strategies, the so-called event-driven control
(EDC) strategies. In these strategies, based on a desired no-
tion of stability (and/or a measure of performance) the re-
sponsible entity for triggering is called the triggering mech-
anism (TM). EDC systems can be categorized into two sub-
classes: event-triggered control (ETC) and self-triggered
control (STC). In ETC, the TM is an intelligent sensory sys-
tem placed at the output of the system. In STC, the TM is
encoded in the controller and determines the next triggering
instant after each triggering event. Most of EDC strategies
are called emulation-based techniques referring to the fact
that the determination of the TM is based on an already syn-
thesized controller for the plant [1].

Recently, researchers have been motivated to incorporate the
processes of controller synthesis and TM design in a single
framework. In this regard, the incorporation of model pre-
dictive control (MPC) and EDC is one of the directions that
has been pursued. By doing so, the triggering mechanism
enjoys not only characteristics of EDC but also interesting
properties of MPC, such as synthesis of an optimization-
based controller over a finite horizon and simultaneous treat-
ment of state and input constraints [2].

2 Problem Setup

The problem we seek to tackle is the design of an event-
triggering mechanism for a specific MPC problem. First, we
introduce the specifications of the considered MPC problem.
Then, we present a general framework of our approach to
design an event-triggering mechanism.

Consider a continuous-time nonlinear system with bounded
additive disturbance:

ẋ(t) = f (x(t),u(t))+w(t) (1)

where x(t) ∈X ⊂Rn, u(t) ∈U ⊂Rm, and w(t) ∈W ⊂Rn

denote the state, input, and disturbance, respectively. Note
that X , U , and W are compact convex sets. The nominal
system is given by ˙̄x = f (x̄(t),u(t)). The finite horizon op-
timal control problem over the horizon T at the triggering

instant ts is given by:

min
u∈U

J(x̄(ts),u(t))= min
u∈U

∫ ts+T

ts
l(x̄(s),u(s))ds+l f (x̄(ts+T )),

(2)
subject to:

x̄(t) ∈X (t), ∀t ∈ [ts, ts +T ],
u(t) ∈U , ∀t ∈ [ts, ts +T ],
x̄(ts) = x(ts),
x̄(ts +T ) ∈X f ,

(3)

where J(x̄(ts),u(t)) is the objective function, l(·, ·) and l f (·)
are the stage and terminal cost functions, X (t) is a time-
dependent contractive set (to take into account the effect of
w in the nominal system), and X f is the terminal set (to
guarantee the closed-loop stability). Consider u?(t) and x̂(t)
are the computed input and state trajectories by solving(2)-
(3). Traditionally, (2)-(3) is solved with a fixed sampling
period δ (i.e., ts+1− ts = δ > 0, s ∈ N≥0) and the control
action is given by u(t) = u?(ts), ∀t ∈ [ts, ts+1). The period δ
is a pre-designed parameter based on the nonlinear system
(1).

In this study, unlike the traditional MPC implementations,
our main goal is to design a time-varying sampling func-
tion δ (x(ts)) (i.e., the triggering mechanism) rather than a
fixed δ . In this regards, we consider the MPC problem with
its sample-and-hold nature as a sampled-data system (i.e.,
the control action is updated in a sample-and-hold fashion).
Such system can be viewed as a retarded (or delayed) sys-
tem [3]. Following this line of reasoning, we intend to bor-
row the stability notions such as Lyapunov-Razumikhin or
Lyapunov-Krasovskii to design the triggering mechanism as
follows:

δ (x(ts)) := min{t > ts| α(x̂(t),x(t))> 0}, (4)

where α(·, ·) can be derived based on the notion of stability
that will be used.
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1 Introduction

Networked multi-vehicle systems have received increasing
attention over the last decades. Interesting application areas
include surveillance, search and rescue, automated highway
systems and cooperative transportation. This work presents
a novel strategy for finding optimal input trajectories for ve-
hicles to steer them from an initial location towards a de-
sired destination. In doing so, interaction constraints be-
tween the agents, such as attaining a formation, avoiding
collisions with each other or meeting at a destination posi-
tion must be satisfied, while every vehicle should respect its
local constraints. The computations for solving the problem
are distributed among the agents by using the Alternating
Direction Methods of Multipliers (ADMM). The algorithm
is further formulated in an online fashion in order to cope
with disturbances and variations in the environment.

2 Distributed formulation of the motion planning

The motion planning problem (1) for multi-vehicle systems
searches for each vehicle’s time-dependent trajectory xi(·).
Optimal trajectories are obtained by minimizing the sum of
all vehicle objectives Ji and are subject to local vehicle con-
straints, such as kinematic and dynamic limitations and col-
lision avoidance constraints, described by a set Xi. Each
vehicle has several neighbors, denoted by the set Ni and an
interaction constraint gi j implies a relation between the tra-
jectory xi and x j of respectively an agent i and its neighbor j.

minimize
∀i: xi(·)

N

∑
i=1

Ji(xi)

subject to xi(t) ∈Xi

gi j(xi(t),x j(t)) = 0, ∀ j ∈Ni

∀t ∈ [0,T ], ∀i ∈ {1, ...,N} .

(1)

The trajectories are parameterized as splines as they allow
a representation with a limited number of variables and en-
able guaranteed constraint satisfaction with a finite set of
constraints [1]. The resulting optimization problem is de-
coupled using ADMM [2], which results in an iterative pro-
cedure where each iteration an agent only solves a local mo-
tion planning problem, considering its own constraints and
objective. By communicating with its nearest neighbors, it
is possible to incorporate the neighbors’ intentions. This
way, the ADMM iterations converge towards optimal mo-
tion trajectories where both the local vehicle constraints and
the global cooperative constraints are satisfied.

t = 0 s t = 4.3 s

t = 7.5 s t = 11.8 s

Figure 1: Motion trajectories for a formation of four holonomic vehicles
in a dynamic environment. The circular obstacle starts moving at t = 4s
with a velocity of (−0.15,0.15)m/s. As the updates proceed, the trajecto-
ries converge towards a new optimum. The average trajectory update time
equals 47.15 ms.

3 Extension to real-time distributed motion planning

The algorithm is extended to a receding horizon formula-
tion, such that the future part of the motion trajectories
are reoptimized iteratively. The required update time and
amount of inter-vehicle communication are reduced by per-
forming only one ADMM iteration per trajectory update. In
this way, the problem converges while the vehicles are head-
ing towards their destination. Each update a new time hori-
zon and a corresponding spline basis is defined. Because an
ADMM iteration requires the information of trajectories of
the previous iteration, their future part is first expressed in
the new basis before introducing them to the next iteration.

4 Implementation and numerical validation

The proposed algorithm is implemented as part of a general
spline-based motion planning toolbox, which facilitates the
implementation and simulation of real-time motion planning
problems. It is validated on numerical examples with linear
as well as non-linear vehicle systems. Figure 1 considers a
formation of holonomic vehicles in a dynamic environment.
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1 Introduction

Many practical systems (e.g., in high-precision motion appli-
cations) have operating-point dependent dynamics and are
subject to constraints on their inputs, states, or outputs. For
control design such dynamics can be represented by a linear
parameter-varying (LPV) model, while constraints are han-
dled using model predictive control (MPC). We consider the
application of MPC to the LPV system

x(k + 1) = A (θ(k))x(k) +Bu(k), x(0) = x0, (1)

where u : N → U ⊆ Rnu is the input1, x : N → X ⊆ Rnx

is the state vector, and θ : N→ Θ ⊆ Rnθ is the scheduling
signal, which can be measured exactly. The sets U and X are
the input- and state constraint sets. The set Θ is called the
global scheduling set and it is known that ∀k ∈ N : θ(k) ∈
Θk ⊆ Θ. We call the sets Θk the scheduling subsets.

The addition of the time-varying scheduling subsets consti-
tutes an extended setup in comparison to “classical” LPV
MPC approaches, where it is assumed that θ(k) ∈ Θ for all
k ∈ N. Through the sets Θk, we can include all available
knowledge on how the scheduling variable might evolve in
time. Examples include a tube around a nominal scheduling
trajectory or known bounds on the rate of variation.

2 Anticipative LPV tube MPC

We have developed a tube MPC formulation for LPV systems
(1) as an application of the general theory of [1].

Definition 1 (Constraint invariant tube). A constraint invari-
ant tube for the constraints (X,U) ⊆ Rnx × Rnu is de-
fined as TN := ({X0, . . . , XN} , {Π0, . . . ,ΠN−1}) where
Xi ⊆ Rnx , i ∈ N[0,N ] are sets and Πi : Θi ×Xi → U, i ∈
N[0,N−1] are control laws. It holds that ∀x ∈ Xi,∀θ ∈ Θi :
A(θ)x+BΠi(θ, x) ∈ Xi+1 ∩ X.

Instead of predicting the exact state evolution under the un-
certainties, the controllers Πi, i ∈ N[0,N−1] guarantee that
the state evolves inside a tube formed by the set sequence
Xi, i ∈ N[0,N ] (Figure 1). On-line, we solve an optimization

1Let N denote the set of nonnegative integers including zero.

Xf

X0

X1

X2

X3

Π0

Π1

Π2

Figure 1: A two-dimensional tube with N = 3.

problem of the form

V (x0) = min
TN

N−1∑

i=0

`(Xi,Πi) + Vf (XN )

s.t. TN satisfies Definition 1,

X0 = {x0}, XN ∈ Xf ,

(2)

where `(·, ·) is the stage cost representing a performance
criterion, and Vf (·) and Xf are a terminal cost and -set se-
lected to ensure asymptotic stability. The main challenge
is to find parameterizations of the sets Xi and the control
laws Πi which are non-conservative but still lead to efficient
computations. We choose tube cross-sections homothetic to
a terminal set, gain-scheduled vertex controllers, and a worst-
case linear stage cost. We assume that all Θi, i ∈ N[0,N−1]

are polytopes and the dependency of A in (1) on θ is affine.
Then, the on-line optimization problem is a linear program.
The number of decision variables and constraints is linear in
the prediction horizon N . It may, however, still be very large
depending mainly on the complexity of the sets Xi. We are
currently investigating alternative parameterizations of the
control laws and cross-sections to achieve different trade-offs
between control performance and computational complexity.

The approach is demonstrated on a simple example. It is
shown how exploiting the available future knowledge of θ(k)
– as described by the sets Θk+i, i ∈ N[0,N−1] – leads to im-
proved control performance and larger domains of attraction.
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1 Introduction

Nonlinear vibrations occur in systems that have a nonlinear
spring force. This system in the undamped case is:

mẍ+ z(x) = F(t) (1)

Previous research has focussed on spring forces expressed as
polynomials, z(x) = a1 ·x+a2 ·x2+a3 ·x3+ . . .. If a1 >> ai,
the spring is called a weakly nonlinear. Semi-analytic tech-
niques have shown the existence of sub and superharmonic
resonances, as well bifurcations near these resonances ([1]).
Other research focuses on z(x) = axp for p> 1, often called
strong nonlinear springs. Dependence of the free vibration
frequency on initial energy is shown in ([2]). When harmon-
ically excited, strongly nonlinear systems can vibrate signif-
icantly at any frequency, as long as the initial energy is above
a certain threshold ([2]). The current study present a tunable
spring element, first introduced in ([3]), for which z(x) can
be approximated as a polynomial in x through Taylor expan-
sion. The polynomial coefficients are tunable to a1 >> ai
but also a1 ≥ ai, increasing nonlinearity. With simulations,
it is checked to what extend the approximated polynomial
can predict nonlinear phenomena of the exact model.

2 Concept

The spring force is generated by the proposed string-pulley
system, fig. 1a. Pulleys P1 and P3 are fixed, but P2 can move
in the direction perpendicular to x. As the string is pulled at
point M in the positive x direction, the tension in the string
pushes down pulley P2 and the linear spring, which has stiff-
ness k. A negative tension (pushing) will loosen the string
from the pulleys, such that a positive displacement/force is
required. The tension T in the string in function of x is:

T (x) =
1
2

k ·
(h0−

√
(L0− x

2 )
2− l2)(L0− x

2 )√
(L0− x

2 )
2− l2

(2)

with dimensions L0, h0 and l as indicated on fig. 1a.
To agree with the constraint of positive tension, two setups
are concieved. In the first setup, fig. 1b, a mass m is attached
to the string and moves forward and backward around a cho-
sen working point (x0,F0). The second setup employs two
spring elements, fig. 1c. By imposing an initial displace-
ment x0 on both elements, the tension in both strings is the

h0

L0

l

k

x

P1

P2

P3

M

(a)

m

h
L

l

k

x0

¢x
F

(b)

m

Δx
F

x0
x0

(c)

Figure 1: Nonlinear spring element in rest, (a) and with a
connected mass and an initial displacement/force (b). Two
elements allow for vibration around equilibrium ∆x ([3])

same but opposite, creating an equilibrium position. A pe-
riodic force then acts on the mass. Series expansion of (2)
reveals that the ratio L/h around an x0 highly influences the
coefficients of higher order terms for both setups. As the co-
efficients are tuned, different type of nonlinear phenomena
occur for the approximate series, which are found in simu-
lations of the exact system as well.

3 Conclusion

A nonlinear spring element is proposed which can be tuned
to exhibit both weakly and strongly nonlinear vibration phe-
nomena. In the future works, the role of the spring element
on vibration absorption of a main system will be investi-
gated.
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1 Abstract

In automotive industry, service load simulation and compo-
nent testing such as qualification tests, durability tests and
endurance tests are an integral part of the overall design and
development process of vehicles. A substantial amount of
these tests is performed on multi-axial hydraulic test rigs
in the laboratory [1]. The goal of these tests is to repli-
cate real operating conditions in a lab environment. The ex-
isting state-of-the-art replication algorithm consists of two
phases [1]: Identification of a non-parametric frequency do-
main model and its inverse, followed by an off-line fre-
quency domain iterative learning control (ILC) phase. The
update law transforms the error and drive signals to the fre-
quency domain using a discrete fourier transform (DFT) and
re-transforms back the updated drive signal to time domain
using an inverse DFT. These transformations require consid-
erable amount of time in between trials in case of long time
waveforms. Unlike existing methods, this research proposes
an online time domain based technique. The method com-
bines adaptive inverse plant modeling and a time domain
based update law, which help to accelerate the drive signal
generation process.

2 Experimental Validation

First, the proposed algorithm learns itself how to control a
specific system using adaptive inverse plant modeling and
creates the first feedforward drive signal. Next, the use of
ILC helps to improve the performance. The presentation
will discuss an experimental validation of the proposed ap-
proach. A rear sub-frame of a car is used as the testing com-
ponent. The goal is to replicate the target data with a spec-
tral content between 5 and 50 Hz in the X and Z direction
at a specified point on the frame i.e. top left corner. An in-
dustrial six degrees of freedom hydraulic CUBETM Shaker,
also shown in Figure 1, is used to replicate the target data.
The qualitative behaviour of the measured responses as com-
pared to the target signals for X and Z axes are shown in
Figure 2(a). In addition, the tracking and convergence be-
havior can be seen in Figure 2(b). Figure 2 shows that the
algorithm is capable to precisely track the target signals.

In conclusion, we have proposed an online technique for
the waveform replication which doesn’t need to transform
the time domain signals to frequency domain and back, and
therefore requires minimal processing time in between trials

Figure 1: A rear sub-frame of a car mounted on CUBE shaker

irrespective of the length of the target signal.
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Introduction

We introduce here the COPTRA project (COmbining Proba-
ble TRAjectories). COPTRA is an Air Traffic Management
(ATM) project which aims at better predicting and control-
ling the uncertainty of air traffic situations in the European
sky. The idea is to combine the available aircraft trajectory
information and to generalize its use in Air Traffic Control
(ATC) planning. This project has recently been presented
for funding to the European Commission. It is currently
in the negotiation phase, and could start in March 2016.
COPTRA involves a consortium of 5 entities from three dif-
ferent countries: CRIDA (Centro de Referencia Investiga-
cion Desarrollo e innovacion ATM), leader of the project,
from Spain, BR&TE (Boeing Research & Technology Eu-
rope) from Spain, ITU (Istanbul Teknik Universitesi) from
Turkey, EUROCONTROL (European Organisation for the
Safety of Air Navigation), and the UCLouvain (Université
catholique de Louvain) from Belgium. The project should
last for two years.

1 The SESAR Framework

The Single European Sky ATM Research (SESAR) is a Eu-
ropean programme aiming at completely overhaul European
airspace and its air traffic management. SESAR involves
numerous calls for projects, both for applied/industrial re-
search, and for fundamental/exploratory research, see [1].

The COPTRA project has been presented at the SESAR joint
undertaking exploratory research H2020 call 1 (see [1]).

2 The Project

COPTRA aims at modeling and predicting uncertainty in
plane trajectories by better combining available information.
The project is divided in three parts. The first step is to de-
fine the air traffic situation uncertainty and a way of quanti-
fying it. The second step is, based on the definition from the
first step and on available data, to analyze how the uncer-
tainties (in time and space) on the different flights combine
with each other and propagate in the network of trajectories.
This part is more detailed in the next section. The last step is

1R. M. Jungers is a F.R.S.-FNRS Research Associate. This work was
also supported by the communauté francaise de Belgique - Actions de
Recherche Concertées and by the Belgian Program on Interuniversity At-
traction Poles initiated by the Belgian Federal Science Policy Office.

to integrate the new models and algorithms into the existing
ATM planning tools and operations.

Build
Probabilistic

Traffic
Prediction

Define
uncertainty

in trajectories

Apply to
ATM tools

Improve Trajectory
Prediction to Improve
Traffic Performance

3 Modeling and analysis of the network of trajectories

The goal of this work package is to leverage tools from ap-
plied mathematics towards ATM applications. These tools
range through various fields, from queuing theory (see [2])
to robust control, or large graphs and networks analysis.
In particular, we will analyze how trajectories interact with
each other by modeling them with a graph. We will apply
recent techniques from large networks analysis (e.g. [3])
in order to quantify the propagation of uncertainty, detect
critical trajectories, and develop decision making tools for
air traffic controllers. The definition of the graph (vertices
and edges) is part of the project, and numerous approaches
are possible (relation between planes could for example be
based on the fact that the two planes are in the control of the
same air traffic controller at the same time, start from the
same airport, etc.). Based on the analysis of this large net-
work, we will investigate how robust control methods can
be designed for optimizing aircraft trajectories.2
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1 Introduction

Nowadays industrial processes, manufacturing systems and
traffic networks consist increasingly of multiple independent
yet interacting subsystems. Tackling such a large scale sys-
tem with a centralised control structure is generally viewed
as impractical, inflexible and unsuitable due to the presence
of high coupling, constraints, nonlinearity and communica-
tion limitations. Hence, several control architectures have
been developed and applied over the last four decades [1].
A first and most often applied structure is the decentralised
approach where only local control is of importance, i.e. the
local regulators have no knowledge of neighbouring regu-
lators. This approach is rarely optimal and might lead to
instabilities when the interactions are significant. In order to
overcome these issues, one could consider the alternative of
higher level control which coordinates the local regulators as
with the hierarchical structure. Alas, the higher level control
often becomes so complex that its hard to justify the advan-
tages over a fully centralised approach [2]. Consequently
the distributed control architecture with exchange of infor-
mation among local regulators is increasing in popularity.
Hereby the effects of the local actions are taken into account
at a system-wide level such that the nearly optimal global
performance can be achieved.

2 Plug-and-play distributed MPC

One of the control techniques which benefits from these de-
velopments is the model-based predictive control (MPC).
This control methodology uses an online process model to
calculate predictions of the future plant output and one or
more cost functions in order to optimise future control ac-
tions with or without constraints. Due to the above, large-
scale systems are more and more regulated using the MPC
technique combined with a distributed architecture. In [3]
an up-to-date overview of all the different published DMPC
topologies is given. Besides the lower computational com-
plexity and communication load w.r.t. the centralised ap-
proach, DMPC also allows us to add a plug and play fea-
ture to the large-scale system. This is particularly interesting
since most large industrial processes are always live systems
in the sense that they are subject to constant change in terms
of instrumentation (sensors and actuators) and in terms of
subsystems that are added or removed [4].

3 Goals

In this project we address the problem of scalability of a
large scale system while taking into account both the local
as the global constraints. Accordingly, this allows flexible
adaptations to the large scale system. The ultimate goal is
to combine the benefits of adaptive algorithms with that of
MPC, leading to increased acceptance in the process indus-
try. The long-term goal can be divided into two main objec-
tives:

1. To develep a constrained DMPC scheme on a labora-
tory scale application consisting of n independent yet
interacting subsystems. Hereby, stability, robustness
and energy efficiency will be the guiding terms dur-
ing this developing phase.

2. To optimise the obtained DMPC algorithm with a
model-adapting property which will be able to obtain
the most relevant model parameters from a control-
point-of-view. Those essential parameters can vary
due to changes in operating point and number of sub-
systems.
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1 Introduction
A crucial step in the control of a high-tech system is having
a very accurate dynamic model of the system from actuators
to sensors and to the unmeasured performance variables.
A (reduced) Finite Element (FE) dynamic model may be a
good candidate apart from the fact that its accuracy is often
limited to satisfy the control purpose. To improve the ac-
curacy of the FE model, an Iterative Pole-Zero (IPZ) model
updating procedure is proposed that updates poles and zeros
of the system by updating the eigenvalues of the stiffness
and/or damping matrix. Pole and zero estimates from mea-
sured Frequency Response Functions (FRFs) is deployed.

2 Case Study
Consider a 2D finite element model of an aluminum beam
with 1 m length and 0.02 m thickness, see Figure 1. 12 Eu-
ler beam elements of equal size are used. Each element
has two nodes and each node has two Degrees Of Freedom
(DOFs): transversal (w) and rotational (rx) displacement.
Modal damping of 0.1% is added to all modes. The exper-
imental structure differs from the original model where the
6th and 7th elements has 0.03 m thickness instead. Assume

w rx

M H1 H2

6 7

Figure 1: 2D aluminum beam system.

that a moment actuator is located on the left end, a displace-
ment sensor is located on the transversal DOF of the third
node (H1), and the unmeasured performance variable is the
transversal DOF of the sixth node (H2). The poles (λp) of
the original H1 FRF is calculated via the eigenvalue problem

(λ 2
p Mn +λpCn +Kn)up = 0, (1)

where Mn, Cn, Kn are mass, damping, and stiffness matrices
and up is the eigenmode. The zeros (λz) are calculated via

(λ 2
z Ms +λzCs +Ks)uz = 0, (2)

where Ms, Cs, Ks are the substructure matrices derived from
Mn, Cn, Kn by deleting the column and the row correspond-
ing to the actuator and the sensor DOFs.

3 Iterative Pole-Zero Model Updating
If no information is available on possible locations of stiff-
ness/damping errors in the model, it is proposed to use only

a limited number of eigenvalues of the stiffness and damping
matrix as generic parameters (θ ) to be updated. IPZ model
updating is a procedure which tries to minimize the follow-
ing pole-zero error function iteratively (i) by updating the
generic parameters.

εi = (∆ri)
HW (∆ri) (3)

where W > 0 is diagonal weighting matrix and,

∆ri =
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]

i
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IPZ model updating without combined sensitivity is pre-
sented in [1].

4 Simulation Results and Conclusions
The IPZ model updating is performed on the original H1
FRF by updating the first three complex-valued poles and
zeros toward the measured poles and zeros from the experi-
mental H1 FRF. In Figure 2, the original, experimental, and
updated H1 and H2 FRFs are shown. In contrast to the orig-
inal H1 FRF, the updated H1 FRF matches very well with
the experimental H1 FRF. Furthermore, the updated unmea-
sured variable reflected by H2 FRF also matches well with
the experimental H2 FRF in contrast to the original H2 FRF.
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Figure 2: Original, experimental, and updated H1 (top) and H2
(bottom) FRFs after IPZ model updating.
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1 Introduction

We consider the trajectory tracking problem for robotic sys-
tems with unilateral constraints. Such systems can be mod-
eled using the hybrid systems framework with continuous
dynamics when in contact mode or in free motion and dis-
crete dynamics describing transitions between the different
modes. We focus in this work on a recently introduced hy-
brid trajectory tracking controller [1] and investigate if it is
suitable for trajectories with changing state dimension due
to evolution in different modes. In particular, we consider
trajectory tracking of a hopping motion for a robotic leg.

2 Problem description

Consider the robotic leg depicted in Fig. 1 (cf. [2]). It con-
sists of two links connected to each other and to two vertical
sliders via revolute joints. An input torque τ can be applied
to it at the ‘knee’. When in mid-air (mode 1) the config-
uration of the robot can be captured by the two degrees of
freedom (DOF) qk and qh (see Fig. 1), whereas when the leg
is in contact with the ground (mode 2) the angle qk suffices.
The aim of this work is to investigate if the hybrid trajectory
tracking controller, introduced in [1], can be used to track
a hopping reference trajectory for the robotic leg where the
number of DOF differs per mode. The control strategy is
based on extending the reference trajectories before and af-
ter mode transitions to beyond the corresponding event time.

τ , q   k

q   h

(a) (b)

Figure 1: Schematic representation (a) and image (b) of the hop-
ping robotic leg.

3 Results

As a reference trajectory, consider a continuing sequence
of 0.1 m hops separated in time by 0.3 s contact periods,
as illustrated in Fig. 2. Starting from a perturbed initial
condition, the hybrid trajectory tracking controller is used to
steer the system towards this reference. From Fig. 2 can be
concluded that the controller indeed does so successfully.

0 1 2 3 4 5
 

 

0 1 2 3 4 5
 

 

0

1

2

q k

−10

0

10

dq
k/d

t

−0.2

0

0.2

q h

0 0.5 1 1.5
−5

0

5

dq
h/d

t

Time [s]

Figure 2: Resulting trajectory (dark red) in tracking a reference
trajectory (light blue) with extensions (dashed) for the
robotic leg in Fig. 1 with perturbed initial condition.
The bars on top indicate the mode (in mid-air when col-
ored and in contact when white) and counter j.
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1 Introduction

Thanks to their agility, Unmanned Aerial Vehicles (UAVs)
are exemplary to be used in surveillance, inspection and
search-and-rescue missions [1]. Although fully autonomous
operation is often desirable, many complex tasks in dense
terrains can only be accomplished if the UAV is supervised
by a human operator. Teleoperation requires full attention
of the operator, which is not cost-efficient, and can increase
the duration of the operation as the time needed to perform
a specific task depends linearly on the delay in the loop.

2 Semi-autonomous Control

This work proposes a semi-autonomous control architecture
which can be classified as supervisory-control [2]. The con-
trol architecture is depicted in Figure 1 and is based on
the classical bilateral teleoperation paradigm in which the
human-operator operates a Master device, which consists of
the Human machine interface and the Master controller, to
interact with the Slave device via a communication chan-
nel. The Slave device consists of the Slave controller, which
performs low-level control, and the Slave robot which repre-
sents the physical robot. The Master device receives a feed-
back on the state of the slave and/or on the environment.

Our approach extends the classical paradigm by inserting
an autonomous controller between the Master device and
the Slave device. The human operator can issue discrete
commands to the autonomous controller and, when desired
or needed by the mission, the human can overrule the au-
tonomous controller’s parameters. The autonomous con-
troller translates these discrete signals into a continuous
stream of setpoints.

A quadrotor UAV has to autonomously navigate a cluttered
environment, while avoiding obstacles and paths that are
narrower than a certain safety distance. The human operator
is equipped with a non- invasive human-machine-interface
that facilitates inertial and electro-myographic inputs so that
the safety level can be overruled by interpreting the gestures
of the human operator. Non-invasive haptic and graphical
information are fed back during performing the mission.

1This work was funded by the European Commission’s Seventh Frame-
work Programme as part of the project SHERPA under grant no. 600958.
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Figure 1: Overview of the semi-autonomous bilateral archi-
tecture.

3 Experiments

In the experiments, the task given to the operator was to
guide the UAV through the opening without hitting the
walls. The opening had a size of 0.7 m, which is slightly
bigger than the UAV. The operator was able to set any target-
location in the map and could alter the safety-distance rs,
which could be set to 12 discrete values between 0.62m and
0.31m. This is accordance with the discrete output of the
inertial measurement unit in the MYO armband. Figures 2
shows one of the successful trials.
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y

x

Figure 2: 2D visualization of the traveled path in one of the
trials of the experiment.
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1 Introduction

In robotics, it is often the case that the essence of a given
task is described by the path the end-effector should fol-
low. Examples include the control of welding, gluing, as-
sembly robots and CNC machines. Offline methods ex-
ist to generate a time-/energy-optimal trajectory aiming for
tracking a given geometric path exactly, and recently an ef-
ficient convex reformulation of this problem has been de-
rived [1]. These path planning methods generate a time-
based reference signal that can readily be fed to joint an-
gle controllers of the robotic system. Path following con-
trol concerns feedback laws that drive systems to follow
a geometric path, while accounting for disturbances and
model mismatch. In practice this means that the timing
law (i.e., where to be when on the path) is introduced as
control freedom. This enables control systems to trade off
speed and path following accuracy. Predictive approaches to
path following control are commonly referred to as model
predictive path-following control (MPFC) techniques [2].
We introduce a control strategy related to MPFC employ-
ing a transformation of the prediction model system dynam-
ics. Consequently, the geometric nature of path following
is prominently present in the resulting problem formulation
[3]. This presentation addresses practical challenges regard-
ing the implementation of the control method, which are par-
ticularly about trading computation times against optimality
of the control law.

2 Control approach

Let γ(t) be a continuous, sufficiently smooth curve in three-
dimensional Euclidean space Γ = {γ(s) ∈ R3 : s ∈ [0, l]},
parametrized by its arc length. Furthermore, let p(t) be
the position of the end effector in the inertial world frame,
which can be calculated using the forward kinematics of the
robot manipulator. Then the point on the path γ closest to
p(t) is γ(s?), where s? = argmins

1
2‖r(s, t)‖2

2 for r(s, t) =
p(t)− γ(s). Via the necessary optimality conditions for s?

we obtain its time derivative [3],

ṡ(t) =
v(t)T γ ′ (s(t))

1− r (s(t), t)T γ ′′ (s(t))
. (1)

Consider the state vector ξ ; using the established represen-
tation for the dynamics of the position of the end-effector

Figure 1: Illustration of the writing experiment, executed by the
ABB IRB120 industrial robot.

p(t) with respect to the path (1), we perform a spatial trans-
formation of the equations of motion:

ξ ′ :=
dξ
ds

=
dξ
dt

dt
ds

=
1

ṡ(t)
ξ̇ . (2)

The resulting control law for a finite horizon least-squares
integral objective J(ξ ,u, ṡ), employing transformation (2),
follows from solving:

min
u
{J(ξ ,u, ṡ)|ξ ′ = f (ξ ,u)

ṡ
,u ∈U ,ξ ∈X } (3)

Here we consider a differentially flat model of the robot ma-
nipulator, meaning u represents the joint angle accelerations.

3 Experiments

The control approach is experimentally validated through a
writing task executed by an industrial robot. Considered
here is a six-DOF ABB IRB120 with an open joint angle
trajectory controller, see Figure 1 for an illustration.
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1 Introduction

The goal of SHERPA is to develop a mixed ground and
aerial robotic platform to support search and rescue activ-
ities in a real-world hostile environment like the alpine sce-
nario [1]. A key part of the robotic team is a ground rover
that acts as a mobile base station for small unmanned aerial
vehicles (UAVs). A robotic arm enables the rover to au-
tonomously deploy and recover the UAVs during the mis-
sion, thus relieving the human operator from the need to
recharge or look after the UAVs.

The SHERPA robotic arm must be able to interact with its
environment in a safe and robust way, especially when per-
forming dexterous grasping and docking maneuvers with the
UAVs. The use of a mechanically variable compliance in
the actuation of the arm is of core importance for the perfor-
mance of the arm and for the accomplishment of the search
and rescue activity.

2 The SHERPA arm

The SHERPA arm, shown in Figure 1 (left), is a seven DoF
robotic arm with a reach of one meter, designed to manip-
ulate an UAV in a adverse outdoor conditions. It is com-
posed of a three DoF differentially actuated shoulder, a one
DoF elbow joint that actuates two coupled axes, and a three
DoF wrist, that is also differentially actuated. Finally it is
equipped with a gripper, giving it one additional DoF to ro-
bustly lock into a custom interface on the UAV.

3 Variable Stiffness Modules

The SHERPA arm has several DoF with a variable mechani-
cal compliance, namely in the shoulder and wrist joints. The
differentially actuated wrist joint incorporates a 2-DoF vari-
able stiffness mechanism, with a coupled compliance. This
means that only one actuator is needed to change the stiff-
ness of both DoF, resulting in a 2-DoF spherical output stiff-
ness of the wrist.

The shoulder joint is also differentially actuated, but the
variable stiffness mechanism is connected in series to the
robot’s DoF. However, both designs are based on a variable
transmission achieved through moving the pivot point of a
lever that is connected to the internal springs on one end, and

1This work was funded by the European Commission’s Seventh Frame-
work Programme as part of the project SHERPA under grant no. 600958.

Figure 1: The SHERPA arm (left) and the variable stiffness
module of the shoulder joint (right).

to the mechanism’s output at the other. The key difference
between the wrist and shoulder joints is that the shoulder is
subject to much higher loads.

4 Elastic Energy Storage

Most variable stiffness mechanisms show a strong depen-
dency of their achievable output deflection on their output
stiffness, i.e. their passive deflection is limited for higher
stiffnesses. This is often a particular feature of their work-
ing principle, but also a consequence of the limited energy
storage capacity of their internal springs. A limited torque-
deflection workspace limits the range of the output stiffness
for large torques. This is particularly true for the highly
loaded shoulder joint, shown in Figure 1(right).

A special Ω-shaped leaf spring has been designed to max-
imize the spring’s energy capacity within the given design
constraints, thus preserving the arm’s capacity to adjust its
stiffness, even under large loads. The spring’s shape and
thickness have been laid out such that it is as stiff as possi-
ble, while the stress remains below a permissible level. Dis-
tributing the stress as uniformly as possible maximizes the
strain energy in the material.
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1 Introduction

Stimulated by a worldwide demand for ever larger produc-
tivity in crop harvesting, agricultural manufacturers have
pushed the size and power of contemporary combine har-
vesters to its maximum. However this trend is now steadily
saturating due to several considerations such as cost, com-
plexity, maintenance issues, and road transportation restric-
tions. Because of these problems manufacturers have to
come up with other ways of making future farming even
more cost efficient.

Bearing in mind the current state-of-the-art in autonomous
vehicles, beit ground or aerial [1, 2], it seems the time is
right to introduce a novel approach to the aforementioned
problem. Namely, instead of using one very large, ponder-
ous combine harvester, multiple somewhat smaller harvest-
ing machines could be applied in such a way that only one of
them (the leader) is being controlled by an operator and the
others follow autonomously in a certain, predefined pattern.
And to obtain enhanced control performance local sensory
data on each of the harvesters (e.g. GPS, computer vision...)
could be fused with information gathered by a quadrotor
overflying the formation from above [3, 4].

2 Distributed multi-agent coordination

Over time a lot of research has been done on coordinated
control of multiple autonomous mobile robots [5]. From a
control engineering perspective, the goal is to compute the
inputs that drive the vehicles along trajectories which main-
tain relative positions as well as safe distances between each
agent while performing a certain objective. In this regard
model-based predictive control (MPC) has proven to be very
promising due to its ability to handle complex, constrained
multivariable systems easily and effectively. However, the
computational effort required for the inherent optimization
scales poorly with the size of the system and can become
prohibitive for large systems. To address this computa-
tional issue when applying a centralised MPC architecture,
attention has recently focused on distributed MPC (DMPC)
where each subsystem (i.e. vehicle controller) solves its own
smaller optimization problem taking into account informa-
tion communicated by its neighbour [6].

3 Goals

This research project aims at developing a DMPC frame-
work for formation control of multiple autonomous ground
vehicles extended with aerial agents (e.g. quadrotor) acting
as remote sensors. Since this is actually a networked control
system the framework should be able to deal with commu-
nication delays and information drop outs. From a global
perspective, two major objectives are targeted:

1. To develop and validate a constrained DMPC scheme
on a laboratory scale application consisting of n au-
tonomous ground vehicles and a quadrotor acting as a
remote sensor.

2. To develop a methodology for instrumentation and for
variable selection with the purpose of sensor fusion as
an aid tool to improve global control.
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1 Introduction
Many chemical or physical processes exhibit parameter vari-
ations due to non-stationary or nonlinear behaviour, often
dependent on measurable exogenous variables or measur-
able process states. These nonlinear parameter variations
can be captured in the linear parameter-varying (LPV) mod-
elling paradigm, which originates from the need of finding
model structures, that are linear and low in complexity, but
still allow to represent the nonlinear aspects of systems dur-
ing control design. To achieve this, the LPV model class
assumes a linear relation between the inputs and outputs
of the system, however, the parameters of this relation are
functions of a measurable, time-varying signal, the schedul-
ing variable p, which expresses the current operating condi-
tions, time-conditions, or nonlinearities of the plant.

2 LPV-SS models with general noise structure
Recasting nonlinear system descriptions as LPV representa-
tions can be accomplished in various forms, such as state-
space (SS), impulse response, kernel, or input-output rep-
resentations. For control purposes, LPV-SS representation
forms are preferable, particularly with static and affine de-
pendence on the scheduling signal. However, generally
speaking, not all phenomena affecting the physical system
at hand are captured in the original nonlinear model equa-
tions, therefore, a disturbance term is usually added to the
state equation and output signal to represent unmodelled dy-
namics, environmental effects, measurement disturbances,
etc. Hence, the LPV model should equivalently be equipped
with an appropriate noise structure. Such an LPV-SS repre-
sentation with general noise structure is given by

xt+1 =A(pt)x+B(pt)u+G(pt)wt , (1a)
yt = C(pt) x+D(pt)u+H(pt)vt , (1b)

where subscript t is the discrete time, x is the state vari-
able, y is the measured output signal, u denotes the input
signal, wt ,vt are assumed to be zero-mean noise processes

satisfying
[

wt
vt

]
∼ N

(
0,
[

W S

S> R

])
with covariance

matrices W, S, R, and A, . . . ,H are affine functions in the
scheduling signal, i.e, A(pt) = A0 +∑

np
i=1 Ai p

[i]
t with p[i]t the

i-th element in pt . The system description (1) is capable
? This work was supported by the Netherlands Organization for

Scientific Research (NWO, grant no.: 639.021.127).

of representing a large generality of noise scenarios, like its
LTI or time-varying counterparts [1].

3 Connection to the innovation noise structure
In practice, the coefficients {Ai, . . . ,Hi}np

i=0 of the model (1)
are estimated from data, as their values are unknown. How-
ever, state-of-the-art LPV-SS identification approaches are
designed for an innovation type of noise structure, e.g. [2]:

x̌t+1 =A(pt)x̌t +B(pt)ut +K(pt)ξt , (2a)
yt = C(pt) x̌t +D(pt)ut +ξt , (2b)

where ξt is a zero-mean noise process satisfying ξt ∼
N (0,Q) with covariance matrix Q, and K is an affine
function in the scheduling signal, similarly parameterized
as A, . . . ,H in (1). In the LTI case, i.e., for A(·) =
A, . . . ,H(·)=H,K(·)=K, the innovation noise structure (2)
is the optimal linear filter given (1) [1]. Hence, in this case,
the innovation noise structure can represent the noise scenar-
ios expressed by (1). As many LPV identification schemes
are extensions from their LTI counterpart, the innovation
noise structure is an obvious and popular choice.

Therefore, we will analyse the stochastic properties of (1)-
(2) and their connection. We will show that: i) the ma-
trix functions K, Q should have rational and dynamic de-
pendence on the scheduling signal for an equivalence be-
tween (1) and (2) governed by the Kalman filter equations;
ii) in practical situations K(pt , . . . , pt−nk) can be a good ap-
proximation due to the asymptotic convergence of the un-
derlying filter. In addition, if it is assumed that this approxi-
mation is equal to the data-generating system then, for some
cases, this system has an equivalent LPV-SS representation
with affine and static dependency on the scheduling signal
at the cost of additional states x, as will be demonstrated
by an example. Hence, system (1) can possibly be captured
in the innovation form (2), but at the cost of a non-state-
minimal system. Consequently, LPV subspace identification
schemes might loose their rank revealing properties.
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Introduction

A significant part of realization theory is the study of the re-
lationship between a behaviour of an observed process and
the structure of its state-space representation. In this abstract
we consider noncausality conditions of a stochastic process
and we show that these can be realized by a state-space rep-
resentation having system matrices with a certain structure.
More specifically, we give necessary and sufficient condi-
tions for a process to be the output of a minimal coordinated
linear stochastic system defined in [1]. Indeed, the realiza-
tion of the process y= [yT

1 , . . . ,y
T
n ]

T in Theorem 1 represents
a coordinated system where yn is the coordinator, commu-
nicating with the agents, yi’s i ∈ {1, . . . ,n−1}, who send no
information to each other.
The results could be of interest for reverse engineering the
network structure of state-space representations which arise
in system biology and neuroscience. Also, it can be useful
for structure preserving model reduction and for control de-
sign of coordinated systems.

The space of square-integrable random variables forms
a Hilbert space, say H, with the covariance function as
the inner product. We denote the Hilbert spaces gener-
ated by the one-dimensional components of the processes
{z(s)}∞

s=−∞,{z(s)}t−1
s=−∞,{z(s)}∞

s=t by Hz,Hz
t− and Hz

t+, re-
spectively. The orthogonal projection of A⊆ H onto B⊆ H
is written as El [A|B] := {El [a|B],a ∈ A}.2 For closed sub-
spaces A,B,C ⊆ H, we say that A and B have a condi-
tionally trivial intersection with respect to C, denoted by
A∩B|C = {0}, if {a−El [a|C] | a ∈ A}∩{b−El [b|C] | b ∈
B}= {0}, i.e. the intersection of the projections of A,B onto
the orthogonal complement of C in H is the zero subspace.

We say that y1 is Granger noncausal for y2 (or equivalently,
there is no feedback from y1 to y2) if for all t,k ∈ Z, k ≥ 0

El [y2(t + k) | Hy2
t−] = El [y2(t + k) | Hy

t−].

Contribution

It is assumed that the processes are discrete-time zero mean
wide-sense stationary processes with rational spectrum. We
denote by σz the time-shifted process satisfying (σz)(t) =
z(t +1). In the theorem below t takes values from the set of
integers and i, j are the elements of {1,2, . . . ,n−1}, i 6= j.

1Johann Bernoulli Institute for Mathematics and Computer Science,
9700 AK Groningen, The Netherlands

2For Gaussian processes the orthogonal projection is equivalent with the
conditional expectation.

Theorem 1 There exists a stochastic linear system for y =
[yT

1 , . . . ,y
T
n ]

T in forward innovation form, such that

σ




x1
x2

...
xn−1
xn




︸ ︷︷ ︸
σx

=




A1,1 0 . . . 0 A1,n
0 A2,2 . . . 0 A2,n

...
...

. . .
...

...
0 0 . . . An−1,n−1 An−1,n
0 0 . . . 0 An,n




︸ ︷︷ ︸
A




x1
x2

...
xn−1
xn




︸ ︷︷ ︸
x

+




K1,1 0 . . . 0 K1,n
0 K2,2 . . . 0 K2,n

...
...

. . .
...

...
0 0 . . . Kn−1,n−1 Kn−1,n
0 0 . . . 0 Kn,n




︸ ︷︷ ︸
K




e1
e2

...
en−1
en




︸ ︷︷ ︸
e




y1
y2

...
yn−1
yn




︸ ︷︷ ︸
y

=




C1,1 0 . . . 0 C1,n
0 C2,2 . . . 0 C2,n

...
...

. . .
...

...
0 0 . . . Cn−1,n−1 Cn−1,n
0 0 . . . 0 Cn,n




︸ ︷︷ ︸
C




x1
x2

...
xn−1
xn



+




e1
e2

...
en−1
en




· ei(t) = yi(t)−El [yi(t)|Hyi,yn
t− ];

· (An,n,Gn,n) is controllable, Gn,n :=E[xn(t)yT
n (t−1)];

· defining Λyn
0 := E[yn(t)yn(t)T ], the matrix Pn,n :=

E[xn(t)xT
n (t)] is the minimal positive definite solution of

Σ = An,nΣAT
n,n+(Gn,n-An,nΣCT

n,n)(Λ
yn
0 -Cn,nΣCT

n,n)
-1
(Gn,n-An,nΣCT

n,n)
T

if and only if

· yi is Granger noncausal for yn;

· yi is Granger noncausal for [yT
j ,yT

n ]
T .

In addition, if the realization above exists, then it is minimal
if and only if

El [H
yi
t+|Hyi,yn

t− ]∩El [H
y j
t+|H

y j ,yn
t− ] | El [H

yn
t+|Hyn

t−] = {0}.

The proof of sufficiency of Theorem 1 is constructive, and it
yields an algorithm to compute a minimal coordinated linear
stochastic system. In the case when n = 2 Theorem 1 pro-
vides a characterization of Granger noncausality in terms of
state-space representation.
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1 Abstract

This work focuses on identifying a linear parameter-varying
(LPV) model of an XY-motion system by combining two
seemingly antagonizing identification approaches. One ex-
treme of the approach results in a model optimal - in terms of
accuracy - under varying scheduling parameter conditions,
while the other returns a model with optimal behavior for
fixed scheduling parameter. Ideally, the combined approach
retains advantages of the two extremes, with the possibility
to emphasize one or the other (as shown in [1]). Practically,
various difficulties may appear, one of which is overparam-
eterization.

2 Experimental validation

2.1 Setup description
The system under test is a mechatronic XY-motion sys-
tem (Fig.1), used for fast positioning of the end-effector.
The system consists of two perpendicularly mounted lin-
ear stages and a flexible cantilever beam. The length of
this beam is changed by the position of the Y-motor, such
that system resonances and hence the dynamics of the XY-
motion system in the X-direction depends on the position
of the Y-motor [2]. The position of the Y-motor can thus
be seen as a scheduling parameter of the system we aim to
identify. The referent velocity for the X-motor is considered
to be the system input, while the acceleration of the end-
effector in the same direction represents the system output.

Figure 1: XY-motion system

2.2 Identification procedure
The model to be identified is a fully-parameterized, discrete-
time LPV model in the state-space form:

{
x(t +1) = A (p(t)) · x(t)+B(p(t)) ·u(t)
y(t) = C (p(t)) · x(t)+D(p(t)) ·u(t), (1)

where x(t) ∈ R3, u(t) ∈ R1, y(t) ∈ R1, p(t) ∈ R1, and

A (p(t)) = A(0)+
3

∑
i=1

A(i)p(t)i. (2)

The data gathered in an experiment where the system input
and the scheduling parameter were simultaneously excited,
are combined with four frequency response functions result-
ing from experiments with fixed scheduling parameter. All
together forms a nonlinear least squares optimization prob-
lem, solved by the Levenberg-Marquardt algorithm.

2.3 Results
Figure 2 shows the parameter dependent frequency response
function (FRF) of one of the identified LPV models. During
the optimization, the model has been gaining on accuracy in
the local and global sense, but only for the data points in-
volved in the identification. The model FRF is experiencing
undesirable bumps and folds in-between, which indicates
the need for regularization.

Figure 2: Magnitude (left) and phase response (right) of the ob-
tained LPV model
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1 Introduction
A linear parameter-varying (LPV) model structure offers a
flexible framework to capture non-stationary or nonlinear
behaviour of physical or chemical processes in terms of a
varying linear structure wherein the variation is related to
a known (measurable) ”scheduling” signal. Powerful con-
trol synthesis approaches are available for LPV models,
however, the majority of these approaches presume that an
LPV State-Space (SS) model with affine dependence on the
scheduling variable is available. Therefore, the identifica-
tion of such models from experimental data is a central topic
in the LPV field. Among many choices, a Maximum Likeli-
hood (ML) approach, that minimises the prediction error in
a stochastic sense, enjoys well understood theoretical prop-
erties, e.g., strong consistency.
In the implementation of this concept, it is common to use
gradient based search techniques, which are computation-
ally expensive as they require the Jacobian of the cost func-
tion. Alternatively, an Expectation Maximisation (EM) al-
gorithm can be used to compute such estimates, where the
gradient of the likelihood function is not needed. The EM
algorithm for the estimation of LPV-SS models with affine
dependency has been developed in [1]. However, the de-
veloped approach can only handle the Gaussian noise case
where Kalman filtering/smoothing can be easily applied. Al-
though, the Gaussian assumption simplifies the estimation
problem, it seems restrictive for many real-world applica-
tions.
Inspired by the approach introduced in [2], a particle EM
algorithm is employed to tackle the estimation of LPV-SS
models that are affected by both state and measurement
noise, which are not necessarily Gaussian.

2 Particle Expectation Maximisation Algorithm for
LPV-SS models

ML estimation involves maximising the joint density (Like-
lihood) pθ (YN) of the observations YN, where θ is the un-
known parameter vector. Equivalently,

θ̂ML = argmin
θ
−Lθ (YN),

where, Lθ (YN) = log pθ (YN) is the log-likelihood. The EM
algorithm, which is an iterative procedure specialised to

1This research has benefited from the financial support of the Student
Mission, Ministry of Higher Education, Government of Egypt.

compute an ML estimate for the unknown parameter vector
θ , regards the state sequence XN as missing data. In partic-
ular, it considers the ”complete” log likelihood Lθ (XN,YN)
under the assumption that maximising it is easier than max-
imising the ”incomplete” log likelihood, i.e., Lθ (YN). Then,
an approximation Q(θ ,θk) of Lθ (XN,YN) is formed, e.g., the
minimum variance estimate of Lθ (XN,YN) given the obser-
vations and an assumption θk of the true parameter value:

Q(θ ,θk) = Eθk{Lθ (XN,YN) | YN},
where E is the expectation operator. It turns out that, by
iteratively maximising Q(θ ,θk), non-decreasing values for
Lθ (YN) are obtained. The EM algorithm consists of two
steps:

1. (E) step, computation of Q(θ ,θk), which is the main
challenge of implementing the EM algorithm as it in-
volves the evaluation of the smoothed estimates of
the states and the expectation with respect to it. For
LPV-SS models with Gaussian noise, Kalman filter-
ing/smoothing can be used [1]. However, The more
general situation of non-Gaussian noise has not been
addressed yet. In this work, a particle EM algorithm
is employed, where a particle filter/smoother is em-
ployed to approximate the required state estimates.

2. (M) step, maximisation of Q(θ ,θk), where in the lin-
ear/Gaussian case, a closed form expression can be
obtained for the maximiser of Q(θ ,θk). However, in
the nonlinear/non-Gaussian case, a nonlinear optimi-
sation problem is required to be solved to compute it.

In this work the formulation of the particle EM algorithm
for LPV-SS models is given and the utility of the considered
algorithm is assessed by a simulation example and exper-
imentally by estimating an LPV-SS model of a DC motor
with unbalanced disk.
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1 Introduction
The polynomial nonlinear state space (PNLSS) approach
[1] is a powerful tool for modeling nonlinear systems. A
PNLSS model consists of a discrete-time linear state space
model, extended with polynomials in the state and the output
equation: x(t +1) = Ax(t)+Bu(t)+Eζ (t) (1)

y(t) = Cx(t)+Du(t)+Fη(t) (2)

where ζ (x(t),u(t)) and η(x(t),u(t)) are both vectors with
monomials in the states x(t) and the inputs u(t). The ma-
trices E and F contain the polynomial coefficients. The
PNLSS model is very flexible as it can capture many dif-
ferent types of nonlinear behavior, such as nonlinear feed-
back and hysteresis. This flexibility generally comes at
the cost of a large number of parameters. Increasing the
order of the polynomials for example leads to a combi-
natorial increase of the number of parameters due to the
multivariate nature of the polynomials Eζ (x(t),u(t)) and
Fη(x(t),u(t)). In this study, the PNLSS approach is used
to model a Bouc-Wen hysteretic system. The multivariate
polynomials Eζ (x(t),u(t)) and Fη(x(t),u(t)) are decou-
pled using the method in [2]. Like this, the nonlinearity in
the PNLSS model is described in terms of univariate poly-
nomials for which increasing their order is not so parameter
expensive.

2 Methodology
The simulated data is extracted from the Bouc-Wen model
with the equations:

mÿ+ cẏ+ ky+ z(y, ẏ) = u(t) (3)
ż = ẏ−α |ẏ|z−β ẏ |z| (4)

where m is the mass, c is the damping coefficient, y(t) is the
measured output and u(t) is the input force which is a ran-
dom phase multisine. The parameters α and β are chosen
equal to 5×104 and 0.8 respectively. In a first step, we esti-
mate the best linear approximation (BLA) [3] of the system.
A linear state-space model estimated on the BLA serves as
an initial guess for the PNLSS model in (1) and (2), which
is optimized using a Levenberg-Marquardt approach. In a
second step, the multivariate polynomials Eζ (t) and Fη(t)
are decoupled using the decomposition method in [2]:

Eζ (x(t),u(t))≈Wxg
(

V T
[

x(t)
u(t)

])
(5)

Fη(x(t),u(t))≈Wyg
(

V T
[

x(t)
u(t)

])
(6)

Figure 1: The validation output spectrum (in blue), the error of
linear model (cyan) and the error of PNLSS (green) for
2nd and 3rd degree monomials of states and inputs in
state updates (F = 0), and the error for the decoupled
model with 11th degree polynomials (in red).

where the matrix V transforms the states and inputs in new
variables ξ = V T

[
x(t) u(t)

]T . The function g is a col-
lection of univariate polynomials gi(ξi) for i = 1,2, · · · ,r :
g(ξ ) =

[
g1(ξ1) g2(ξ2) · · · gr(ξr)

]T that act as basis
functions for the decoupled state-space model. The matrices
Wx and Wy contain the corresponding basis function coeffi-
cients.

3 Results
The Bouc-Wen model is excited with a random phase multi-
sine of 6.813 N in the standard deviation. The results for the
PNLSS modelling is plotted in Figure 1 for the validation
data.

4 Conclusion
A PNLSS model can capture the behavior of a Bouc-Wen
system. A decoupled PNLSS model reaches a similar accu-
racy, but has less than two third of the number of parame-
ters. The order of the polynomials in the decoupled model
can also be increased without blowing up the number of pa-
rameters, as it is the case for the full PNLSS model.
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1 Abstract

In order to guarantee reliable operation of the power network
the frequency is tightly regulated around its nominal value,
such as 50 Hz. Recently we proposed a novel distributed
controller in [1] that controls power production such that the
frequency is regulated in an economic efficient way. In order
to obtain economic efficiency, the controller continuously
utilizes a communication network. This work makes a first
step in reducing these communication requirements.

2 Optimal frequency regulation

The dynamics of the network are described by the so called
structure-preserving Bergen-Hill model. The dynamics at a
generator bus are given by

δ̇i = ωgi
Miω̇gi = −Dgiωgi

−∑ j∈Ni ViVjBi j sin(δi−δ j)+ugi.
(1)

The dynamics at a load bus are given by

δ̇i = ωli
0 = −Dliωli

−∑ j∈Ni ViVjBi j sin(δi−δ j)−Pli.
(2)

Here, δi,ωi are the voltage angle and frequency deviation
respectively. The unknown demand is indicated by Pli,
whereas ugi is the controllable power generation. In [1] we
proposed a distributed controller of the following form:

θ̇i = ∑ j∈Ni [θ j−θi]−q−1
i ωi

ugi = q−1
i θi.

(3)

Exploiting an incremental passivity property of the power
network, we proved asymptotic regulation of the frequency
and that the steady state generation solves the following op-
timization problem

minug C(ug) = minug ∑i∈Vg
1
2 qiu2

gi
s.t. 0 = 1T

ngug−1T
nl

Pl .
(4)

In other words, the proposed controller achieves frequency
regulation in an economic efficient way.

Bus 1

Bus 2

Bus 3

Bus 4

Bus 5

Bus 6

Control center

g1

g2

g3

l4

l5

l6

Figure 1: Diagram for the 6 bus power network model, consisting
of 3 generator and 3 load buses. The communication
links are represented by the dashed lines.

3 Communication constraints

The requirement of continuous exchange of information in
(3) over a communication network makes the control struc-
ture above difficult to implement. In this work we discuss
how we can relax this requirement, following similar argu-
ments as in [2]. As a first step we consider a centralized con-
trol structure depicted in Figure 1. The control center sam-
ples at specific moments the different generators and broad-
casts back a new control signal. We will present a possible
control algorithm with discrete communication and prove
that it indeed regulates the frequency and achieves economic
efficiency.
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1 Introduction

The idea of using fuel cell cars for producing electricity is
a relatively new concept in distributed power generation. In
this paper, a parking lot for fuel cell cars is operated as a
virtual power plant. We consider a scenario in which sev-
eral fuel cell cars can exchange information with a central
controller in the parking lot. In such a setting, the central
controller can be employed, on the one hand, to manage the
electricity production of fuel cell cars in order to balance the
power production and consumption and, on the other hand,
to minimize the operational costs. It is assumed that the
controller plans the electricity production of fuel cell cars
based on the prediction of the demand in the microgrid. The
control method should be able to deal with the uncertainty
due to the difference between the actual future electricity
demand and its prediction.

2 Problem Statement

We consider a parking lot for fuel cell cars inside a microgrid
connected to the power network. In this scenario, the power
exchange between the microgrid and the power network is
limited and the demand of electricity in the microgrid can-
not be influenced. However, it is assumed that the demand
profile for the next few hours can be predicted, e.g. based
on historical data in combination with smart grid devices.
We consider the difference between the actual and predicted
electricity demand as an uncertainty in the system. The fuel
cell cars are employed to guarantee the power balance in
the microgrid. Hence, a control system is necessary in the
parking lot in order to use all the fuel cell and batteries of
the cars in such a way that the power production meets the
expectations and also such that the operational cost of the
microgrid is minimized. In this work, we design such a con-
troller while considering the hybrid nature of the system.

3 Modeling and Control Strategy

The fuel cell and battery of the cars are modeled considering
their operational costs. Two operation modes, on and off,
are considered for the fuel cells and due to different behav-
iors in each mode, a hybrid model is developed for the fuel
cells. A similar approach is adopted for the battery, taking
into account its charging and discharging modes. Important

factors in determining the operational costs of fuel cell de-
vices are the cost of fuel (hydrogen) and the degradation of
the device. In order to determine the fuel cost, the relation
between the hydrogen consumption and the net power pro-
duction is considered [1]. It is assumed that the degradation
cost of a fuel cell is only associated with turning the fuel
cell on or off. As a result, a hybrid piecewise affine (PWA)
model for the fuel cell is developed. For the batteries of the
cars, two operational modes, charging and discharging, are
considered and a simplified PWA model of the battery [2] is
used. The models of fuel cells and batteries are combined to
form an overall system model in the mixed logical dynami-
cal form. The control problem is formulated as a mixed in-
teger linear programming (MILP) problem, where the cost
is a function of the power generation and stored energy in
each fuel cell car. The power generation of fuel cell cars
is related to the actual electricity demand in the microgrid,
due to the power balance constraint. Hence, the operational
costs can also be written in terms of predicted demand and
the uncertainty in its realization. The constraint set in the
MILP problem consists of the physical constraints of each
device and the power balance condition. A min-max con-
trol strategy is used to minimize the operational costs of the
system considering the worst case realization of uncertainty.
The complexity of the optimization problem is reduced by
using special properties in the problem and as a result, the
system is operated robustly in presence of uncertain electric-
ity demand in the microgrid.
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Introduction

One of the big challenges in the transition towards smart
grids is how to deal with the intermittent nature of renewable
energy resources such as wind or solar energy. For example,
a prediction of the electricity supply and demand is typically
made a day ahead, but the actual supply during operation
can deviate from the plan since weather conditions influence
the generation. The system needs to compensate for this
deviation and minimize the economic costs associated with
it. The problem can be addressed by demand response, in
which households with flexible appliances – devices that are
capable of moving their load in time – also play an active
role in the balancing process [1].

Problem formulation

In this study, we assume that a day-ahead planning of the
electricity load for a network of households has already been
made. Then, given heat demands of the households, the
objective is to fulfill that demand while keeping the elec-
tricity load as close to the day-ahead planning as possible
(i.e., minimizing the prediction error). Each household is
equipped with one flexible appliance, either a µCHP or a
heat pump, connected to a heat buffer. The role of the Dis-
tribution System Operator (DSO) is considered as well, in
order to avoid congestion over the distribution network. Our
model is embedded in the hierarchical, market-based struc-
ture of the Universal Smart Energy Framework [3].

Approach

We express the prediction error xi[k] of household i as

xi[k+1] = Aiixi[k]+∑
j 6=i

Ai jx j[k]+ui[k]+wi[k]−∆goali[k],

where ui[k] is the change in flexible load, wi[k] is the change
in fixed (inflexible) load, and A = (Ai j) represents an infor-
mation coupling between neighboring households. The goal
function is introduced to steer the flexible appliances, and
is a division of the day-ahead planning among the house-
holds proportional to their available flexibility. We propose
∗The work is supported by the TKI Switch2SmartGrids (TKISG02001).

a receding horizon controller that solves the minimization
of the prediction error in a distributed manner: each house-
hold contributes to the optimization process based only on
local information exchange with their neighbors [2]. This
distributed formulation is achieved via dual decomposition.

Results

The scenario with no congestion management is illustrated
below. The upper figure depicts the aggregated loads, the
lower figure details the loads of the individual appliances,
with the convention of using negative sign for supply. The
controlled load follows the day-ahead planning, however, it
violates the DSO constraint at multiple time-steps.
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We show that our controller is able to solve these congestion
points when the distribution network capacity limitations are
also taken into account.
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1 Real-time dynamic pricing

Provisioning energy has become increasingly complicated
due to several reasons, including the increased share of re-
newables. As a result, it is more difficult for traditional en-
ergy sources to match the supply with the demand. To al-
leviate some of these problems, we introduce a distributed
real-time dynamic pricing scheme that encourages the con-
sumers to change their usage when it is difficult for the gen-
erators and the network to match the demand.

In addition, real-time dynamic pricing allows for maximiza-
tion of the social welfare. The objective here is to have pro-
ducers and consumers to fairly share utilities and costs asso-
ciated with the generation and consumption of power in an
optimal manner. Simultaneously, the goal is to achieve zero
frequency deviation w.r.t. to the nominal value (e.g. 50 Hz)
in the physical power network.

However, existing dynamic pricing algorithms often neglect
the physical dynamics of the grid, and focus merely on
the economic part of the optimal supply-demand matching
problem [1], [2]. Nevertheless, this coupling is essential for
guaranteeing stability of both the frequency and the power
market [3], [4], [5].

2 Primal-dual gradient method

A common method to solve an optimization problem (e.g.
maximizing the social welfare) is the primal-dual gradient
method. Also in power grids this is a commonly used ap-
proach to design optimal distributed controllers [3], [4], [5].

As shown in our previous work [6], the system obtained by
applying a continuous time gradient method to an optimiza-
tion problem admits a port-Hamiltonian representation. In
this present work, we apply the primal-dual gradient method
to the social welfare problem to obtain a distributed real-
time dynamic pricing scheme [5]. In this price-based con-
troller there is freedom in choosing a desired communica-
tion network.

The resulting system is then interconnected with the physi-
cal system in a power-preserving manner to obtain a closed-
loop port-Hamiltonian system. The properties of the closed-
loop system are exploited to prove both convergence to the
set of optimal points (maximal social welfare) and regula-
tion of the frequency.

2.1 Extensions
Finally, we show that the real-time pricing scheme also al-
lows for many possible extensions such as including nodal
power constraints (e.g. generator capacity limits) and line
congestion into the social welfare problem [5].
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Abstract

Electrical networks, and physical systems in general, are
known to satisfy a power balance equation, which states that
the rate of change of the stored energy in time equals the
supplied power minus the power dissipated. Remarkably,
when complex power is considered, there does not seem to
exist a similar statement for the imaginary power, neither in
the time-domain nor in the frequency-domain. Recently, in
the context of electromagnetic fields, it has been shown that
by complexifying the time axis, introducing the concept of
reactive time, it is possible to setup an imaginary power bal-
ance in terms of the rate of change of reactive energy in re-
active time. In this talk, these ideas are specialized to linear
and time-invariant RLC networks. For non-sinusoidal wave-
forms it is shown that the rate of change of reactive energy
in reactive time contains all the essential properties and fea-
tures of the commonly accepted definition of reactive power
under sinusoidal conditions. We believe that this provides
an unambiguous and physically motivated resolution to the
longstanding debate on how to generalize reactive power to
non-sinusoidal waveforms.

Power Balance

Consider a single-phase generator transmitting energy to a
load. Let u(t) and i(t) be the port voltage and current, then

d
dt

w(t) = p(t)− pd(t), (1)

where w(t) = wm(t)+we(t) represents the sum of the to-
tal stored magnetic and electric energies, p(t) = u(t)i(t) is
the instantaneous supplied power, and pd(t) the total instan-
taneous dissipated power. The power balance equation (1)
holds regardless of the nature of the elements or the excita-
tion and is consistent with the principle of conservation of
energy.

Under sinusoidal conditions, and when the load is linear and
time-invariant (LTI), the port voltage and current can be rep-
resented by phasors, which yields the complex power [1]

S ∶= 1
2U I∗ = P+ jQ = Pd + j2ω [Wm−We] , (2)

where Pd represents the average power dissipated in the re-
sistors and Wm and We represent the total average magnetic
and electric energies, respectively.

Although it is trivial to relate the real part of (2) with the
periodic average of (1), i.e.,

d
dt

W = P−Pd ,

which, since the total average energy W =Wm +We is con-
stant, reduces to P = Pd , there does not exists a power bal-
ance equation for the imaginary part in terms of a rate of
change of reactive energy, at least not in the time-domain.

Energy and Power in the Time-Scale Domain

The contribution of this talk is two-fold. First, we show that
(2) can be generalized to arbitrary waveforms by extending
the phasors to their analytic time signals associated to the
positive-frequency part of the voltage and current spectra.
Consequently, the complex power generally becomes time-
dependent [2] and reveals that, due to the non-exactness of
the differential forms associated to its imaginary part, there
cannot exists a potential function that represents reactive en-
ergy in time. Secondly, to resolve the non-exactness prob-
lem, we analytically continue the voltage and current to the
complex time-scale domain via [3]

{u(t + js), i(t + js)} = 1
π

∞
∫
0

{Û(ω), Î(ω)}e jω(t+ js)dω,

where s > 0 represents a time resolution scale, referred to as
reactive time, measured in seconds-reactive [sr]. This natu-
rally enables us to setup a reactive power balance

− ∂
∂ s
X (t,s) =Q(t,s),

whereX (t,s) ∶=Wm(t,s)−We(t,s) represents the scaled re-
active energy and Q(t,s) the scaled reactive power. This
suggests that reactive energy is not conserved in regular time
t, but in reactive time s, tracking its leads and lags.
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1 Abstract

Today, debt stabilization in an uncertain environment is an
important issue. In particular, the question how fiscal and
monetary authorities should deal with this uncertainty is
very important. Especially for some developing countries
such as Iran, in which on average 60 percent of govern-
ment revenues comes from oil, and consequently uncertainty
about oil prices has a large effect on budget planning, this is
an important question. For this reason, we extend in this
paper the well-known debt stabilization game introduced by
Tabellini [3]. We incorporate deterministic noise into that
framework. We solve this extended game under a Non-
cooperative, Cooperative and Stackelberg setting assuming
a feedback information structure. The main result shows
that under all three regimes, more active policies are used to
track debt to its equilibrium level and this equilibrium level
becomes smaller, the more fiscal and monetary authorities
are concerned about noise. Furthermore, a fiscal leadership
seems to be the best-response policy configuration if policy-
makers are confronted with much uncertainty.

Following the approach introduced by Tabellini [3] we con-
sider next dynamics

ḋ(t) = (r − g)d(t)+ f (t)− m(t)+ w(t). (1)

In which d denotes government debt scaled to nominal in-
come, f is the primary fiscal deficit scaled to nominal in-
come andm is the growth rate of base money scaled to nom-
inal income. Furthermore,r andg are real interest rate and
growth rate of real income (per capita), respectively, and
they are assumed to be exogenous and independent of time.
w(t) expresses the uncertainty present in the various vari-
ables and parameters in this model. This unknown distur-
bance can be government and central bank uncertainty about
oil income, inflation, exchange rate, economic growth, and
etc. Also, we assume that debt can not grow forever. Or, in
game theoretic phrasing, the no Ponzi game condition holds.
The inter-temporal loss function of fiscal and monetary au-
thorities under uncertainty are (2) and (3), respectively.

LF =
1
2

∫ ∞

0
e−ρt {( f (t)− f̄ )2 + ϕ(m(t)− m̄)2

+θ (d(t)− d̄)2 − v f w
2(t)

}
dt, (2)

LM =
1
2

∫ ∞

0
e−ρt {(m(t)− m̄)2 + η( f (t)− f̄ )2

+τ(d(t)− d̄)2 − vmw2(t)
}

dt. (3)

The two policymakers are trying to minimize their loss func-
tions subject to the budget constraint (1). The parameterρ in
both loss functions indicates the discount rate andf̄ , m̄ and
d̄ are the target levels for deficit, monetary base and debt,
respectively. Using the concept of soft-constrained equilib-
ria (see, e.g., Engwerda [2]) we derive these equilibria for
this extended Tabellini model, under a Non-cooperative, a
Cooperative and Stackelberg setting, respectively. Then,af-
ter finding the equilibrium actions, we simulate the model
for Iran’s economy and analyze the outcomes.

Keywords: Linear quadratic differential games; linear feed-
back Nash equilibria; linear feedback Stackelberg equilib-
ria; deterministic uncertainty
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1 Introduction

The identification of the most influential nodes is an impor-
tant issue in the study of networks and dynamical processes
on them. Different notions of centrality have been proposed,
depending on the process and the control objective [1], [2],
[3]. Inspired by [1], [4], [5] we consider an opinion dy-
namics model in a connected network containing stubborn
agents. Regular agents update their opinion with a local con-
sensus rule, under the possible influence of an external bias.
Although the bias is just an extra stubborn agent, keeping the
distinction has advantages during the analysis of the model.
Taking the bias into account, we generalize the Harmonic
influence Centrality (HIC) measure [1] to the Local-HIC:
simulations show that the bias localizes the influence of each
single stubborn on the network. These indexes are the ba-
sis to formulate an Optimal Stubborn Placement Problem,
whose solution can be used in a greedy, sub-optimal algo-
rithm to place further stubborn agents in the network [5]. A
distributed Message Passing Algoritm (MPA) can estimate
these indices. The MPA is exact on trees and convergent
on regular networks [1]. We investigate the properties of
the MPA associated to the Local-HIC and prove its conver-
gence on any unicyclic graph (i.e. containing exactly one
cycle). Similar techniques might extended the result to fur-
ther topologies.

2 Electrical analogy and centralized computation

The opinion dynamics model has a useful electrical interpre-
tation. Let G = (I,E) be the graph, Z the set of pre-existing
stubborn agents held at null potential, ` ∈ I \Z be the candi-
date stubborn agent held at potential one. Edges in E have
unitary conductance, and there is a conductance γ ≥ 0 be-
tween any node and a null reference potential representing
the bias. The equilibrium electrical potentials of the remain-
ing regular agents R` = I \Z \{`} correspond to their limit-
ing opinions. The Local-HIC index Hγ(`) of the candidate `
is the sum of all node potentials.

Let A ∈ {0,1}I×I and L ∈ RI×I be the adjacency and Lapla-
cian matrix of G respectively, I and 1 be the identity matrix
and the all-one vector of appropriate size. For any γ ≥ 0, the
L-HIC of ` can be formally defined by

Hγ(`) := 1+1>(LR`,R` + γI)−1AR`,{`}

where AR`,{`} and LR`,R` are the sub-matrices of A and L cor-

responding to the subsets of I.

Proposition 1. Hγ(`) is Lipschitz continuous for any γ ≥ 0.

We stress that H0(`) is the index described in [1]. Given
Z, the Optimal Stubborn Placement Problem amounts at the
identification of the most influential stubborn agent:

`∗γ = argmax
`∈I\Z

Hγ(`).

3 Distributed computation and future directions

The electrical analogy allows the development of a MPA
to estimate the L-HIC in a distributed and iterative fashion.
With our formulation, we prove the following.

Proposition 2. Let γ > 0 or Z be non-empty. The MPA con-
verges on any finite connected unicyclic graph.

The proof uses the properties of the MPA “message ex-
change” graph and the monotonicity of the message updates.
We envision that this approach can be extended to prove the
convergence of the MPA in further graph topologies.
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ing the spread of influence through a social network,” in
Proceedings of the ninth ACM SIGKDD international con-
ference on Knowledge discovery and data mining. ACM,
2003, pp. 137–146.

[3] E. Estrada and N. Hatano, “A vibrational approach
to node centrality and vulnerability in complex networks,”
Physica A: Statistical Mechanics and its Applications, vol.
389, no. 17, pp. 3648 – 3660, 2010.

[4] D. Acemoglu, G. Como, F. Fagnani, and A. Ozdaglar,
“Opinion fluctuations and disagreement in social networks,”
Mathematics of Operations Research, vol. 38, no. 1, pp.
1–27, 2013.

[5] E. Yildiz, A. Ozdaglar, D. Acemoglu, A. Saberi,
and A. Scaglione, “Binary opinion dynamics with stubborn
agents,” ACM Trans. Econ. Comput., vol. 1, no. 4, pp.
19:1–19:30, Dec. 2013.

35th Benelux Meeting on Systems and Control Book of Abstracts

89



Robust average consensus dynamics over wireless networks

Francesco Acciani
Department of

Applied Mathematics
University of Twente

Enschede, The Netherlands
f.acciani@utwente.nl

Geert Heijenk
Department of

Computer Science
University of Twente

Enschede, The Netherlands
geert.heijenk@utwente.nl

Paolo Frasca
Department of

Applied Mathematics
University of Twente

Enschede, The Netherlands
p.frasca@utwente.nl

1 Introduction

This work addresses the average consensus problem over
wireless networks, with transmitter-based and link-based
random communication losses. A novel methods is pro-
posed to compensate for the information lost during commu-
nication due to packet collision over symmetric networks.
Distributed consensus algorithms have been widely studied
in the past decade, as they form the base for a large num-
ber of distributed algorithms . However, the assumption of a
static network , i.e. all the links are reliable and fixed, is not
realistic in a wireless scenario, as packets can be lost due to
collisions. The presence of packet losses makes necessary to
adopt a compensation method to achieve consensus, which
might not be to the average of the nodes’ initial states [1],
[2].

2 Consensus and compensation

The standard distributed algorithm to achieve the averaging
over a number n of nodes is described by

xi (k+1) =
n

∑
j=1

Pi jx j(k), (1)

whereP is the matrix representing the weight of the network
links, Pi j = 0 if the nodes i and j are not connected. If P is
doubly stochastic (i.e. Pi j ≥ 0∀i, j, P1 = 1 and 1TP = 1T )
and the network is strongly connected and aperiodic then P
solves the average consensus problem. In this work, aperi-
odicity and strong connectivity of the network are assumed
as true. Moreover, we suppose that the communication is
bidirectional and multicast: a message sent from one node
is received by every neighbour. We assume that if a packet
is lost, all the packets from the sending node are lost for the
round when the collision happened, due to the shared nature
of the physical medium. This leads to a node-based failure
model: every node has a certain probability p to fail in the
global communication with all the nodes in his neighbour-
hood at any given time. The network is supposed to be ho-
mogeneous, i.e. the failure probability is the same for every
node. While the assumptions of node-based collisions and
network homogeneity are not needed for the new compen-
sation method to converge to the average of the network’s

initial condition, they make the analytical estimation of the
rate of convergence tractable.

3 Proposed solution

In presence of a communication failure, each node per-
forms the compensation of packet loss according to the fol-
lowing update rule

xi(k+1) = xi(k)+ fi(k)
n

∑
j=1

f j(k)Pi j (x j(k)− xi(k)) (2)

where fi = 0 if the node i was not able to communicate at
time k, fi = 1 otherwise, and P[ fi = 0] = p. This leads to a
dynamics described by

x(k+1) = Pn(k)x(k) (3)

where

Pn(k) = F(k)PF(k)+ I−diag(F(k)PF(k)1), (4)

which is doubly stochastic, provided the matrix P is sym-
metric. It can be shown that this (random) matrix solves the
average consensus problem over bidirectional networks in a
probabilistic sense. Furthermore, its rate of convergence can
be estimated. Details are available in [3].

4 Conclusion

A novel approach to deal with packet losses over wireless
networks was proposed, capable to achieve average consen-
sus over unreliable symmetric networks. Current work is
focusing on implementing and validating this compensation
method via simulations on dedicated software.
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1 Abstract

The idea behind best response dynamics is simple: in a
network of interacting agents, each agent takes the ac-
tion that results in the best cumulative outcome against
its neighbors. This framework is widely studied in a
game theoretic context but its impact is broadened by
the fact that when there are two available actions for
each agent, it is equivalent to what is called a linear
threshold model. This comes with an alternate yet also
intuitive interpretation: if enough of my neighbors are
taking action A, I will also take action A. The reverse
is also possible: if too many of my neighbors are tak-
ing action A, I will switch to action B. We call agents
that follow the first rule coordinating agents, and those
that follow the second anti-coordinating agents. These
switches may be considered voluntary as in changing
a behavior, policy, or opinion, or involuntary as get-
ting infected by virus or defaulting on a loan. Due
to the wide applicability of this model, there has al-
ready been extensive research into the conditions under
which action A will spread as well as the speed at which
this may occur, e.g.[1][2]. However, although simple at
first glance, the complexity of this model almost always
necessitates some simplifying assumptions, whether on
the number and characteristic of different thresholds,
synchrony of the dynamics, or the structure of the un-
derlying networks. In this work, we find that every
network consisting of all coordinating or all anti-
coordinating agents with asynchronous updates
will reach equilibrium in finite time, even if each
agent has a different threshold/payoff matrix. A
mixture of agent types will not necessarily converge.

2 Model

Consider an undirected network G = (V, E) where the
nodes V = {1, . . . , n} correspond to agents and each
edge in the set E ⊆ V×V represents a 2-player game be-
tween neighboring agents. Each agent i ∈ V can choose
a strategy from a binary set S := {A,B} and receives
payoffs from each game according to the matrix:

(A B

A ai bi

B ci di

)
. (1)

Let xi(t) ∈ S denote the strategy (state) of agent i
at time t, and denote the number of neighbors play-
ing A and B at time t by nAi (t) and nBi (t). The total
payoff to agent i at time t is accumulated over all neigh-
bors and equal to ain

A
i (t) + bin

B
i (t) when xi(t) = A,

or cin
A
i (t) + din

B
i (t) when xi(t) = B. In asynchronous

(myopic) best response dynamics, one agent at a time
becomes active and chooses a single action to play
against all neighbors. The active agent at time t, cho-
sen at random, updates to the action that achieves the
highest total payoff, i.e. is the best response, against
the current actions of its neighbors. This rule can be
expressed compactly as follows:

xi(t+ 1) =





A, if δin
A
i (t) > γi degi

B, if δin
A
i (t) < γi degi

zi, if δin
A
i (t) = γi degi

, (2)

where δi := ai − ci + di − bi, γi := di − bi, and degi
denotes the degree of agent i. If A and B result in
equal payoffs, both are best responses and we use zi to
indicate one of A, B or xi(t) for the equality case. Let
τi = γi

δi
denote a threshold for agent i. When δ 6= 0

and τ ∈ [0, 1], the sign of δi determines whether the
agents are coordinating (δi > 0) or anti-coordinating
(δi < 0). Otherwise there exists a dominant strategy
and it can be shown that the model is equivalent to one
in which τ ∈ {0, 1} and zi ∈ {A,B}. An equilibrium of
(2) is a state in which every agent satisfies the threshold
required to maintain its current strategy.

3 Conclusions and Future Work

Our main result is that every network consisting of all
coordinating or all anti-coordinating agents with asyn-
chronous updates will reach an equilibrium in finite
time. This holds for arbitrary networks and threshold
distributions. The proof uses a potential function for
the case of uniform thresholds and an augmented net-
work to extend to the case of varying thresholds. In the
future we plan to investigate convergence of the noisy
best response dynamics as well as possibilities for using
control to stabilize particular equilibrium states.
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1 Introduction

One of the simple yet intelligent mechanisms that evolu-
tionary game theory postulates to understand the evolution
of cooperation, is the best-response update rule. Recently
in [1], the convergence analysis of a finite, heterogeneous
population of individuals playing matrix games has been
performed where individuals have different payoff matrices
and revise their strategies asynchronously according to the
best response update rule. While modeling and analyzing
such systems are the necessary steps towards understanding
the evolution of cooperation, controlling them is an enticing
goal. However, for most population dynamics, control of
the strategic interactions under the best-response update rule
is quite challenging, and it becomes even more complex in
case of heterogeneous populations. The first question arises
is what the control input is. One possible input would be
the strategies of the agents. However, while it may be possi-
ble to set a robot to a desired strategy, it may be unrealistic
to ask a company to always cooperate with other competing
firms or to ask a person to always expose the same behavior
in face of other members of a social group. The aim of this
work is to control the population dynamics in [1] by shifting
the types (payoff matrices) of the agents. Specifically, for a
given population of known types of agents, we find how to
change the types of the agents to have a desired number of
cooperators in the long run.

2 The model

Consider a finite, well-mixed population of n agents that
are participating in a population game evolving over time
t = 0,1, . . . . Each agent chooses between cooperation (C)
and defection (D). At each time step, an agent is randomly
activated to update her choice according to how well she is
doing when she plays her current strategy against the aver-
age population. More specifically, the four possible payoffs
of an agent i, i = 1, . . . ,n, are summarized in the following
payoff matrix

Ai =

( C D
C Ri Si
D Ti Pi

)
, Ti > Ri >max{Si,Pi}.

Denote agent i’s strategy vector at time t by si(t), which is
defined to be [1 0]T when agent i chooses to cooperate at t
and [0 1]T otherwise. Let xC(t) denote the ratio of coopera-
tors in the whole population at time t and define the average

population vector sC(t) =
[
xC(t) 1− xC(t)

]T . Then agent
i’s payoff at time t against the average population is calcu-
lated by ui(si(t),sC(t)) = si(t)T Ai sC(t). When agent i is ac-
tivated to update her strategy at time t, she follows the (my-
opic) best-response update rule: agent i sticks to her current
choice of strategy if her alternative strategy does not give
her a higher payoff, and otherwise she switches her strat-
egy. Clearly the payoff matrices are critical for the strat-
egy update dynamics. In this setup, Ai corresponds to ei-
ther a prisoner’s dilemma (PD) game, satisfying Pi > Si or a
snowdrift (SD) game, satisfying Si > Pi. We call each agent
with a PD (resp. SD) payoff matrix a PD type agent (resp.
SD type agent). The SD agents are further classified into
l > 0 types SD1, . . . ,SDl according to their different values
of Si−Pi

Ti−Ri+Si−Pi
. Then there are altogether l + 1 types among

the n agents. Denote the agents’ choices at time t by the vec-
tor a(t) ∈ {C,D}n. Let nPD denote the number of PD agents
and nSD j , j = 1, . . . , l, the number of SD j agents. Then the
type population defined by p = (nSD1 ,nSD2 , . . . ,nSDl ,nPD)

T

belongs to the set Pn := {p ∈ Zl+1
≥0 | ∑l+1

i=1 pi = n}. Given
p ∈Pn and a(0), denote the number of cooperators in the
population at time t by nC(p,a(0), t).

3 Controlling the number of cooperators

We start with defining the reachable set Dn to be the
set of all the nonnegative integers r for which there
exists a type population p so that under the update
rule, the number of cooperators equals and remains r
after some time τ , i.e., Dn :=

{
r ∈ Z≥0 |∃p ∈ Pn :

∀a(0),(∃τ : nC(p,a(0), t) = r ∀t ≥ τ)
}
. After determin-

ing Dn, we are able to find, for each r ∈ Dn, the set of
all feasible type-populations such that under the best re-
sponse update rule, the number of cooperators equals r for
all time greater than some constant τ , i.e., F (r,n) :=

{
p ∈

Pn |∀a(0),(∃τ : nC(p,a(0), t) = r ∀t ≥ τ)
}
. Then it leads

to possible ways to change the types of the agents to have r
cooperators in the long run. Finally, we clarify the minimum
number of changes needed to set the number of cooperators
to r at the final state.

References
[1] P. Ramazi, and M. Cao, “Analysis and control of
strategic interactions in finite heterogeneous populations un-
der best-response update rule”, in Proc. IEEE Conf. Deci-
sion Control (CDC), Osaka, Japan, Dec. 2015.

Book of Abstracts 35th Benelux Meeting on Systems and Control

92



A novel approach to the model stable inversion for NMP systems

L. Jetto and V. Orsini
Dip. di Ingegneria dell’Informazione
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Universitè Libre de Bruxelles (ULB)
50, av. F.D. Roosevelt,CP 165/55, 1050 Bruxelles

Belgium
Email: rromagno@ulb.ac.be

1 Introduction

A new method to achieve an accurate output tracking for
nonminimum phase (NMP) linear systems with nonhyper-
bolic or near nonhyperbolic internal dynamics is presented
[1]. The main challenge is given by the transient output trac-
king, thus a feedforward filter yielding the external reference
trajectory r(t) is designed. The aim is to find a stable r(t)
that solves the transient output tracking. Classical general
approaches are based on the exact solution of the stable in-
version [2]. The proposed method is called pseudo-inversion
because it is formulated as an optimization problem whose
solution is obtained through a least square algorithm. The
new method overcomes the main limitations of classical me-
thods [2] like pre-actuation, unfeasibility for nonhyperbolic
and near-nonhyperbolic plants, numerical complications in
the case of MIMO systems.

2 Preliminaries

The continuous-time least square problem

min
f

J(e) = min
f
‖Q1/2e‖2

2 = min
f

∫ T

0
e(t)T Q(t)e(t)dt, (1)

e(t)
4
= b(t)−D(t) f (2)

where e(t) is the residual vector, b(t) is the observation
vector, D(t) is the design matrix, Q(t) is a positive definite
weight matrix for each fixed t ∈ [0,T ] and f is the vector
of model parameters. The norm functional J(e) defines the
squared weighted L2 norm of e(t), t ∈ [0,T ]. The solution is
known to be given by

f̂ =
(∫ T

0
D(t)T Q(t)D(t)dt

)−1 ∫ T

0
D(t)T Q(t)b(t)dt (3)

provided the inverse exists.
Spline function s(t)

Over a time interval T
4
= [a,b] composed of disjoint sub-

intervals Tl
4
= [tl , tl+1), with a = t0 < · · · < tl̄+1 = b, the re-

striction of s(t) to each Tl is a polynomial pl(t) of a fixed
order m such that

[p(m)
l (t)]t=tl+1 = [p(m)

l+1(t)]t=tl+1 , (4)

l = 0, · · · , l̄−1 , m = 0, · · · ,r−1,

where [p(m)
l (t)] is the m-th derivative of pl(t). The time instants

tl , l = 0, · · · , l̄ +1 are called knot points of the spline.

3 Pseudo-Inversion

Let Σ = (C,A,B) be a LTI, continuous time, possibly nonmini-
mum phase and/or nonhyperbolic, asymptotically internally stable
closed loop control system. The actual response of Σ is given by

y(t) =CeAtx(0)+
∫ t

0
CeA(t−τ)Br(τ)dτ (5)

where x ∈ IRn,y ∈ IRp and r(t) ∈ IRp represents the external refe-
rence input. By the existence of the steady-state of Σ, r(t) can par-
titioned in a transient rt(t) and steady state rs(t) components where

r(t)= rt(t), t ∈ Tt
4
= [0, tt ] and r(t)= rs(t), t ∈ (tt ,∞). The problem

is to find rt(t) minimizing the transient error et(t)
4
= yd(t)−y(t) su-

bject to rt(tt) = rs(tt). We define a minimization problem as in (1)
replacing f and e(t) with rt and et(t). The transient error is com-
puted using the known desired output yd(t) and the actual response
(5) where rt(·) is replaced by a spline function s(·).I this way et(t)
assumes the same form of (2)

et(t) = z̃(t)−G(t)S̃ (6)

where z̃ = yd(t)−CeAtx(0) and Ŝ =
[
S1T

, · · · ,Sl̄T
]T

represents the
unknown spline polynomials coefficients. This is due to the fact
that Ŝ is time independent, thus we take it out from the sign of inte-
gral (5). Also the spline continuity constraints (4) can be rewritten
into the same form of (6), thus defining an augmented measurement

error ea(t)
4
= [et(t)T ec(t)T ]T we can take into account (4) into the

minimization problem. The new functional is obtained substitu-
ting ea(t) into (2), thus (1) can be minimized by (3). For sake of
simplicity the solution presented here is referred to the SISO ca-
se, but the same structures and properties are maintained using an
extended form that takes into account all p inputs.
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1 Introduction
Consolidation of multiple software applications into a single
hardware platform allows for significant reduction in infras-
tructure and complexity of hardware management and main-
tenance. Hence, such embedded system implementations
are a trend in cost-sensitive industries, such as automotive.
The challenges in realizing this consolidation are; (i) the de-
ployment of effective coexistence mechanisms, (ii) the allo-
cation of (processing) resources among the applications, and
(iii) the resource-aware implementation of the applications.
In this context, we consider the design and implementation
of a resource-aware feedback control application. For such
an application, we assess the trade-off between the alloca-
tion of resources (resource utilization) and the performance
of the control application (Quality-of-Control / QoC).

In this work, the coexistence of the applications is realized
by the Composable and Predictable System on Chip (Comp-
SOC) platform [1]. The physical processors, their inter-
connections, and memories are virtualized following Time-
Division Multiplexing (TDM) policies allowing for inde-
pendent interference-free application development.

In the platform, a fraction of the resources, in terms of sev-
eral TDM slots of processor time, are allocated to the control
application. Control strategies based on uniform sampling
schemes are not applicable in this context or achieve unsatis-
factory performance [2]. On the other hand, resource-aware
implementation of feedback controllers often leads to an un-
predictable sampling scheme [3]. This gives rise to the need
for control design methodologies taking into account non-
uniform sampling intervals resulting from a given resource
allocation. One such methodology is presented.

2 Methodology
This work connects ideas from periodic control systems
[4] to the TDM-based resource utilization on CompSOC.
Our framework deals with three design considerations: the
amount of allocated resources, the allocation pattern (e.g.,
contiguous or spread) and the (optimal) QoC. For a given
TDM-based resource allocation, controller timing behaviour
in the platform can be characterized by a finite, known and
periodic set of sampling intervals (see Figure 1). Utilizing
this timing behaviour, we show that the control design prob-
lem can be transformed, by a time-lifted reformulation, into
a classical or periodic discrete-time Linear Quadratic Regu-

h4h4 h1h1h1h1h1h1

ψ
TDM frame

ω

λ1=λC λ2 λ2 λ1=λC λ1=λC
...
t

h2
...

sensing actuating computing sensor-to-actuator overhead
control application  slot micro-kernel slot other application slots

Figure 1: Resource utilization example for one TDM period.

lator (LQR) problem which can be efficiently solved to ob-
tain the optimal QoC. Furthermore, we obtain an optimal
periodic switched feedback controller. Since the design is
explicit, the assessment of QoC can be done off-line. This
allows the consideration of the QoC in the platform design.
Hence, the proposed methodology facilitates a co-design
framework for efficient resource-aware implementation of
feedback controllers on TDM-based embedded platforms.

3 Discussion
We demonstrate how our design framework can be used to
analyze the trade-off in a quantitative manner, thereby en-
abling educated designs of both the allocation pattern and
the (optimal) feedback controller. Our method is validated
both in simulation and experiments with a MIMO control
example. For the studied case, we found that; (i) for a con-
tiguous allocation pattern, an increased allocation amount
provides a higher QoC, and (ii) for a given allocation, a con-
tiguous allocation pattern outperforms a spread pattern.
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1 Introduction

In a certain class of non-linear systems, the non-linearity
can be characterized by a mathematical model which is
invertible, i.e, the input-output mapping of the model can
be reversed. These mathematical models are categorized
as invertible non-linear models. One such non-linear phe-
nomenon is hysteresis, which typically affects smart mate-
rial actuators during actuation [1]. Smart material actuators
convert non-mechanical input (electrical, magnetic or ther-
mal power) to mechanical output and are widely used to de-
velop micro/nano-positioning systems for various commer-
cial applications [2]. However, the position control of these
actuators is limited due to the presence of non-linear hys-
teresis.

2 Inverse-based Control

To mitigate the detrimental effects of non-linear hystere-
sis, inverse-based control architectures have been devel-
oped [3]. Considering an invertible hysteresis model (γ) is
used to describe actuator hysteresis, the inverse-based ap-
proach utilizes an approximate inverse of this model to pre-
compensate hysteresis. Primarily, this approach facilitates
linear controller design by nullifying the hysteresis non-
linearity [4]. As depicted in Figure 1, the approach combines
inverse compensation in series with linear feedback control.
The hysteresis inverse (γ−1) is constructed to cancel non-
linear hysteresis effects which permits the development of a
linear controller (K). The controller is designed to handle the
inversion error and linear dynamics of the resulting system
(Gl(s)) after hysteresis compensation.

K γ−1 Actuator
e(t)r(t) x(t)

Gl(s)

z(t)u(t)

+

−

Figure 1: Inverse-based Control Architecture

3 Model Selection

The hysteresis inverse forms the core of the inverse-based
approach. Consequently, selecting the appropriate hystere-

The research leading to these results is part of INCITE (grant
#621278), an ENIAC Joint Undertaking project that is co-funded by grants
from the Netherlands, Finland, Hungary, France, Ireland, Sweden, Spain,
and Poland.

sis model is a critical task. In general, model selection for
inverse compensation is based on the ability of a model to
accurately predict the actuator’s hysteresis behavior. An in-
vertible model is selected to describe hysteresis behavior
and is in turn inverted to achieve hysteresis compensation.
It is assumed that the more accurate a hysteresis model, the
better is its inverse in canceling out hysteresis. The individ-
ual effectiveness of the inverse model is either neglected or
is not experimentally verified.

4 Control Oriented Model Assessment

In this work, a model assessment framework is proposed in
order to evaluate the efficacy of inverse hysteresis models
for inverse-based control. The framework comprises of es-
timating the best linear approximation (BLA) and the level
of stochastic non-linear distortions present in the system [5]
after application of the inverse. Quantifying the level of non-
linear distortions provides a direct evaluation of the residual
non-linearity remaining in the system after hysteresis can-
cellation. A greater level of distortion suggests poor perfor-
mance of the inverse compensator. The proposed framework
is not limited to smart material actuators and can be ex-
tended to invertible non-linear models in general. An added
advantage of the approach is the insight obtained in the lin-
ear dynamics of the compensated system. The BLA of the
compensated system provides a quantitative and qualitative
account of the linear behavior of the system after compen-
sation. From a control viewpoint, not only does this provide
behavioral information of the plant to be controlled, this in-
formation is derived without explicit apriori knowledge of
the system’s linear dynamics.
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Introduction
Because of its links with synchronization and reachability of
consensus, primitivity has recently attracted attention in the
engineering community. Moreover, it allows to approach the
Černý Conjecture, one of the most famous open problems in
automata theory. In this work, we tackle the problem of gen-
erating sets of large matrices with the primitivity property.
We propose a methodology to generate such sets and show
its performance on numerical experiments.

1 From primitive sets to synchronizing automata
In matrix theory, a set of matrices with nonnegative entries
is called primitive if there exists a positive product of ma-
trices of this set. If a binary matrix has no zero row and
no zero column, we call it NZRC. Furthermore, a set of bi-
nary row-stochastic matrices (letters) is called a synchroniz-
ing automaton if there exists a product of matrices (word)
of this set with a positive column. This product is called a
synchronizing word.

Blondel et al. [1] showed how the length of a shortest posi-
tive product composed from a primitive set of NZRC matri-
ces is linked with the length of synchronizing words:

Theorem 1 (Theorem 17 in [1]). For any primitive set of
NZRC matrices

M = {A1, . . . ,Am} ⊂ {0,1}n×n

there exist two synchronizing automata

MB = {B1, . . . ,Bt}, MC = {C1, . . . ,Cu},
such that

∀1≤ s≤ t, ∃l ∈ {1, . . . ,m} : Bs ≤ Al (entrywise) (1)

∀1≤ s≤ u, ∃l ∈ {1, . . . ,m} : Cs ≤ Aᵀl (entrywise). (2)

Thus, for two synchronizing words wB and wC of MB and
MC, we can obtain a positive product of matrices from M
partly by choosing the matrices based on the majorating
property ensured by (1) and (2). The length of the product
is at most the sum of the lengths of these words plus n−1.

In the context of this theorem, the Černý Conjecture, which
states that any synchronizing automaton of size n has a syn-
chronizing word of length at most (n−1)2 (see [2]), would

1R. M. Jungers is a F.R.S.-FNRS Research Associate. This work was
also supported by the communauté francaise de Belgique - Actions de
Recherche Concertées and by the Belgian Program on Interuniversity At-
traction Poles initiated by the Belgian Federal Science Policy Office.

imply that any primitive set of NZRC matrices has a pos-
itive product of length at most 2(n− 1)2 + n− 1, whereas
any shortest positive product of higher length would provide
a counterexample. This is why the constructive approach of
primitive sets is really interesting. Also, an upper bound for
the length of the shortest positive product of a set of NZRC
matrices is obtained from the best proven bound of Černý
Conjecture (see [1, 3]).

2 Construction of primitive sets of matrices
In order to generate primitive sets of NZRC matrices with
long shortest primitive product, we need conditions guaran-
teeing primitivity, while minimizing the number of positive
entries. The method we propose is to take two random per-
mutation matrices, and to change a “0” entry into a “1”. This
construction guarantees primitivity with high probability if
the size is a prime number, and a minimal number of positive
entries. Indeed, primitivity is equivalent to the set being ir-
reducible and having no block-permutation structure. First,
a set of two random permutations is irreducible with high
probability. In addition, a second theorem allow us to say
that for prime numbers, there is either no block-permutation
structure or that the blocks are of size 1:

Theorem 2. If an irreducible set of permutation matrices
has a block-permutation structure, then all the blocks have
the same size.

Since our construction is not compatible with blocks of size
1, the set must be primitive.

We compared the probability of being primitive and the
length of the shortest product of the matrices obtained us-
ing this method with other random NZRC sets generation
methods. For both tests, it appears that our method provides
a substantial improvement.
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1 Abstract

Modelling of free molecular flow started in the early 20th
century with a series of experiments performed by Knudsen.
In his first paper in 1909 [1], Knudsen introduced two fun-
damental concepts: (i) a defining criterion for free molec-
ular flow, now known as the Knudsen number and (ii) the
first arguments for the validity of a cosine law for diffu-
sion from rough surfaces, now known as the Knudsen cosine
law. Knudsen formally introduced this cosine law in kinetic
theory in 1915 [2]. During the following 75 years, many
useful contributions were made based on these fundamen-
tal insights. This history of free molecular flow theory was
nicely documented in the 1986 review by Steckelmacher [3].
Since then, modelling and simulation methods have been de-
veloped to predict the evolution of free molecular flow in
industrial processes. A mathematical framework has been
introduced by Cale and Raupp for simple geometries, like
a cylinder [4]. For more complex geometries, Monte-Carlo
analysis is often performed [5].

Thus the state of the art in the modelling of molecular flow
is focussed on improving understanding of the evolution of
gas flow in a system. This focus often results in compu-
tational models suitable for simulation purposes. A logical
next step would be to use the insights gained from the mod-
elling efforts so far to develop a modelling framework that
allows for control design.

From a control perspective, deposition control in free molec-
ular flow can be applied in the Chemical Vapour Depo-
sition (CVD) processes such as Ultra-High Vacuum CVD
(UHVCVD) and Atomic Layer Deposition (ALD). Both
processes are used for deposition of thin layers, usually
for semi-conductor or other microelectronics manufactur-
ing. An overview of the modelling and control challenges
in microelectronics manufacturing can be found in [6]. This
paper highlights the challenges with real-time control in
these processes due to restrictions on sensor placement. For
this reason, state estimation gains importance. The state
estimation can in turn be combined with reference gener-
ation and tracking through a controllable input and observ-
able (possibly exsitu) output.

We present a modelling framework suitable for control de-
sign of the evolution of free molecular flow fluxes inside
a geometry. Methods to obtain finite element migration
probabilities, based on the Knudsen cosine law for rough,

weakly adsorbing surfaces, are presented. The modelling
framework further allows for incorporation of chamber leak-
age, sticking behaviour and external input. We illustrate the
main results by implementing the modelling framework for
a cylinder. The relevant finite element migration probabili-
ties are obtained through Monte-Carlo simulation. The ob-
tained results are then compared with analytical solutions
available in literature. Finally, we show the control potential
for linear sticking behaviour.
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1 Introduction

In horticulture, the role of dynamics of crop growth re-
sponse, and subsequently the optimal timing of climatic fac-
tors such as temperature, humidity, and carbon-dioxide con-
centration, has been generally recognized and studied [1, 2].
Model based control has focused mainly on deterministic
approaches, with only few exceptions [3]. However, uncer-
tainty and variability are important factors for the behavior
of many biosystems. Studies in ecology [4] and systems
biology [5, 6] demonstrate that ignoring or oversimplifying
them may lead to severe prediction errors.

2 Material and methods

Our case study concerned lettuce growth control via temper-
ature, inside a greenhouse. We used a simple lettuce growth
model, with stochastic noise on the state, and a performance
criterion consisting of revenue based on crop final weight,
minus the heating costs. We tested three controllers: a con-
troller with constant output, dynamic optimal open loop con-
trol, and stochastic optimal control via dynamic program-
ming.

3 Results

Our preliminary results predict that taking uncertainty into
account will result in substantial improvement of controller
performance.

4 Discussion

The results demonstrate that uncertainty control for crop
growth deserves attention. However, the predictions should
be validated experimentally, and model refinement seems
necessary. The model assumptions regarding climate dy-
namics, uncertainty modeling, and growth modeling at this
moment are quite strong.
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1 Introduction

In recent years, dynamic metabolic flux analysis (DMFA)
has been developed in order to evaluate the dynamic evolu-
tion of the metabolic fluxes [1]. Most of the proposed ap-
proaches are dedicated to exactly determined or overdeter-
mined systems. When an underdetermined system is consid-
ered, the literature suggests the use of dynamic flux balance
analysis (DFBA) [2]. However the main challenge of this
approach is to determine an appropriate objective function,
which remains valid over the whole culture.

In the present study, an alternative DMFA method is pro-
posed, which is suitable for underdetermined systems, and
does not require the definition of ad-hoc objective functions.
The method is based on convex analysis, and builds upon
the methodology introduced in [3]. Dynamic Metabolic
Flux Convex Analysis (DMFCA) [4] allows the determi-
nation of bounded intervals for the fluxes using the avail-
able knowledge of the metabolic network and information
provided by the time evolution of extracellular component
concentrations. Smoothing splines and mass balance differ-
ential equations are used to estimate the time evolution of
the uptake and excretion rates from the experimental data.
The main advantage of the proposed procedure is that it
does not require additional constraints or objective func-
tions, and provides relatively narrow intervals for the intra-
cellular metabolic fluxes (see figure 1).

DMFCA is applied to experimental data from hybridoma
HB58 cell perfusion cultures, in order to investigate the in-
fluence of the operating mode (batch and perfusion) on the
metabolic flux distribution.
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Figure 1: Dynamic evolution of glycolysis fluxes along culture
time.

initiated by the Belgian Science Policy Office. The authors
are very grateful to Dr. Niu Hongxing for providing the ex-
perimental data.

References
[1] MR. Antoniewicz. Methods and advances in
metabolic flux analysis: a mini-review. J. Ind. Microbiol.
Biotechnol. 42:317325, 2015.

[2] R. Mahadevan, JS. Edwards, FJ. Doyle. Dynamic
Flux Balance Analysis of Diauxic Growth in Escherichia
coli. Biophys. J. 83:13311340, 2002.

[3] A. Provost and G. Bastin. Dynamic metabolic mod-
elling under the balanced growth condition. Journal of Pro-
cess Control, 14(7):717-728, 2004.

[4] S. Fernandes de Sousa, G. Bastin, M. Jolicoeur and
A. Vande Wouwer. Dynamic metabolic flux analysis us-
ing a convex analysis approach: Application to hybridoma
cell cultures in perfusion. Biotechnology and bioengineer-
ing, 2015. doi:10.1002/bit.25879.

35th Benelux Meeting on Systems and Control Book of Abstracts

99



PHA production modeling with overflow dynamics

Julián Oviedo, Alain Vande Wouwer
Control Engineering Department

University of Mons
Bld Dolez 31, 7000 Mons

Belgium
Email: julian.oviedosantana@umons.ac.be

Alejandro Vargas
Instituto de Ingenierı́a

UNAM México
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1 Introduction

Polyhydroxyalkanoates (PHA) are a family of environment-
friendly molecules with properties similar to polypropylene,
thus making them proper bioplastics [1]. Producing PHA
by means of pure cultures has been the main direction of
research since the discovery of their producing bacteria al-
most 100 years ago. Nonetheless, their industrial scale-up
has found hurdles mainly due to the high costs involving
sterilization, costly substrates (e.g. glucose and volatile fatty
acids), and production. Therefore attention has been focused
towards mixed cultures. Being able to optimize mixed pro-
duction would make feasible the competition with synthetic
plastics, while offering lower environmental impact. In the
present work we introduce a simple dynamic model of PHA
production by mixed cultures, which describes the shift in
metabolism through a controlled feeding strategy.

2 PHA modeling

Understanding the PHA dynamics is not an easy task and
even though several models have been proposed in recent
years, it remains an open subject. Research has shown con-
sensus in the so-called “feast-famine regime” which basi-
cally accounts for short periods of substrate in excess (feast),
and long periods of substrate limitation (famine). Inter-
mittent periods of feast and famine, also addressed as aer-
obic dynamic feeding, are used as selective pressure on
the microorganisms to select those capable of creating the
metabolic change in the cultures.

However, it seems that the literature has focused mostly
on microscopic (metabolic) aspects and therefore complex
models. There is a lack of consideration of the opera-
tional bioreactor variables, especially the dissolved oxygen
O. Oxygen plays a pivotal role as manipulated variable since
it can control the accumulation of the biopolymer under aer-
obic conditions [4].

In this work it is assumed that the substrate consumption rate
and/or the PHA production/consumption rates is/are linked
to the oxygen consumption rate, as revealed by the observa-
tion of experimental data.

In fact oxygen concentration will be determinant of the res-
piratory capacity of the bacteria. According to this respi-
ratory capacity, the substrate present in the culture medium
can be scarce or in excess, and PHA can be produced in
an overflow metabolism or consumed as an alternative sub-
strate. This is the essence of the bottleneck assumption de-
veloped in [3], and exploited in extremum seeking in [2].

Inspired by these developments, this paper discusses a
possible model structure, using the concept of overflow
metabolism, presents simulation results and preliminary
work on parameter estimation from experimental data, in-
cluding sensitivity analysis.
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mamadou.aliou.diallo@ulb.ac.be

Philippe Bogaerts
3BIO-BioControl, Université Libre de Bruxelles,
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1 Introduction

Predictive food microbiology is a very important research
domain in food safety and quality. It is indeed of primary
importance to predict growth of spoilage microorganisms
to assure products safety and quality. Many strategies
have been developed to extend products shelf life and to
assure food safety and quality, e.g. environmental factors
(such as temperature) control, cooking, brining, packaging,
smoking, etc. [2]. Several methods have been proposed
to develop models for shelf life prediction. One approach
consists in estimating shelf life values by evaluating product
off-flavor, aspect and texture and, subsequently, in building
models correlating the shelf life estimates to environmental
conditions like temperature [2]. Other models were de-
veloped by analyzing the effect of the growth of spoilage
microorganisms on sensory quality of products [3].
In this contribution, the aim is to predict shelf-life in a
two-step procedure. The first one consists of the identifi-
cation and validation of a dynamical model which allows
predicting spoilage microorganism growth at different
storage temperatures. The second step consists in using
that dynamical model for predicting shelf life as a function
of the storage temperature by computing the elapsed time
before the spoilage microorganism concentration reaches
its admissible upper limit for ready-to-eat products.

2 Results

The 95% confidence intervals of the microorganism concen-
tration time profiles were predicted by the developed model.
Based on this latter and the admissible upper limit of Listeria
monocytogenes in ready-to-eat products 100 cfu/g [2], shelf
life and its associated confidence interval was predicted as a
function of the storage temperature. The obtained predicted
shelf lives were 42-53 days at 8◦C, 9-11 days at 15◦C and
3-4 days at 25◦C. These results were compared to the ones
of [2]. It turns out that the predicted values are in agree-

ment with those estimated experimentally (with the largest
difference at the storage temperature of 15◦C). Note that, the
approach presented here does not use experimental informa-
tion on the shelf life.

3 Conclusion

The dynamic microorganism growth model proposed in this
study uses the Baranyi’s primary model [1] coupled with the
secondary square root model and a sigmoidal function for
describing the temperature dependency on, respectively, the
maximum specific growth rate and the maximum cell den-
sity. The global predictive model and the associated uncer-
tainty analysis allows the predictive determination of shelf
life as a function of the storage temperature, based on the ad-
missible upper limit of the microorganism concentration in
ready-to-eat products. A case study concerning the growth
of Listeria monocytogenes in cooked and brined warm wa-
ter shrimps [2] is used for illustrating the methodology. This
model could also be generalized for the secondary mod-
elling of other influencing factors like pH, salt concentra-
tion, etc.
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1 Introduction

Nature has anticipated problems that research and develop-
ment is aiming to solve. Understanding how the solution
given by nature works is the appropriate path to reproduce
its effectiveness in modern systems. Such is the case of the
reduction of lens reflexions in modern optical systems by the
“moth eye” principle [2], implemented nowadays in com-
puter monitors, television screens and LCD displays. The
research of a wider range of insect eyes becomes of interest
in the current project. Among insects, butterflies have poten-
tial optical characteristics that can be exploited for modern
artificial vision developments [7]. Characteristics such as
pseudopupils, deep pseudopupils (DPP), and the separation
of visual axes, i.e., interommatidial angles can been used to
improve vision at low-light intensity [6, 7].

More recently, a state-of-the-art mechatronic system has
been used for rapid evaluation of regional compound eye
specializations [7]. Besides, a similar system also has been
used to map the visual space of butterfly eyes [1, 5]. In [1]
the design and implementation of an autofocusing algorithm
for the robotic scanner has been done. Furthermore, the ac-
tuation of the robotic scanner via a microcontroller was de-
signed and implemented in [5].

The main focus of this project is to improve the previous
developments of the robotic scanner by completing an auto-
matic scan of a butterfly eyes via the imaged-based vision
servo control proposed initially by [3]. During the scan-
ning process the system will focus on the aforementioned in-
terommatidial angles. Furthermore, the data to be obtained
with the scanner will create a 3D virtual image of the eye
with local information about reflections and curvatures. Fi-
nally, the information will provide an insight into the way
insects have solved problems related to vision.

2 Experimental setup

The experimental setup consists of a robotic scanner, which
is a state-of-the-art mechatronic system, such as in [4]. The
system is meant to simplify the data acquisition process of
the visual properties of the butterflies. Subsequently, it is
designed to obtain accurate information during the scanning
process. Figure 1 shows a picture of the system at the Com-
putational Physics Department, University of Groningen.

Figure 1: Robotic scanner at the University of Groningen [5].
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Introduction
Dengue is a mosquito-borne viral infection that develops in
tropical and sub-tropical regions. Even though the World
Health Organization indicates that about half of the world’s
population is currently at risk, no specific treatment nor vac-
cination against dengue exists. The elaboration of an ef-
fective vaccine would then constitute an important break-
through. Efforts are therefore made to better understand
the dengue virus amplification mechanisms that take place
within mammalian cell cultures used to find a vaccine can-
didate. In this context, the present study proposes different
state space models to describe the various population and
metabolite dynamics encountered during vero cell culture
and to provide information about critical culture parameters.

Contribution of this work
During the experiments, concentrations were adjusted using
punctual medium renewals and/or direct injections of glu-
cose and glutamine. This allows to consider the experiments
as a series of batch processes and neglect environment-
induced death. Moreover these adjustments prevent the
concentrations from getting close to limiting/inhibiting lev-
els. Nevertheless, even though the effect of serine on vero
cell growth is not clearly demonstrated, concentrations mea-
sured in this work sometimes reach limiting levels according
to Ursache et al.[3]. This study therefore investigates differ-
ent scenarios where serine would become a limiting factor
or not.

The proposed models are based on several reference models
from the literature ([1], [2] and [3]) in which the virus ampli-
fication is represented as a function of the infected biomass.
The current study considers alternative models based on the
assumption that the infection kinetics is fast compared to
cell growth and maintenance.

In all reference models, it is also assumed that, once in-
fected, the cells are not able to replicate. This study there-
fore investigates this assumption as well as the case where
viral particles are considered as a growth-inhibiting factor
(see Table 1)

Parameter identification is performed based on experimental
data. Best results are obtained when serine is not growth-

Case Xr µx

1 Xu µmax.
Xmax−X

Xmax

2 Xu µmax.
Ser

Ser+kser
.Xmax−X

Xmax

3 X µmax.
kv,i

Vir+kv,i
.Xmax−X

Xmax

4 X µmax
Ser

Ser+kser
.

kv,i
Vir+kv,i

.Xmax−X
Xmax

Table 1: Presentation of the different representations of the
replicating biomass Xr and of the corresponding kinetic
model formulations, i.e., the specific growth rate µx and
the specific virus replication rate µv. Xu and Xi are
respectively the uninfected and infected biomass and
X = Xi +Xu.

limiting and infection does not cancel biomass replication.
Sensitivity analysis is provided to support our conclusions
and characterize the current operating conditions.
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1 Abstract

To study the overflow metabolism in hybridoma cell cul-
tures, a biological culture simulator based on a simplified
metabolic network and a constrained dynamic Flux Balance
Anyalysis (dFBA) is developed. It is legitimated by deter-
mining an objective function and linear constraints with a
methodology going from a detailed Metabolic Flux Analy-
sis (MFA) to FBA. The objective is to recover the admissible
flux intervals obtained by the detailed MFA to enable a dy-
namic simulator construction. [1]

2 Introduction

The cells are used for decades in biopharmaceutical indus-
tries for their ability to biocatalyse substrates into products
of interest such as viral vaccines. To mimic the cell, the
constraint based modelling is applying constraints to the
metabolic reactions. These later are based on the thermo-
dynamic properties of the reactions or on regulatory mecha-
nisms for instance. Indeed, the constraint based models are
based on two main assumptions: the metabolic network can
be translated into a stoichiometric matrix and a steady state
assumption.[2, 3]

The cell cultures here studied are in overflow. This
metabolism relates to an incomplete oxidation of the sub-
strates despite aerobic conditions because of an energy sup-
ply abundance. It leads to organic byproducts that are often
inhibitory for the growth cell. The overflow metabolism of
mammalian cells is more complex than the one of the mi-
crobial cells. [1, 2]

The Flux Balance Analysis (FBA) is one constraint based
modelling approach that overcomes the underdetermination
problem (more reactions than metabolites). The solution
space defined by the two previous cited hypotheses, can be
reduced by applying additional constraints. But how to de-
fine objectively these additional constraints and introduce
them in a dynamic simulator? [3]

3 Contribution

To define the additional constraints and to develop a bio-
logical culture simulator, data of two fed-batch cultures of
hybridoma cell line HB-58 producing IgG1 monoclonal an-
tibodies are used. They consist of measurements of the
biomass, two substrates (glucose and glutamine) and three
products concentrations (lactate, alanine and ammonia).

As already used in [2], the metabolic network used in this
study, is constituted of glycolysis, glutaminolysis, TCA cy-
cle, the pentose phosphate and the nucleotide synthesis path-
ways. Based on this network, the additional constraints have
been defined by an analysis of the admissible flux intervals
obtained with a limited FBA (using only inputs measure-
ments) in reference to a detailed MFA (using inputs and
outputs measurements). These constraints are presented as
equations balancing reaction inputs and outputs and/or as
inequalities carried out by flux signs : two inequality con-
straints for the fluxes corresponding to the substrates over-
flow defined by Monod lower bounds; one linear inequal-
ity implying two anaplerotic fluxes from glutamate to alpha-
ketoglurate. Moreover, the objective cost function aiming at
maximizing cell growth is also legitimated trough this com-
paraison of FBA and MFA results. Based on this dynam-
ical FBA modelisation, a biological culture simulator able
to predict the dynamics of biomass growth, substrate con-
sumption and metabolites production has been constructed.
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1 Introduction
Due to properties such as high energy density, Lithium-ion
(Li-ion) batteries are used in various applications such as
battery packs in (hybrid) electric vehicles and in mobile
phones. For safety and control purposes, monitoring the
temperature of Li-ion batteries is of vital importance. A rela-
tively new field of temperature estimation methods is based
on Electrochemical Impedance Spectroscopy (EIS), where
a temperature relation is inferred from the electrochemical
battery impedance. An advantage of using EIS for tempera-
ture estimation is that no intrusive or surface-mounted tem-
perature sensors are needed.

2 Impedance-Based Temperature Estimation
A number of studies have presented EIS-based temperature
estimation methods [1-3]. It can be argued that these meth-

Battery
f Z

Battery Model
Ẑ

T

T̂

m

p

Experiment
Design

Parameter
Estimation

+
v

+

Figure 1: Top-level block diagram of measurement system [4].

ods can be broken down into two components [4], as de-
picted in Figure 1: experiment design, i.e. choosing excita-
tion frequency f , and parameter estimation, i.e. estimating
the battery temperature T with T̂ , given the measured bat-
tery impedance Z. The model of the battery impedance, Ẑ,
is given by a function ĝ : R3 → C which also depends on
State-of-Charge (SoC):

Ẑ = ĝ( f ,T,SoC) . (1)

Furthermore, measurement noise v is taken to be complex-
valued zero-mean Gaussian noise. By applying certain set-
tings for experiment design and parameter estimation, p and
m respectively, and by comparing the measured and mod-
elled battery impedance, an estimate of the battery tempera-
ture can be computed. The settings p and m are different for
all existing methods. Moreover, it is unclear which settings
yield the most-accurate estimate.

1This work has received financial support under the grants 3Ccar and
ADEM. Also, the authors would like to thank Luc Raijmakers for his valu-
able contributions.

3 Analysis, Comparison and Synthesis
In this work, we propose a framework, which jointly selects
the settings p and m, for comparing and analysing existing
methods. Besides analysis, the framework allows for syn-
thesizing a more-accurate method. The basis for this frame-
work is the estimator given by
T̂ ( f ,α,Z)= argmin

T
α ḡ2

1( f ,T,Z)+(1−α) ḡ2
2( f ,T,Z), (2)

where α ∈ [0, 1] denotes a selector variable which allows
weighting Re(Z) and Im(Z) when ḡ1 and ḡ2 are given by

ḡ1( f ,T,Z) = Re
(
ĝ
(

f ,T
)
−Z
)

(3a)

ḡ2( f ,T,Z) = Im
(
ĝ
(

f ,T
)
−Z
)
. (3b)

4 Results
Results of the comparison are shown in Figure 2. Parameters
for the newly synthesized method where selected using (2)
in a Monte-Carlo approach. It can be seen that this proposed
method yields the smallest MSE for all temperatures.
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Figure 2: MSE for SoC = 40%
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Abstract

The culture of micro-algae in photo-bioreactors (PBR) has
received a regain of interest in the last two decades in view
of the multiple potential applications ranging from the pro-
duction of biofuels to pigments, nutrients and wastewater
treatment process [1]. For monitoring and advanced control
purposes, measurements of the process states are manda-
tory. However it is often impractical to get the full array
of measurements, and as a remedy, software sensors [2, 3]
can be used to reconstruct on-line the evolution of unmea-
sured states by blending the predictive information of a dy-
namic process model with the measurement information of
the available hardware sensors. In micro-algae cultures, it is
impossible to measure on-line the microalgae internal quota,
i.e., the content of the internal substrate pool.

The aim of this study is to investigate the use of Lipschitz
observers and to propose a systematic procedure for the con-
struction of the linear part of the model so as to ensure that
the pair (A,C) is stable (with assigned dynamics) and ob-
servable.
The observer is tested both in simulation and real-life ex-
periments with the culture of micro-algae Scenesdesmus
obliquus.
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Figure 1: Estimation of Biomass (X), Substrate (S) and Inter-
nal Quota (Q) from various initial conditions using
Biomass measurements

Figure 2: Estimation of Biomass (X), Substrate (S) and Internal
Quota (Q) using Biomass measurements versus using
both Biomass and Substrate measurements

Book of Abstracts 35th Benelux Meeting on Systems and Control

106



On the model-based monitoring of industrial batch crystallizers

Marcella Porru
Dept. of Electrical Engineering, CS
Eindhoven University of Technology

De Zaale, 5612 AJ Eindhoven
The Netherlands

Email: m.porru@tue.nl

Leyla Özkan
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1 Introduction

Crystallization is an important separation process to obtain
high value-added chemicals in crystalline form from liquid
solution in pharmaceutical, food and fine chemical indus-
tries. As most of the particulate processes, the quality of
the solid product is determined by its particle size distribu-
tion (PSD). The achievement of the desired quality targets
of the fine crystalline products relies on an efficient online
process monitoring for separation supervision and control.
However, hardware analyzers able to online measure the
PSD and the solute concentration are rarely available, due
to their costs [1]. These unmeasured process variables can
be estimated by state estimators that combine information
from the process model and secondary measurements. The
problem of designing state observers for online monitoring
the PSD evolution has been mostly addressed under the as-
sumption that some PSD measurements were available (see
[6] and literature therein), which is not likely in practice.
This work proposes a methodology to asses the feasibility of
using common measurements (e.g. temperature and liquid
fraction) for estimation purposes based on local observabil-
ity [2] and detectability [3] arguments. The results are sup-
ported using a data-derived technique, with data generated
by a simulation model of the industrial crystallizer. Based
on the results of the observability analysis, the structure of a
state estimator is proposed.

2 Observability analysis for the batch crystallizer

The effectiveness of the process monitoring with state ob-
servers depends on the observability and detectability of
the nonlinear model of the batch crystallization process.
Since temperature and liquid-fraction measurements are
commonly available in industry, the feasibility of observing
the PSD and the solute concentration through these mea-
surements is evaluated. To this end, the observation spaces
are separately calculated for both measurements and the as-
sociated observability codistributions are analyzed. It was
found that the concentration is distinguishable while the
PSD is not. The results of the observability analysis are
supported by using the measures of topological relevance
(MTR) [5] on the self-organized map (SOM) [4], which is
a data visualization technique offering the possibility to dis-
play and quantify similarities among the behavior of process

variable.

3 State detectors for online PSD monitoring

The previous results suggest to use a state detector where
temperature and liquid-fraction measurements are used to
correct the prediction of the temperature, solid concentra-
tion, crystallization volume and crystal production, while
the PSD is inferred though the model in ”open loop” fashion.
Preliminary simulation results of the estimator functioning
under the assumption of a crystallization process dominated
by the crystal growth phenomena show that the estimator
with the proposed structure is capable to give a better esti-
mation than the model without corrections when the initial
conditions are affected by uncertainties.
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1 Abstract

A tokamak is a toroidal-shaped equipment responsible for
the control of nuclear fusion reaction. It magnetically con-
fines and heats up a plasma (to hundred million degrees Cel-
sius). With ohmic and non-inductive heating sources, this
ionized gas made of hydrogen isotopes satisfy Lawson cri-
terion (and produce more energy than used). To reach the
steady state operation, temperature and density plasma pro-
files must be controlled according to non-uniform profiles
references.

In previous work, a one-dimensional structured plasma
model has been derived for the electro-magnetic and ther-
mal domains [1]. This model has the standard form of Port-
Hamiltonian systems:

{
ẋ = [J(x)−R(x)] ∂H

∂x (x)+gu
y = g>∂H

∂x (x)
(1)

with x ∈Rn the state variables, u ∈Rm the input and y ∈Rm

the output denotes the exchanges with the environment.
The total energy function H(x) ∈ C1(Rn) → Rn is called
the Hamiltonian function. The structured matrices J(x) =
−J(x)>∈Rn×Rn and R(x) = R(x)>≥ 0 ∈Rn×Rn are the
interconnection and dissipative matrices, respectively. The
skew-symmetric matrix represents the energy exchanges be-
tween the system physicals domains, and the symmetric ma-
trix characterizes the system loss [2].
Port-Hamiltonian systems as presented in equation (1) sat-
isfy the property of passivity since the energy function tra-
jectories verify:

∂H(x)
∂ t =− ∂>H(x)

∂x R(x) ∂H(x)
∂x + y>u≥ y>u (2)

This balance equation implies that the system composition is
limited to dissipative and conservative elements. This prop-
erty is used to prove stability and to design control laws.

A physical interpretation rises from the Port-Hamiltonian
formulation, and systems are seen as energy transformation

devices. Therefore, new state feedback control strategies
based on the passivity property have been studied and suc-
cessfully applied to plasma control [1]. The complete state
is assumed to be completely measurable. In practice, only
few of them are reachable by sensors. For example in the
Tore Supra, an experimental tokamak only the temperature
at the center of the plasma is available. To overcome this
limitation, state observers must be implemented in the con-
trol loop to compute the complete temperature profile.

The objective is to present a model-based state observer de-
sign strategy for Port-Hamiltonian systems. The design ap-
proach is based on passivity, like in [3]. A new observer is
detailed and an integral extension added to improve the ob-
server robustness. Simulation results for the observation of
thermal and magnetic plasma profiles will be presented.
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1 Introduction

Nuclear fusion is a viable option for clean and long-lasting
energy on earth. The tokamak is a device that magnetically
confines a plasma for production of power by controlled
thermonuclear fusion. Development of a plasma control sys-
tem (PCS) for future reactors is key for safe and reliable ma-
chine operation and production of electricity.

2 Real-time control challenges on tokamaks

Control of tokamak plasmas is needed to maintain the de-
sired operating conditions, while suppressing magnetic in-
stabilities and avoiding plasma disruptions. This poses sev-
eral control tasks that need to be executed simultaneously in
real time. However, only a limited set of actuators and sen-
sors is available on future reactors.
A number of challenges need to be solved to ensure high-
performance control of tokamak plasmas. First, the mea-
surement systems in tokamaks have limited reliability and
often do not measure the controlled quantities directly. Sec-
ond, there is nonlinear coupling between many controlled
quantities. Up to now, control design on tokamaks has rarely
been extended beyond SISO control of the controlled quan-
tities. Third, certain control tasks require the use of the same
set of actuators, complicating simultaneous control of mul-
tiple quantities.
Solving these challenges requires a novel and consistent ap-
proach to the design of a plasma control system. Newly con-
sidered tasks include estimation of all plasma profiles (tem-
perature, density, current density), and detection of physi-
cal events (magnetic instabilities) and machine events (mea-
surement and actuator faults). On top of this, a supervisory
system should coordinate and prioritize the control tasks to
ensure proper operation of the reactor.

3 Development of real-time control algorithms

On TCV (tokamak à configuration variable) and the
ASDEX-Upgrade tokamak, we are implementing and test-
ing various components for the tasks described above. TCV
is a flexible tokamak, well-suited for development of control

systems. Recently, a new computer was installed in the real-
time control network on which various control algorithms
can be executed simultaneously in multiple threads on dedi-
cated CPU’s.
On both tokamaks, observers are implemented for estima-
tion of the plasma profiles, based on the RAPTOR code [1],
which solves the transport of temperature and magnetic
flux in a tokamak plasma, and a plasma density evolution
code [2, 3]. In the latter observer, a real-time detector is
used to correct for errors in the density-related measure-
ments [2, 3]. We aim to obtain reliable routine operation
of the profile observers to provide signals of controlled vari-
ables in various operating regimes. Furthermore, feedback
controllers for the average density, and temperature and cur-
rent density profile are being implemented on TCV.

4 Future work

We extend the plasma control system (PCS) on currently
operating tokamaks with observers and controllers for the
plasma profiles. Other control components such as super-
visors and actuator sharing management are still in early
stages of design. Successful and routine operation of these
systems after initial tests in the spring and summer of 2016
on TCV and ASDEX-Upgrade will justify the use of these
components on PCSs on future nuclear fusion reactors.
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1 Introduction

In dynamic network identification we would like to be
able to model the full dynamics of a network on the ba-
sis of measured node variables, while treating all node
variables in a symmetric way. To this end we em-
ploy basic techniques from multivariable prediction er-
ror identification. We might have node signals that are
noise-free, see e.g. the classical closed-loop system with
noise-free node u (Figure 1), and disturbed node y. In
the classical multivariable system identification frame-
work it is assumed that all measured (output) variables
are noise disturbed, or in other words: the output noise
process is of full rank. However this assumption does
not comply with the full network in Figure 1. The
noise-free signal u invalidates one of the assumptions
of our methods. In the Joint-IO method nodes are
treated symmetrically and the known ru is replaced by
an unknown stochastic process to work around the in-
validated assumption.

G0(q)

C0(q)

++

y(t)

vy(t)
u(t)ru(t)

Figure 1: Closed-loop system with nodes u and y, noise
process vy and external excitation ru.

Classical identification techniques are typically used to
identify G0 only, using a predictor that predicts y(t)
only. If we would like to extend this to identifying the
full network, we have to predict not only y(t) but also
u(t) at the same time and deal with a fully symmet-
ric treatment of the node signals. When constructing a

predictor for w(t) :=
[
y(t)
u(t)

]
we will have to deal a rank

reduced noise process v(t) :=
[
vy(t)
0

]
. A key compo-

nent in the reasoning behind predictors is that the noise
process can be decomposed into a monic filter H and a
white noise. This decomposition is unique only if the
noise process is of full rank. The current rank reduced
noise process v can not be decomposed in a unique way.

1P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

In [1] we formulate an identification method that can
deal with this rank reduced noise process.

2 Identification

It is assumed that the parameterized prediction errors
εy and εu have been defined. Suppose that the identifi-
cation criterion of the form ε2y+λε2u is chosen. Then for
maximum likelihood reasons we would like the weight
λ to correspond to the inverse of the variance of the
noise of u, however u is noise-free. We could inter-
pret the noise-free situation as being noise with vari-
ance 0. The noise-free situation becomes problematic
in the maximum likelihood reasoning. Instead we con-
sider the limit of the variance going towards 0, then the
weight λ goes towards infinity. The prediction error of
u is infinitely more weighted than the prediction error
of y. An equivalent identification criterion to this limit
case is the constrained criterion

J =

{
arg min

θ
Ē ε2y(t, θ)

subject to: ε2u(t, θ) = 0 for all t

}
. (1)

3 Analysis

Consistency of an identification method typically has
the requirement that data is informative and that the
model structure is identifiable. The properties identifi-
ability and informativity together imply that one pre-
diction error is related to one model, which guaran-
tees uniqueness of the estimated model. These classical
properties identifiability and informativity are related
to the typical least squares identification criterion. We
propose a different criterion, one that is constrained,
hence a generalization of identifiability and informativ-
ity which takes the new criterion into account is needed.
This new notion has to be a property which describes
whether the criterion can distinguish between any two
models in the model set.
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1 Introduction

This research aims at automating the process of system
identification and control synthesis for complex systems by
means of evolutionary symbolic tools that result in inter-
pretable models and control laws, enabling compact and
efficient controller implementations for cyber-physical sys-
tems. The work primarily focuses on building a new frame-
work for computing data-driven models that incorporates
symbolic regression analysis.

2 Symbolic Regression and System Identification

Symbolic regression is a novel evolutionary optimization
technique that searches for analytical expressions that fit
measured numerical data. Symbolic regression has gained
much attention recently in the scientific community for its
ability to find mathematical laws that explain observed phys-
ical phenomena automatically, without human intervention
[1]. This has opened the path for the creation of a “robot
scientist” where mathematical expressions are manipulated
by a machine in a similar way as humans do. Symbolic re-
gression has the potential to change many fields of science,
in particular giving answers to many challenges of system
identification and control.

The major handicap of the state-of-the-art of system iden-
tification is the selection a priori of an actual model class.
This involves imposing assumptions on the structural rela-
tionships of the model, which requires vast experience from
the user [2] and often leads to costly iterative processes to ar-
rive at valid structural knowledge. For these reasons, system
identification remains an arduous and challenging task.

The proposed scheme to incorporate symbolic methods in
the process of system identification and controller synthesis
is illustrated in Fig. 1. The numerical data from experi-
ments (N), symbolic models (M), their properties (P) and
the synthesized controller (C) form the chief components
of the evolutionary scheme. Existing methods of identifi-
cation, control and experiment design are viewed as oper-
ators that enable the evolution of these components. The
symbolic plant models and the synthesized controllers con-
structed during the evolution process are evaluated using a
user-define fitness criteria. The fitness scores are used to de-

Figure 1: Proposed evolutionary scheme for identification and
control

termine the pareto front of the genetic optimization process,
which allows one to determine the best trade-off between
model performance and complexity.

The primary focus of this research lies on the evolution of
models M. These models are built from fundamental blocks
such as noise structures, dynamic structures (shift opera-
tors), non-linearities, signal elements, and so on. Symbolic
regression manipulates these basic blocks to find a solution
in the model space that best explains the numerical data N,
according to an appropriately defined cost function. Thus,
this method of identification is not restricted by assump-
tions on the structure of the model, but by the parameter-
ized blocks that a model can be built from. Additionally,
parameterization of the components of a model allows this
approach to be relevant for cyber-physical systems, which
are typically characterized by logical operators in addition
to the other components mentioned above.

The main objective of this project is to develop a novel soft-
ware tool that automatically manipulates models in order to
satisfy complex modeling or control objectives dictated by
economical, performance and safety specifications.
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1 Background

Increasing accuracy and speed demands in precision ap-
plications lead to a situation where the flexible behavior
of the system becomes relevant [1]. For instance, the
internal deformations hamper the performance at the
point of interest, which is typically not measured di-
rectly. Hence, ensuring satisfactory performance at this
point can be achieved through control strategies that
infer the point of interest from indirect measurements
in conjunction with a model, e.g., through an observer.
In general, these models are Linear Parameter Varying
(LPV), since the point of interest is position-dependent.
The aim of this research [2] is to develop mechanical
models whose outputs are position-dependent.

2 Approach

The key step in the proposed approach is to use a local
LPV identification [3] approach while exploiting phys-
ical properties of the class of mechanical systems. As
such, a set of local frozen systems is estimated, where
each frozen system represents a fixed mapping for a
given position. The frozen systems are parametrized as
modal mechanical systems,

L[s2I + sDm + Ω2]−1R, (1)

L ∈ Rny×nm , Dm, Ω2 ∈ Rnm×nm , R ∈ Rnm×nu ,
with ny, nm and nu the number of outputs, mechani-
cal modes and inputs, respectively. This nonlinear-in-
the-parameters parametric model is identified from fre-
quency response data by first estimating a Left Matrix
Fraction Description (LMFD) using the Sanathanan-
and-Koerner method, [4]. Then, possibly after refin-
ing this model using gradient-based techniques, this es-
timate is transformed to an initial estimate with the
modal structure and is subsequently refined using a
gradient-based approach.

The frozen system set is then interpolated to yield a
system that is continuous in the position variable. By
virtue of the mechanical system structure, the interpo-
lation of the frozen systems is equivalent to the inter-
polation of the mode shapes of the system. Robust in-
terpolation of these modes is achieved by using a basis-
function expansion with optimal model order selection,
or by using Thin Plate Splines with optimal smooth-
ing, where optimality is defined with respect to a cross-
validation measure [5].

3 Results

The developed method is successfully implemented nu-
merically and a position-dependent model of the Over-
Actuated-Test rig, a prototype next-generation wafer
stage as shown in Figure 1, is estimated, thereby con-
firming that proposed the identification method is well-
suited for practical applications.

Figure 1: Lower left: OAT-chuck. Upper left: Modal
model fit of one of the transfers of the OAT
setup. Right: Experimental estimate of the sec-
ond flexible mode of the OAT chuck.

4 Ongoing work

Further research focuses on controller synthesis using
the obtained LPV-models in relation to inferential con-
trol, learning and robustness aspects.
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1 Introduction

Hot-melt extrusion is a forming technique well established
in the industry since the 19th century. This thermo-
mechanical process implies the transformation of sev-
eral solid materials into a specific uniform product con-
veyed through the extruder thanks to the screw rotation
[Gerrens(1994)]. More and more forming processes use
this technique and extruded products are numerous: metals,
plastics, foods, drugs ...

In this work, a distributed parameter model is proposed to
represent the extruder behavior for the mixing of a poly-
meric matrix and an active pharmaceutical ingredient for
accurate quality control purpose. In the same spirit as
[Kulshreshtha(1992)], this dynamic model is based on par-
tial differential equations (PDEs) and on several assump-
tions such as the mono-dimension of the flow, the dis-
tinct boundaries between the different screw zones, constant
melting product density and specific heat capacity, and neg-
ligible heat loss in the screw shafts.

Several transportation parameters can be inferred from ex-
perimental data and, according to [Choulak(2004)], resi-
dence time distribution (RTD) measurements contain suffi-
cient information to identify the extruder operating parame-
ters.

2 Dynamic modeling

PDE extrusion models are based on mass and energy bal-
ances involving the variations of variables such as the filling
ratio, the pressure, the material temperature, the barrel tem-
perature and the screw temperature. A classical extruder is
composed of different screw elements with variable geome-
tries defining zones which can be partially (solid conveying)
or completely (melting) filled with materials. Consequently,
two corresponding PDE systems are derived and an ordinary
differential equation (ODE) is added to determine the posi-
tion of a moving interface separating the zones.

3 Parameter identification: preliminary results

Model parameter identification focuses on the determination
of the screw geometrical parameters and the material dif-
fusion coefficient. To this end, a sensitivity analysis of the
model outputs (die filling ratio, die pressure, die temperature

and die tracer concentration) with respect to the unknown
parameters is achieved. The residence time distribution ap-
pears to provide sufficient information, and 6 experiments
with a pilot extruder at the University of Liege are achieved
with different operating conditions. These experiments are
divided in two sets, dedicated to direct and cross validations,
respectively. Good results are obtained in direct validation
(see figure 1), confirmed by a satisfactory predictive capa-
bility shown in cross-validation.

Figure 1: RTD evolutions for the Direct Validation
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1 Introduction

Vortex-induced vibrations (VIV) are a frequently found
form of fluid-structure interaction. Due to flow instabili-
ties, vortices are shed in the wake of the structure [3]. As
a result, the structure is excited by an alternating lift force.
Common examples are chimneys exposed to wind, or ma-
rine structures. When the frequency of vortex shedding ap-
proaches the natural frequency of the structure, a synchro-
nization phenomenon kicks in, resulting in a resonance state
and possibly harmful amplitudes.

2 A system identification approach

Despite a large body of research, a full physical compre-
hension of the complex dynamical system has yet to be
achieved. For now, one has to rely on time-consuming CFD
simulations to be able to predict the kinematics of the system
with high fidelity. Constrained by computational cost, fast
or even real-time predictions remain unattainable, notwith-
standing the great advantage it would provide in many de-
sign and monitoring applications. What is lacking is an ac-
curate, efficient model that comes at low computational cost.
We believe system identification is especially well suited to
provide such a model.

The inherent nonlinear nature of the relationship between
oscillation and lift force, makes modelling a challenging
task. The model must for instance be able to reproduce the
autonomous oscillation of the lift force, even in the static
non-excited case. Apart from this, also the typical phase-
locking behaviour must be embedded in the model.

3 A Van der Pol test case

In this work a polynomial nonlinear state space (PNLSS) [2]
model structure is used to estimate the device under test. The
method was first successfully tested on a Van der Pol (VdP)
oscillator. The VdP equation is a quite generic description of
a nonlinear oscillator, frequently used to approximate VIV
behaviour [1].

4 Modelling vortex-induced vibrations

The same method is then used on time series of the lift force
on a circular cylinder performing a forced oscillation in a

Figure 1: z-component of the vorticity, forced osc. with rel. amp.
A/D = 0.2 and rel. freq. f/fSt = 1.1.

fluid stream. Data are generated via CFD simulations (fig-
ure 1). As excitation signals, i.e the displacement of the
cylinder, a deliberate selection of rich multisines as well as
monosines is used to explore the different operating regimes
of the system. From random phase multisine realisations
with a bandwidth centred around the Strouhal frequency (the
natural vortex shedding frequency when unexcited) the Best
Linear Approximation (BLA) of the transfer function is con-
structed. Next the linear model is extended towards a poly-
nomial nonlinear model structure. Nonlinear optimization
on a combined data set, representing distinct regimes, results
in a good estimate of the underlying system. The predic-
tions of the constructed model are in good agreement with
the data.
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1 Introduction

Reasons to automate processes vary widely, from reliev-
ing humans from repetitive tasks such as harvesting fields
over improving accuracy in robotic surgery to increasing
the speed of product assembly. For these purposes indus-
try uses autonomous motion systems like robotic arms, au-
tonomous guided vehicles and drones. Safe operation of any
autonomous system demands a collision-free motion trajec-
tory at every time instant. Since the environment is generally
variable, real-time trajectory generation is required.

This abstract presents a method to calculate time-optimal
motion trajectories for autonomous systems moving through
an environment with both stationary and moving obstacles,
by using numerical optimization. To transform this mo-
tion planning problem into a small dimensional optimiza-
tion problem, suitable for a real-time implementation, the
approach (i) uses a spline parameterization of the motion
trajectory; and (ii) exploits spline properties to reduce the
number of constraints [1]. By solving the resulting opti-
mization problem with a receding horizon it is possible to
deal with variations in the environment.

The method is experimentally validated on a KUKA youBot.
The average solving time of the optimization problem in the
experiments (0.05s) is sufficiently fast for correcting devia-
tions from the initial trajectory.

2 Methodology

This abstract builds on [1], which uses a B-spline parame-
terization for the motion trajectory. This work only consid-
eres static environments containing circular obstacles. The
proposed method extends the approach with an efficient so-
lution to include anti-collision constraints for convex obsta-
cles, which is based on the separating hyperplane theorem
[2]. Since both the system and the obstacles can move, the
separating hyperplanes are allowed to be time-varying, by
parameterizing them as a B-spline. Furthermore, the method
takes into account the latest information about the (uncer-
tain) environment by solving the problem with a receding
horizon. The real-time motion planning provides implicit
position feedback and only additional wheel velocity feed-
back is required to steer the system. Finally, the method ac-
counts for obstacle movements by using a linear prediction
of the obstacle position, which is based on the obstacle’s
measured velocity.

The resulting optimization problem contains initial and final
conditions on the system’s state, kinematic constraints, and
anti-collision constraints, which are described by separating
hyperplanes. The goal is to find the minimal motion time
and determine the corresponding spline coefficients of the
motion trajectory.

The developed method generates a time-optimal point-to-
point trajectory which steers an autonomous motion system
along circular and rectangular, stationary and moving obsta-
cles. The method is included into a motion planning tool-
box, which allows users to easily implement, solve and sim-
ulate motion planning problems for both single agent and
multi-agent systems.

3 Results

Figure 1 shows a test result for a youBot which has to pass
two stationary rectangular obstacles. Every cross denotes a
new iteration of the method, every curve denotes a calcu-
lated trajectory. The average calculation time per iteration
was 0.05s, the maximum time was 0.45s. This figure proves
that feedforward velocity setpoints suffice for trajectory fol-
lowing and that no further control methods are necessary.

Figure 1: Time-optimal motion of the youBot
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1 Introduction
Hybrid vehicle technology requires an energy management
strategy to optimally control the power flow between the
internal combustion engine (ICE) and the electric machine
(EM), such that the fuel consumption is minimized. Be-
sides an electric machine, heavy-duty vehicles can also be
equipped with a refrigerated semi-trailer and many other
auxiliaries with the interesting property of having a flexi-
ble power demand and/or the ability of storing energy (see
Fig. 1). Including these components in the energy manage-
ment strategy, yields a complete vehicle energy management
(CVEM) and is attractive for reducing fuel consumption.
The computational complexity however, increases with the
number of components added to the CVEM and real-time
implementation requires a new approach to solve the energy
management problem [2].
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Figure 1: Topology of a hybrid heavy-duty vehicle

2 Approach
In [1], a dual decomposition approach is proposed to solve
the CVEM problem for a heavy-duty vehicle with an elec-
tric machine, a high-voltage battery and a refrigerated semi-
trailer over a horizon of 800 time steps with exact knowl-
edge of the driving conditions. This approach is interesting
for obtaining the optimal solution of the problem, but can-
not be used in real-time as it requires exact knowledge of
future driving conditions and it is too slow for real-time im-
plementation. To use this approach for real-time implemen-
tations, the dual decomposition approach of [1] is cast into
a receding horizon framework and the CVEM problem is
solved with a prediction of the future driving conditions [2].

Variable sample interval lengths are used to allow relatively
long prediction horizons with a small amount of decision
variables and constraints.

3 Implementation and Results
The algorithm is implemented in Simulink and simulated to-
gether with a high-fidelity model of the truck to evaluate the
fuel consumption reduction and computation times. The re-
sults are shown in Fig. 2 for a drive cycle from Aachen to
Cologne to Aachen. It shows that the fuel consumption can
be reduced by 0.84 % if all auxiliaries are considered. The
fuel reduction with only one of the auxiliaries is also given.
The average computation time for solving the receding hori-
zon problem is only 11.4 ms which demonstrates that the
algorithm can indeed be executed in real-time.
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Figure 2: Fuel reduction with smart control of auxiliaries
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1 Introduction

The goal of this project is to design a controller for the au-
tonomous navigation of a tractor. It has mainly two specifi-
cations: Firstly, the controller should be implementable on
a range of tractors (e.g. different weight/dimensions) with
limited changes in the algorithm. Secondly, the controller
has to take variations of the soil conditions into account.
The interaction between the soil and the tires determines the
handling of the vehicle.

In order to realize autonomous navigation and satisfy the
specifications above, a model-predictive control strategy
combined with system parameter and state estimation is de-
veloped and experimentally validated.

2 MPC

The MPC is developed based on a dynamic bicycle model.
The reference trajectory is projected into the system of axes
that is fixed to the vehicle in order to linearise the model
[1]. The MPC minimizes the quadratic deviation between
the predicted and reference trajectory with constraints on the
inputs and states[2].

The model misleads the controller while backwards driving
due to a swing-movement of the reference-point that is lo-
cated before the rear axle (e.g. reference-point moves to the
right while turning left). Some modifications are proposed
for this inconvenience.

3 State and Parameter estimation

The controller makes use of the information provided by
both a state and parameter estimator in order to perform a
stable control. The state are its plane coördinates, its head-
ing angle and the respective velocities. The estimator is an
extended kalman filter (EKF), which makes use of the fol-
lowing sensors: wheel encoders, steering wheel encoder and
a GPS.

The parameters in the bicycle model that are responsible for
describing the interaction between the wheels and the soil
are the cornering stiffnesses of every tire. An on-line es-
timation of these parameters with a recursive least-squares
estimator (RLS) increases the accuracy of the vehicle model
and thereby also improves its control.

4 Implementation and improvements

The system is experimentally evaluated on a set-up. The
validation trajectory that has to be tracked contains segments
for both forward and backward driving.

During the first tests an oscillation is observed in the steer-
ing behaviour and the tractor maintains a constant deviation
from the trajectory while turning. In order to eliminate these
inconveniences the following modifications are added to the
vehicle model: an integrator to eliminate the constant devi-
ation and some dummy-states to simulate the delay in the
steer actuator. Finally some extra experiments test explicitly
the functionality of the parameter estimator.
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1 Abstract

Recent years have seen a huge increase in online data traffic.
Nowadays everything is computed and stored in the cloud.
Web giants as Google and Facebook process huge amounts
of data on a daily basis. All this processing and storing is
done in data centers, halls with thousands of servers. The
size of these data centers have increased to the point where
they consume megawatts of energy on a yearly basis. With
this increase of energy consumption has come a correspond-
ing drive to optimize the control and cooling of a data center
such that the operational costs can be kept as low as possi-
ble.

Major challenges in controlling data centers lie in providing
adequate cooling and preventing thermal hot spots from oc-
curring, and optimizing the number of servers which are on
at any given time[1, 2, 3]. In an attempt to reduce power con-
sumption, thermal-aware control strategies have been stud-
ied and analyzed. The main control objective for a thermal-
aware workload scheduler is to keep the temperature of all
data processing units below a certain threshold while at the
same time maximizing energy efficiency of the system.

Figure 1: Heatmodel for a unit of the data center

2 Thermodynamical Model

To address this problem a thermodynamical model of the
data center is derived, see Fig. 1. The change of temperature
of a part of the data center can then be given by[1]:

mcpṪ (t) = Qin(t)−Qout(t)+P(t)

where m is the mass of the air, cp is the heat capacity, Qin(t)
is the heat entering the unit, Qout(t) is the heat exiting the
unit and P(t) is the power consumed by the unit. Next an
optimization problem is set up which aims at minimizing
the total power consumption of the data center. The thermal
model links the thermal effects of consuming power to any
decision in power distribution stemming from the optimiza-
tion problem. With this optimization it is possible to find
optimal power distributions even under varying total work-
loads.
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1 Introduction

Model predictive control (MPC) is widely applied in the pro-
cess control field. This control scheme allows safe operation
of the controlled plant subject to boundary and operational
conditions. However, due to wear in the process and pos-
sible changes in the operational conditions, the desired per-
formance of the controller can only be sustained in a lim-
ited time period after its commissioning. Such problems are
either solved by enforcing the MPC to be robust w.r.t. all
possible changes of operational conditions and disturbances,
or by equipping the MPC with adaptation capabilities. In
our recent investigation, we found that the utilization ofor-
thonormal basis functions (OBFs) based model structures in
the MPC scheme, called as the MPC-OBF method, allows
adaptation w.r.t. possible changes in the plant while stability
of the closed-loop system in the allowed range of adaptation
is guaranteed.
The aforementioned MPC-OBF scheme is formulated such
that the stability and adaptability are detached from each
other. The stability is ensured by a terminal controller, while
the adaptability is governed by the iterative identification of
the model coefficients. Due to attractive properties of the
OBFs, the identification procedure results in consistent and
unbiased model estimates. Under minor conditions, it is
possible to show that the resulting adaptive scheme guar-
antee control performance in the sense of asymptotic set
point tracking. However, the possible tracking error, be-
fore it disappears asymptotically, has not been character-
ized. With a characterization of the error, we can analyze the
performance of the MPC-OBF scheme during the adaption.
The goal of this work is to characterize or derive a possi-
ble bound on the aforementioned error either via numerical
experiment or analytical expression.

2 Problem Setting

The cost function of the MPC-OBF is given as:

VN(x(k),u(k −1)) = (x(i)− xr(i))
⊤P(x(i)− xr(i))+

N−1

∑
i=0

‖ y(i|k)− r(k + i) ‖2
Q + ‖ ∆u(i|k) ‖2

R, (1)

wherer(i) is the reference,y(i|k) is the predicted output,
∆u(i|k) is the control action increment,Q ≻ 0 andR ≻ 0 are
the weighting matrices expressing the control objective, and
P ≻ 0 is the solution of the control Lyapunov problem. The
i-th step ahead predicted output is given by:

y(i|k) = θ̂kx(i|k), (2)

which depends on the collection of model coefficientsθ̂k and
the predicted statex(i|k). For the particular(A,B)-form of
the OBF model, the state equation depends on the selected
basis functions which are determined by basis generating
filters. Since the filters are stable, the effect of initial state
gradually dies out. We can opt to avoid state estimation pro-
cedure and let the state evolution to depend only on the in-
put (control action) of the system. Hence, the tracking error
(in an appropriate signal norm) can be characterized by the
mismatch between the estimated coefficientθ̂k and the true
coefficientθk.

3 Problem Statement

Introduce the OBFs{φi(z)}n
i=1 that span the spaceΦ ⊂

RH 2 (Hardy space of all stable transfer functions, i.e. an-
alytic functions at the exterior of the unit disc). The OBFs
are chosen such that the true system

Gk(z) = Ḡk(z)+ G⊥
k (z),Gk(z) ∈ RH 2 (3)

have negligible unmodeled dynamicsG⊥
k ∈ Φ⊥ (the orthog-

onal complement ofΦ). Given a current estimate of the sys-
tem Ĝk(z) ∈ Φ, the model mismatch can be characterized
as:

‖ Ḡk(z)− Ĝk(z) ‖H2=‖ θk − θ̂k ‖2≤ γ, (4)

whereγ ∈ R+ is the bound on the model error. Using this
expression, we can analyze the relation betweenγ, the cost
function (1), and the tracking error for a given reference
value. A possible analysis can be conducted numerically
using experiments with scenarios such as:

• Fixed θ̂k.

• Slowly varyingθ̂k with a fixed error boundγ.

Moreover, due to the terminal cost formulation of (1), the
MPC controller is none other than an LQR controller if the
operational constraints on the MPC controller are not active.
Hence, an analytical expression can be derived in the similar
manner as in robust performance analysis.

4 Acknowledgments

This research is financially supported by the SMART project
which is a joint consortium of TU Eindhoven, KU Leuven,
and IPCOS.

References

[1] Bachnas, A. A., S. Weiland, R. Tóth,Data Driven
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1 Introduction

In many high-accuracy positioning systems, performance is
defined at points that varies with time and position. A typ-
ical example is given by wafer stage positioning systems in
the lithographic industry. The illumination process of such a
system happens in a scanning fashion to varying target loca-
tions, the so-called Point of Interest (PoI). See Figure 1. The
relation between the system states and PoI exhibits time-
varying properties relating to a pre-defined scanning pattern,
hence a time-varying state-to-output map.

To obtain position performance with nano-scale accuracy,
feedforward controllers play a key role in compensating for
structural dynamics. However, with conventional feedfor-
ward designs, a mismatch occurs between the calculated
force and the ideal force. This mismatch is largely caused by
position / time-varying behavior of the system. Therefore,
we propose to explicitly take such time or position-varying
characteristics into account in the feedforward compensator
design to enhance the positioning performance.

2 Problem formulation and Discussion
Consider a flexible system in a linear modal state-space form
with the modal state x(t) :=

[
q>(t) q̇>(t)

]>. Here, the en-
tries of the state vector x(t) appear as the modal coefficients
q(t) ∈Rp and their time derivatives q̇(t), whereas p denotes
the number of vibration modes used in the approximation.
Thus, we obtain the system:{

ẋ(t) = Ax(t)+Bu(t)
y(t) =C(t)x(t).

(1)

Note that system (1) is time-varying in the state-to-output
mapping C(t) with u(t) ∈ Rb and y(t) ∈ R as the inputs and
output, respectively. Specifically

A :=
[

0(p×p) I(p×p)
−Ω2

(p×p) −2ζ Ω2
(p×p)

]
,B :=

[
0(p×b)
Φ>ac

]

C(t) :=
[
φs1(t) φs2(t) · · · φsp(t) 0(1×p)

]
.

(2)

The modal frequencies are contained in the matrix Ω :=
diag(ω1,ω1, · · · ,ωp). The diagonal matrix ζ ∈ Rp×p and
matrix Φac ∈ Rb×p denote the modal relative damping and
the mode shape gains at actuation nodes, respectively. The
position dependency of the system output is modeled by
making the state-to-output mapping C(t) time-varying ac-
cording to the pre-defined (and time-varying) reference PoI
trajectories. More specifically, this mapping represents the

time-varying mode shape gains of the flexible structure,
φsi(t) ∈ R for i = 1,2, .., p, along the time trajectories of the
PoI.

Figure 1: Point of Interest(PoI) and flexible behaviour of the stage
With the given knowledge about the plant parametric model
and the desired output trajectory ydesired(t), it is aimed to
find a feedforward input uff(t), that satisfies the following
nominal system:{

ẋref(t) = Axref(t)+Buff(t)
ydesired(t) =C(t)xref(t).

(3)

Here, xref(t) denotes the reference state trajectory corre-
sponding to ydesired(t). In other words, for a given ydesired(t),
we aim to find a pair [uff(t),xref(t)] such that the nominal
system description (3) holds. Such an inversion-based prob-
lem formulation has been posed, for example, for LTI sys-
tems in [1] and for nonlinear systems in [2]. Clearly, the pair
[uff(t),xref(t)] does not need to exist for any given ydesired(t)
if not being compatible with (3). Solving this problem yields
several benefits. Firstly, it gives insight in whether the de-
sired trajectory ydesired(t) is realizable in the considered sys-
tem setting or not. Secondly, the obtained solution(s) ex-
actly provide the required input uff(t) that drives the system
according to ydesired(t) (when feasible); such input(s) can
be utilized as feedforward signal(s) in the implementation.
Thirdly, it enables us to determine, from a given ydesired(t),
the corresponding reference state trajectory xref(t) that ap-
propriately satisfies the system dynamics; this is essential
when utilizing control techniques involving state feedback
mechanisms. References
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1 Introduction

With an increased number (up to nine) of fuel injections per
combustion cycle, the diesel combustion can achieve bet-
ter fuel economy and lower engine-out emissions. Mean-
while, the problem in controlling the fuel injection becomes
challenging. The combustion process depends on all fuel
injection pulses in a coupled way and the consequence of
changing individual injections becomes correlated. Cur-
rently applied combustion control schemes manipulate in-
jection pulses individually by using multiple single-input
single-output (SISO) controllers. Without considering the
coupling effect, they have limited dynamical performance
and no stability guarantee. Therefore, it is desired to design
a multivariable combustion controller for diesel combustion
with multi-pulse fuel injection, which has better dynamical
performance and stability guarantees. It is also of interest to
achieve robust closed-loop performance against cylinder-to-
cylinder variations.

Figure 1: Block diagram of cylinder pressure-based com-
bustion control scheme [1].

2 Approach

Several metrics are extracted from the crank angle and cylin-
der pressure signal y and used to describe a combustion pro-
cess, e.g. the crank angle degree reaching 50% accumulated
heat release (CA50) and the indicated mean effective pres-
sure (IMEP). To achieve the desired engine performance in
z, they are used as the feedback signal x and compared to the
reference x̂. Based on the error signal e, the combustion con-
troller modifies the fueling profile u on a combustion cycle
basis, which is known as the cycle-to-cycle control scheme.
The block diagram of the control scheme is shown in Figure

1. By perturbing the fueling profile, the (coupled) sensitiv-
ity of the feedback signal is acquired for all cylinders at a
certain working condition [1]. Based on this, the closed-
loop performance of a combustion controller can be studied.
By solving Linear Matrix Inequalities (LMI), a single multi-
variable combustion controller for multiple cylinders can be
designed with guaranteed stability and performance.

3 Results

The closed-loop performance of the designed multivari-
able combustion controller was studied using a map-based
cylinder-individual engine model, which is developed based
on experimental data from a six-cylinder heavy-duty diesel
engine. As shown in Figure 2, the different feedback signals
from six cylinders denote the cylinder-to-cylinder variation
before the controller was applied at combustion cycle 10.
After that, this variation is quickly compensated by assign-
ing different fueling profiles to different cylinders. The con-
troller’s satisfying and robust dynamical performance was
demonstrated with fast reference tracking for all six differ-
ently behaving cylinders.
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Figure 2: Closed-loop simulation with step reference (black)
and the feedback signals of six cylinders (color).
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Introduction

Feedforward control enables high performance for indus-
trial motion systems that perform non-repeating motion
tasks. Recently, learning techniques have been proposed
that improve both performance and flexibility to non-
repeating tasks in a batch-to-batch fashion by using a ratio-
nal parametrization in feedforward control. The aim here is
to investigate the merits of these approaches. Experimental
results on an industrial motion system confirm the theoret-
ical findings and illustrate benefits of rational feedforward
tuning in motion systems, including pre- and post-actuation.

Batch-to-Batch Feedforward from
a System Identification Perspective

The goal in batch-to-batch feedforward control is to itera-
tively improve control performance by updating a feedfor-
ward controller C f f from measured data in a batch-to-batch
fashion, see Fig. 1. Here, the batch-to-batch feedforward
techniques are interpreted in a system identification perspec-
tive [4], illustrated in Fig. 2. Essential for the achievable
performance are i) the batches of measured data, ii) the feed-
forward controller parameterization, and iii) the optimiza-
tion criterion.

rj ej yj

−
Cfb P

Cff (θ
j)

vjf j

Figure 1: In batch-to-batch feedforward control with parameter-
ized feedforward, parameters θ of C f f (θ

j ) are updated based on
measured data after each task j.

Batch of data

θj+1

Parameterization C

Criterion V

Algorithm

Figure 2: Batch-to-batch feedforward tuning from a system iden-
tification perspective. Based on a batch of data, parameterization
C and criterion V , θ j+1 is determined and implemented to obtain
a new batch of data.

Two techniques to batch-to-batch feedforward are investi-
gated: an instrumental variable-based technique [1], and an
Iterative Learning Control (ILC) based technique [2]. In the

framework of Fig. 2, these approaches turn out to be very
similar. Their algorithms to compute θ j+1 can be interpreted
in terms of a standard ILC update law, given by

θ j+1
= Qθ j

+ Le j , (1)

with corresponding robustness and learning matrices Q, L .

Implementation & Experimental Results

Interestingly, rational feedforward controllers can also be
used to generate pre-actuation by means of stable inversion
procedures, see, e.g., [5]. The proposed approaches are im-
plemented on a wafer stage. The results in Fig. 3 demon-
strate preactuation, used to prevent transient errors at the
start of the motion task, and postactuation, used to reduce
residual vibrations in the system. This feature is key for the
potential performance improvement of rational feedforward.
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Figure 3: The rational parameterization ( ) enables pre-
and post-actuation of the system, in contrast to the polynomial
parametrization ( ). The start and end times of the motion task
are indicated by black dashed lines.
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1 Motivation
In traditional feedback control, a single sampling frequency
is used for all control loops and increasing performance re-
quirements typically lead to an increase of the sampling fre-
quency. This is often very costly in terms of required hard-
ware and hence there exists a trade-off between performance
and cost-effectiveness, see Figure 1. Usually, this high sam-
pling frequency is only required for some of the control
loops, and not necessary in the other loops. Therefore, the
trade-off can be ameliorated by use of multi-rate control:
using different sampling frequencies in the different control
loops.
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Figure 1: The performance/cost-effectiveness trade-off observed
in classical control can be enhanced by use of multi-
rate control: I) higher performance for equal cost; or
II) same level of performance for lower cost.

Multi-rate control has a strong potential in many motion
control problems, including dual stages, sampled-data con-
trol [1], master/slave configurations [2], thermo-mechanical
applications, and non-equidistant sampling [3].

Although a large number of theoretical issues have been
solved, the design of multi-rate controllers is by no means
straightforward. Indeed, multi-rate systems are LPTV (lin-
ear, periodically time-varying), so common design tech-
niques for LTI systems are not directly applicable. The aim
of this research is to develop a systematic design framework
for multi-rate control. The framework is demonstrated in the
context of wafer scanner systems.

2 Case study: dual stage in wafer scanner systems
Wafer scanner systems perform a key role in the automated
production of integrated circuits (ICs). An important aspect

is the positioning of the wafer stage containing the wafer
with ICs. The wafer stage covers a stroke of a meter, while
at the same time it achieves a position accuracy in the order
of nanometers. The large ratio between stroke and accuracy
is often addressed using a dual stage approach: a coarse
stage (long stroke) used for micrometer accuracy, with on
top a fine stage (short stroke) used for nanometer position
accuracy. Since the long stroke requires a much lower ac-
curacy than the short stroke, its sampling frequency can be
much smaller. This opens up the possibility of an improved
accuracy-cost trade-off by using a multi-rate approach.

3 Approach
The research in this paper focuses at multi-rate feedfoward
controller design, since for motion applications feedforward
constitutes the largest part of the system’s control input.
For multi-rate feedback controller design see, for example,
[4]. In the developed framework, multi-rate systems are
described using the finite-time/lifting framework [1]. The
framework is used for norm-based feedforward controller
optimization along the lines of [5]. Initial results, including
simulations of the dual stage case study, are reported in [6].
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1 Introduction

In most digital control systems, the execution of the con-
trol tasks (sampling the plant’s output and computing and
updating the control input) occur periodically, regardless of
the state the system is in. This possibly leads to a waste of
(e.g., computation, communication, and energy) resources,
as many of the control updates are not actually necessary
to achieve the desired performance guarantees. In recent
years, many event-triggered control (ETC) strategies have
been proposed which generate the execution times based on
the state of the system ξ (t) ∈ Rnξ , thereby bringing feed-
back into the execution times and communication process,
such that the control task is only executed when this is re-
ally necessary. Typical event-generators are of the form

tk+1 = inf{t > tk | φ(ξ (t))6 0}, k ∈ N, (1)

for a certain function φ : Rnξ → R. Thus, execution times
are generated based on a static condition on the state ξ .
However, static event-generators as in (1) can sometimes
generate many executions when the system is close to its
equilibrium, and can often lead to Zeno behavior. In [2],
we proposed an event-triggered control strategy for nonlin-
ear systems which does not have these issues. In this work
the event-generator has the form

tk+1 = inf{t > tk +h | η(t)6 0}, (2)

where h ∈ R>0 is a minimum inter-execution time, and
η ∈ R>0 is an additional dynamical variable which is in-
cluded in the event-generator. This leads to a dynamic event-
triggered control (DETC) system, with a guaranteed Lp-
gain and positive minimum inter-execution time.

In the case of linear systems with the event-generator (2),
we obtain the hybrid closed-loop system

d
dt




ξ
τ
η


=




Aξ +Bw
1

Ψ(o)


 , when τ ∈ [0,h]

and η > 0 (3a)




ξ+

τ+
η+


=




Jξ
0

η0(o)


 , when τ ∈ [h,∞)

and η 6 0 (3b)

z =Cξ +Dw, (3c)

where the functions Ψ and η0 depend only on o ∈ Rno

which contains all the signals that are available to the event-
generator. When the functions Ψ, and η0 are properly de-
signed, the proposed dynamic ETC system (3) can be shown

to outperform both periodically sampled systems and static
ETC systems, see [2, 3].

2 Improved DETC design for linear systems

The dynamic event-generators proposed in [2, 3] are formu-
lated for nonlinear systems. In this work, we further im-
prove upon these results for the case of linear systems. By
exploiting linearity and making use of techniques from [1]
and [4], we can provide more tailored design techniques for
Ψ and η0, such that less conservative results are obtained
than in [2, 3], with larger inter-execution times and tighter
L2-gain estimates. These techniques are based on using
Riccati differential equations for (3a) with appropriate jump
conditions related to the jump dynamics (3b).

Just as in [2, 3], for the system (3) we are able to guaran-
tee GES with a certain decay rate ρ > 0 and L2-stability
from disturbance w to output z with a certain L2-gain γ >
0. Simulations show that for identical ρ and γ the event-
generator (2) with Ψ and η0 designed using the proposed
tools for linear systems yields larger average inter-execution
times than the event-generator proposed in [2].
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Figure 1: Proposed control architecture.

1 Introduction

The Explicit Reference Governor (ERG) is an auxiliary con-
trol law that dynamically modifies the reference of a pre-
compensated nonlinear system to ensure the constraint sat-
isfaction without resorting to online optimization [1]. The
approach is based on the idea that any set of state-space con-
straints can be translated into a single constraint on the Lya-
punov function. The constraint on the Lyapunov function
can then be enforced by modulating the derivative of the ap-
plied reference. The basic scheme is illustrated in Figure 1.
The objective of this talk is to extend the ERG framework by
detailing its robustness properties with respect to parametric
uncertainties and external disturbances.

2 Problem Statement

Consider a pre-compensated nonlinear system subject to
parametric uncertainties µ ∈M , bounded external distur-
bances ‖δ‖∞, and a set of constraints c(x,v) ≥ 0. Given a
desired reference signal r(t), not known in advance, the ro-
bust ERG problem is that of generating, at each time instant
t, an auxiliary reference g(t) such that:
1) if g(t) is kept constant, constraints are not violated;
2) g(t) approximates r(t) as much as possible.

3 Basic Idea

Having translated the state-space constraints into a single
constraint on the Lyapunov function, the robust ERG frame-
work will focus on recovering the fundamental properties of
the basic ERG approach.
In particular, the robustness with respect to parametric un-
certainties will be addressed by considering the case of Lya-
punov functions that can present a common upper and lower
bound function µ ∈M .
The robustness with respect to external disturbances will
then be addressed by considering the case of ISS-Lyapunov
functions [2] and determining a suitable safety margin such
that the system constraints will be satisfied for any bounded
disturbance.
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1 Introduction

In many practical applications, one aims at optimizing the
performance of the system (e.g. the efficiency, power pro-
duced, etc.). However, in some applications, it may be re-
quired that a certain known margin with respect to the opti-
mum exists, so that it can be used as a "reserve". A possible
example concerns the wind energy sector where the capa-
bility of maintaining a known amount of reserve could be
used as a knob to counteract imbalances on the networks
due to load/production variations [1]. Due to the presence
of uncertainties in the system, the optimal (and sub-optimal)
point cannot be determined a priori (e.g. uncertainty on the
wind field distribution at the wind turbine location). The aim
of this work is to propose a non-model based approach for
reaching a given percentage of the optimal point.

2 Problem Statement

Consider a single-input-single-output system whose dyna-
mics is {

ẋ(t) = f (x(t),u(t))
y(t) = g(x(t)) (1)

with x(t) ∈ Rn the vector of system states, u(t) ∈ R the
control input and y(t) ∈ R the measurable system output.

Furthermore, consider a cost function

z =C(y), (2)

where C : R→ R, whose analytical expression in function
of the system output is not available (or only poorly known)
but whose output can be measured on line.

Assumption 2.1 There exists an output y∗ ∈ R and a cor-
responding state vector x∗ ∈ Rn which is a maximum for
C(y), i.e. ∃x∗ : y∗ = g(x∗) ensuring that

C′(y∗) = 0 and C′′(y∗)≤ 0 (3)

The goal of our research is to develop a control strategy able
to steer the system (1) to reach a given ratio 0< ρ ≤ 1 of the
optimal cost C∗ (with C∗ =C(y∗)).

This work is supported by the Fonds National de la Recherche Scien-
tifique (FNRS) under Grant ASP 24923120

3 Proposed Approach

To address the stated problem, the proposed approach
consists in 4 steps

1. The stated problem is reformulated as the minimiza-
tion of an auxiliary cost function φ defined as

φ(y) = (C(y)−ρC∗)2. (4)

2. Having no a priori knowledge of C∗, it is estimated lo-
cally (i.e. at the current point y) by using the truncated
second order Taylor expansion as follows

Ĉ∗(y) =C(y)− C′2(y)
2C′′(y)

(5)

This results in the approximated cost function

φa(y) =
(
(1−ρ)C(y)+0.5ρ

C′2(y)
C′′(y)

)2

(6)

3. In most of the cases, C′(y) and C′′(y) cannot be mea-
sured. Therefore, an estimation of those values is ob-
tained from data-points (y,C(y)) recorded during the
optimization process.

4. The minimization of the cost function obtained with
the approximated values of C′(y) and C′′(y) is per-
formed by the Extremum Seeking Control [2]. This
control strategy is able to move a system so as to op-
timize a given cost function, without requiring any
knowledge of the latter. It is therefore suited to our
application in which the relation between the system
input and the cost function output is not known.
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1 Introduction

In this work, the focus is on coping with the unavoidable
phase lag involved with linear control elements that limit
the increase of closed-loop bandwidth, without compromis-
ing control system specifications. As such, reset control
is of particular interest. Describing function (DF) analy-
sis showed that reset elements, such as the Clegg integrator
[1], possess similar magnitude characteristics as their equiv-
alent linear elements, while their phase lag is drastically re-
duced. Exploiting this phase advantage, the possibilities of
improved closed-loop performance of a stage control design
by the aid of a new reset element are studied; namely, a
second-order reset element (SORE) Rsore. This results in
the reset control scheme shown in Figure 1, in which a lin-
ear second-order element is replaced by Rsore. The main
motivation is the fact that second-order filters, e.g. notch
filters or low-pass filters, form key elements of (industrial)
motion control. As the second-order low-pass filter comes at
the expense of significant phase lag, a reduction of phase lag
by means of reset allows for higher achievable bandwidths.
Hence improved motion control performance.

2 Second-order reset element

A minimal state-space realization of a second-order low-
pass filter with reset functionality (triggered upon zero input
e(t) = 0) is given by

Rsore :=





ẋr(t)= Arxr(t)+Bre(t) ∀e(t) 6= 0
xr(t+)= Aρ xr(t) ∀e(t) = 0

ur(t)=Crxr(t)+Dre(t)
, (1)

with state xr ∈ R2 and matrices

Ar =

[
0 1

−ω2
p −2βpωp

]
, Br =

[
0

ω2
p

]
,

Cr =
[

1 0
]
, Dr = 0.

Moreover, the so-called reset matrix Aρ is defined as

Aρ =

[
0 0
0 0

]
, (2)

yielding a SORE with full reset. The Bode diagram of the
DF of said reset element shows significantly less phase lag
(up to 129 degrees less phase lag for high frequencies) than
the linear second-order low-pass filter, while their magni-
tude characteristics are similar (depending upon the dimen-
sionless damping coefficient βp). Moreover, time-domain

PClinRsore
r e y

Figure 1: Reset control scheme

analysis shows that properties of a second-order low-pass
filter are largely preserved.

3 Loopshaping with DF

Being part of a reset control design procedure, loopshap-
ing of the linear feedback loop with a SORE, based on
the DF description of said element, leads to higher achiev-
able bandwidths from a linear point-of-view. The valid-
ity and predictive value of the control design procedure are
based on a low-pass property of the linear control elements
and the plant dynamics in the loop, attenuating significant
higher-order harmonics induced by the reset. As such, the
frequency-domain characteristics of the open-loop, involv-
ing the DF description of the SORE, are sufficient to approx-
imate its input-output behavior. Figure 2 shows the sensitiv-
ity function S( jω) and cumulative power spectral density
(cPSD) of the tracking error for 3 cases, illustrating the im-
provement of performance tradeoff by means of reset. The
results are confirmed on an industrial wafer stage system.
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Figure 2: Sensitivity (left) and the cPSD of the tracking error
(right). Linear case in gray has maximum bandwidth
considering specs, linear case in black (does not meet
specs) and reset case in red have same controller pa-
rameters, the latter based on the DF of the SORE.
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1 Introduction

Shape Memory Alloy (SMA) is a lightweight material with
considerable higher actuation strain and work output than
other active materials such as (high strain) piezo-materials
[1]. For this reason SMA-actuators have a great potential
in micro-robotic systems. The actuating effect in SMA is
caused by a changing crystallographic structure (increas-
ing or decreasing the fraction of detwinned martensite).
This transformation (and thus the actuation) is controlled by
changing the temperature of the SMA material. The relation
between temperature and fraction of detwinned martensite is
highly non-linear and experts do not agree on the most suit-
able fraction-model. Typically, stability-analysis are model-
based, thus stability analysis of a closed-loop SMA-actuated
system should be treated with caution. The main contribu-
tion of this work is a stability analysis for SMA-actuators
that is not based on a full fraction-model. The latter allows
for a stronger and more general stability analysis.

2 SMA-actuators

SMA is able to recover from large deformation by changing
crystallographic structure. In actuators, this principle can be
used by applying a bias force to a SMA-wire. When enough
force is applied, the SMA-wire is in the detwinned marten-
site phase (the crystallographic structure is completely dom-
inated by detwinned martensite) at low temperatures and the
wire is stretched. If the temperature is increased the crys-
tallographic structure changes to the austenite phase, caus-
ing the wire to contract again. This process is assumed to
be instantanious. Furthermore, it is assumed that no crystal-
lographic changes occur when the temperature is constant.
The latter is generally accepted and matches with experi-
mental observations.
The above can be mathematically summarized as follows:
sign(Ṫ ) = sign(ξ̇ ) and if Ṫ = 0, also ξ̇ = 0. Where T de-
notes the temperature and ξ denotes the fraction of austenite
present in the material (0≤ ξ ≤ 1).

3 Experimental example

The methodology presented in this paper will be demon-
strated using a 1D SMA-actuator. A bias force is applied
by means of a spring. The actuator input (current through
the wire) is chosen such that the actuator goes through
a full cycle (a full transformation between austenite and
detwinned martensite and visa versa), after which several
∗The research leading to these results is part of INCITE (grant

#621278), an Eniac Joint Undertaking project that is co-funded by grants
from the Netherlands, Finland, Hungary, France, Ireland, Sweden, Spain,
and Poland.

’inner cycles’ (non full transformations) are followed at
different actuation speed (thus the rate of temperature varies
among cycles). The response of the actuator is provided in
Figure 1 (black crosses), where the rate of temperature is
plotted against the rate of fraction change. It can be seen
that the second and last quadrant of the plot are empty, as
follows from the insight provided in Section 2. Furthermore,
the response is clearly bounded by the black lines, which
are equal to [0,α]Ṫ = [0,0.1]Ṫ .

4 Stability Analysis

Several conditions should be valid to proof input-to-state
stability. One can use the fact that the grey sector in Figure
1 is bounded by [0,α]. In this case the circle criterion can be
used to proof stability [2]. Note that the linear temperature
dynamics and fraction to displacement relation can be deter-
mined seperately by system identification techniques. When
an appropriate controller is designed, the cascade of the lin-
ear relations are globally asymptotically stable and strictly
proper. Hence, input-to-state stability is achieved when:

Re( L(iω)
1+L(iω) )>− 1

α
Note that L(iω) denotes the linear time invariant dynamics,
which can be determined using an arbitrary linear system
identification technique.

5 Overview

The presented work provides a stability analysis that is not
dependent on a full fraction-model. Although the method is
conservative it allows for a general stability criteria. In the
future, the method should be extended to comprehend non-
linear control design.
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1 Introduction

In this work, we investigate constructive control methods
for affine nonlinear systems based on recent results on con-
traction theory [1] and related notion of control metric func-
tion discussed in [2]. In particular, we study the problem
of designing a control law such that the closed-loop system
is contracting and able to track a desired time-varying state
trajectory.

2 Contraction based control design

Given the prolonged system

δΣ :
{

ẋ = f (x)
δ ẋ = ∂ f

∂x (x)δx
(1)

where x ∈ Rn is the state, f is a smooth vector field and
δx ∈ Rn is the first variation of the state. If there exists
a symmetric positive-definite metric function Π(x) ∈ Rn×n

such that

∂Π(x)
∂x

f (x)+
∂ f>

∂x
Π(x)+Π(x)

∂ f
∂x
≤ 2λΠ(x) (2)

then all the trajectories in the state space converge exponen-
tially to each other with rate λ , and the x−system in (1) is
said to be contractive.

In order to find a way to extend contraction theory to systems
with inputs, consider the prolonged system

δΣ :
{

ẋ = f (x)+Bu
δ ẋ = ∂ f

∂x (x)δx+Bδu
(3)

with B a constant matrix. Using the idea of control con-
traction metrics as in [1], consider the distance given by the
Finsler-Lyapunov function V :Rn×Rn→R≥0, with

V (x,δx) := δx>Π(x)δx (4)

where Π(x) is as in (2). By taking the time derivative of the
system along the trajectories of (3) and defining the varia-
tional control as δu := −ρ(x)B>Π(x)δx with ρ(x) a posi-
tive definite function, we get the so called generalized dif-
ferential Riccati equation [3]

∂Π
∂x

f (x)+
∂ f>

∂x
Π(x)+Π(x)

∂ f
∂x
−ρ(x)Π(x)BB>Π(x)=−Q(x),

(5)

when ∂Π
∂x B = 0 and Q(x) is an uniformly positive-definite

matrix. The solution Π(x) to (5) is obtained by means of the
nonlinear eigenvalue method proposed in [4].

The tracking control law can be computed by integration of
the variational control. Let γ : [0,1]→Rn be a path connect-
ing the reference state xr trajectory with the state x trajectory
such that

u(t) = ur(t)−
1
2

∫ 1

0
ρ(γ(s))B>Π(γ(s))

∂γ(s)
∂ s

ds (6)

with ur(t) is the nominal control input for the state reference
trajectory xr.

Example 1 (Water tank system) The dynamics of this sys-
tem is given by

ẋ =
C
A
√

x+
1
A

u (7)

with A,C ∈R+. The associated variational dynamics is

δ ẋ =
C

2A
√

x
δx+

1
A

δu (8)

Solving the equation (5) for this system with Q(x) =
1
k

(
1− C

A
√

x

)
we get Π(x) = 1/k, with k been a positive

constant. In this case, by taking ρ(x) = x2 and by using
γ(s) = xr + s(x− xr), the contraction-based controller is
given by

u = ur−
1

Ak
x2

r [x− xr]−
1

Ak
xr [x− xr]

2− 1
3Ak

[x− xr]
3 . (9)
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1 Introduction

The study of hormonal regulatory processes and their math-
ematical modeling are important for systems and control
scientists because they are complex dynamical biological
systems interacting through feedback(inhibitory) and feed-
forward(stimulatory) controls. In this paper, we deal with
a mathematical model for testosterone regulation. Testos-
terone regulation is important for the treatment of reproduc-
tive failure, prostate cancer and critical for understanding
the aging process [1].

In the endocrine system of Testosterone (Te) regulation in
males, the Gonadotropin-Releasing Hormone (GnRH) and
the Luteinising Hormone (LH) play essential roles. GnRH
is secreted by the hypothalamus and carried to the pituitary
gland in the blood through the hypophyseal portal vessels.
LH, which is secreted by the pituitary gland, in turn stim-
ulates the gonadal secretion of testosterone while testos-
terone inhibits the secretion of GnRH. However, there is ex-
perimental evidence that Te inhibits the production of LH
as well [1],[2]. In this paper, we extend the mathematical
model presented in [3] with an additional nonlinear nega-
tive feedback from Te to LH and investigate the qualitative
behaviors of the new system.

2 The mathematical model

The mathematical model for the GnRH-LH-Te regulation
was originally proposed by Smith [3], which in essence
is the Goodwin biochemical oscillator model. In Smith’s
model, there is only a single feedback that reflects the fact
that testosterone inhibits the secretion of GnRH. However,
as the full physiological process of testosterone regulation
is being better understood, it is believed that Te inhibits LH
as well [1], [2]. This motivates us to introduce an additional
negative feedback from Te to LH into Smith’s model and ob-
tain a new mathematical model for Te regulation. Namely,
we examine the system as follows:





Ṙ =−b1R+ f1(T ),
L̇ = g1R−b2L+ f2(T ),
Ṫ = g2L−b3T,

(1)

where R,L and T are the serum concentrations of the hor-
mones GnRH, LH and Te respectively, b1,b2,b3 are positive

constants describing clearing rates of GnRH, LH and Te re-
spectively, and g1,g2 are positive constants determining the
rates of secretion for LH and Te. Moreover, f1(·), f2(·) are
positive and decreasing functions being negative feedback
from Te to GnRH and LH, respectively. Here f1(·) and f2(·)
are smooth functions. Removing f2(T ) term in the second
equation, system (1) becomes the conventional Goodwin-
Smith model [3]. Models of biochemical oscillators usually
express the negative feedbacks in the form of Hill-type non-
linearities, i.e. f (x) = K

1+βxρ where K,β and ρ are positive
constants.

3 Qualitative behaviors

We establish the following mathematical properties for sys-
tem (1):

1. A unique steady state

2. Local stability and instability of the steady state

3. Switching from a stable to an unstable equilibrium
point, the system undergoes the Hopf bifurcation

4. If the steady state is unstable, then for almost any ini-
tial condition, the solution converges to a non-trivial
periodic orbit.
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1 Introduction
The calibration of a C-arc based medical X-ray systems, as
depicted in Fig. 1, can either be approached from a motion
control point of view or using model-based approaches, [1].
The dynamical behavior of the system is depending on the
operating conditions; the system is linear parameter varying
(LPV). This provides a systematic framework for controller
design. The aim of this work is to develop a nonparametric
identification approach to obtain accurate FRFs of the X-
ray system for a set of “frozen” workpoints. These accurate
FRFs can be the basis for both controller design and (local)
LPV modeling, [2], [3], [4].

Figure 1: Philips Allura Centron interventional X-ray Sys-
tem.

2 Local Parametric Methods for LPV systems
State-of-the-art identification methods exploit the smooth-
ness of a FRF over the frequencies, [2]. Here, we propose
a nD-LRM to also exploit smoothness over the scheduling
parameters, [5]. In particular, for traditional local paramet-
ric methods, a rational function is fitted on a local frequency
window for each LTI experiment, as indicated in Fig. 2a.
The proposed nD-LRM approach identifies the systems’ dy-
namics on a local surface, as indicated in Fig. 2b.
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Figure 2: Proposed approach, compared to traditional LTI
methods.

3 Measurement Results
The medical X-ray system in Fig. 1 has several degrees of
freedom, which each cause varying dynamics. Here, a single
degree of freedom has been identified at 13 individual poses
of the system. The data obtained from the same identifica-
tion experiments are processed using traditional local ratio-
nal methods and using the proposed 2D-LRM approach, for
which the resulting Bode diagrams are shown in Fig. 3.
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Figure 3: Comparison of traditional method with the pro-
posed method based on measurements.

4 Conclusions

For the medical X-ray system, the proposed nD-LRM ap-
proach shows significant potential in terms of estimation
quality and measurement times. With identical measure-
ment times, smoother Bode diagrams with significantly re-
duced variances are obtained. These improved identified
FRFs are directly usable for state estimations or controller
design, [4].
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1 Introduction

We present recent work [2] where we address the prob-
lem of selecting genes differentially expressed with some
phenotype of interest in large genomic datasets. We use
matrix factorization to model biological and confounding
sources of variation. Including those confounding factors
(or CF) in the modeling is of critical importance, as not do-
ing so may adversely affect the validity of biological con-
clusions drawn from the datasets. A popular approach to
address batch effects is surrogate variable analysis (SVA)
[3] which includes an SVD matrix factorisation step. It was
subsequently shown that using an ICA can improve results.
Applying ICA methods to the feature-by-sample matrix X
yields a decomposition X ≈ ABT = ∑K

k=1 A:,kBT
:,k where A:,k

can be interpreted as the gene activation pattern of compo-
nent k and B:,k as the weights of this pattern in the sam-
ples. In [1], a continuum between independence on columns
of matrices A or B was investigated using a “spatiotempo-
ral” ICA method. In this work, building on [1] and [3], we
study how combining information from different values of
the spatiotemporal parameter α may help to improve the list
of selected genes.

2 Model

The model assumes that the expression level of a gene is the
result of interactions between different phenomena, where
one in particular is of interest (the phenotype of interest, or
POI) and the others are not. Under the assumption that those
interactions are linear, the model can be written as:

Xg,:︸︷︷︸
activation

levels
o f gene g

= fg( yT
︸︷︷︸

phenotype
o f interest

) +
K

∑
k=1

Agk rT
k︸︷︷︸

con f ounding
f actors

+ εg,︸︷︷︸
noise

g= 1, ..., p.

The CFs are represented by a basis of surrogate variables
vk that spans the same space: ∑k AgkrT

k = ∑k A’gkvT
k , where

variables vk are inferred from X and y using the spatiotempo-
ral ICA developed in [1]. Finally, we keep as differentially
expressed the genes whose activation can be better predicted
including the POI in the model. To improve the stability of

Figure 1: Grey tile: gene selected for the corresponding α value.
Light blue curve: number of selections of each gene.
Dark blue curve: number of genes selected for each α .

the set of selected genes, we compare all lists of selected
genes obtained for different values of α . We retain as final
selection the genes present in most of those lists.

3 Results

We tested our approach on breast cancer data.We compared
the final list of selected genes with lists of genes known to
be differentially activated with the POI.Figure 1 shows the
list of selected genes for 21 equispaced values of the param-
eter α . The list of selected genes differs from one α value to
another, but with significant overlaps. Moreover, this over-
lap is proportionally bigger for POI-related genes than for
others genes. So returning genes selected in most of the 21
lists clearly improves the gene selection.
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1 Introduction

This abstract introduces bivariate interpolation of
manifold-valued data points pij . The considered mani-
fold is denoted by M. The data points are associated
with nodes (i, j) ∈ Z2 of a Cartesian grid in R2. In the
present work, we seek a bivariate piecewise-cubic C1
Bézier function B : R2 →M such that B(i, j) = pij .

Several applications motivate this problem, such as
projection-based model order reduction of a dynami-
cal system depending on a few parameters (where M
is a Grassmann manifold) [3].

A detailed report about the work proposed here is avail-
able in [1].

2 Differentiable bivariate Bézier splines

In a Euclidean space Rr, cubic Bézier surfaces are func-
tions of the form

β3(·, ·; (bij)i,j=0,...,3) : [0, 1]2 → Rr,

(t1, t2) 7→∑K
i,j=0 bijBi3(t1)Bj3(t2),

where Bj3(t) =
(
3
j

)
tj(1− t)3−j are Bernstein polynomi-

als. The Bézier surfaces are parameterized by control
points (bij)i,j=0,...,3 ⊂ Rr : they define how the sur-
face spatially behaves and are interpolated when their
indices i, j are both in {0, 3}.

A bivariate Bézier spline corresponds to several Bézier
surfaces βmn

3 patched together respectively in the x and
y direction. They are continuously patched if, at the
shared border of the two surfaces, their control points
are exactly the same. Furthermore, on the Euclidean
space, a simple linear constraint on the control points
suffices to achieve the differentiability of the spline.

It is quite simple to extend the definition of Bézier
surfaces to manifolds (we propose different techniques
leading to slightly different results), as well as the con-
tinuity condition. However, differentiability no longer
holds by simply generalizing the simple Euclidean con-
straint. We hence introduce a modified definition of the

Bézier surfaces such that we obtain C1 splines on any
Riemannian manifold.

3 Optimal splines

We optimize the control points under the C0 and C1
constraints such that the mean square acceleration of
the surface is minimized when the manifold is the Eu-
clidean space Rr. In other words, we minimize the ob-
jective function

f [bmn
ij ] =

M−1∑

m=0

N−1∑

n=0

F̂ [βmn
3 ]

where F̂ [βmn
3 ] is the energy of the Bézier function on

the patch (m,n). In Rr, in view of the translation in-
variance of the problem, the optimal control points can
be expressed as affine combinations of the data points.
We generalize this result to the manifold setting as a
linear expression in a given tangent space, using a tech-
nique close to the one developed in [2].

We illustrate our method with surfaces computed on
several manifolds such as the sphere or the special or-
thogonal group SO(3) in order to interpolate rigid body
positions.

References

[1] P.-A. Absil, P.-Y. Gousenbourger, P. Striewski,
B. Wirth. Differentiable piecewise-Bézier surfaces on
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1 Introduction

Vitreoretinal surgery addresses sight-threatening conditions
on the back of the eye. Since structures on the back of
the eye are often only a few micrometers, the technical de-
mands placed on the surgeon by these procedures are very
high. Robotic systems can provide a distinct and positive
alteration in patient outcome when they can show to really
enhance the surgeon’s capability by providing both physi-
cal and mental assistance. The back of the eye is viewed
through a stereo-microscope, which provides a three dimen-
sional image to the physician. Still, determining distance
between instrument-tip and retina proves to be very hard.

2 Control scheme for robot-assisted safety

Until now, the focus of surgical robotic systems has been
on precision. To further improve patient safety and surgi-
cal performance, new concepts for (semi-)automated robot-
assisted surgeries are being developed. These concepts in-
corporate sensor guarded and sensor guided motions. From
a control point of view, this leads to a cascaded control loop
that exists of three layers (see Figure 1). The innermost layer
(denoted in blue) ensures closed-loop stability of a telema-
nipulator system. The complete loop is closed by the sur-
geon (denoted by the orange feedback line). The green loop
is established by adding a local sensor to provide fast and
reliable information about the distance between the instru-
ment and the retina. This information is primarily used to
prevent accidental penetration of the retinal surface. The
third layer (denoted in red) combines all measurements of
the environment into a world model of the inside of the eye.
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Figure 1: Sensor integration in the surgical system.

3 Optical Coherence Tomography probe

Optical Coherence Tomography (OCT) [1] is a sensor so-
lution based on interference between two light paths, a ref-
erence path and a path that reflects on the to be measured
sample. An interference spectrum is measured and pro-
cessed to obtain a one-dimensional depth image (A-scan) of
the sample. To remove optical disturbances, the measured
spectrum is apodized [2] using a custom apodization spec-
trum. Generally, a spectrum measurement of air would in-
clude all optical disturbances inside the probe and reference
stage. But these disturbances can change over time. Since
the sensor is used in a closed-loop implementation, it is not
preferred to interrupt surgery for a new apodization mea-
surement. Therefore a low-pass filter with a time constant
of 60s is applied to the measured spectra. It is assumed that
the probe will move sufficiently, so that the sample is filtered
out. Hence the apodization will not remove the sample.

To accurately measure the distance between the instrument
tip and the retina, the position of the OCT measurement win-
dow should be known. The OCT probe is rigidly connected
to the instrument, and hence the distance between probe tip
and instrument tip is known. By changing the reference
stage length by a known value, the measurement window
can be shifted to include the probe tip. The offset between
probe tip and the position of the OCT measurement window
can then be calculated. This calibration step should be per-
formed every few seconds. It only takes a few milliseconds,
and hence the closed-loop safety control is not undermined.

4 Virtual bounds

As a proof of concept, a virtual bound is implemented on a
paper phantom eye. The distance to the paper is calculated
from the A-scan and sent to the robot. When the distance to
the paper is closer than the bound, the reference to the slave
robot is reset to the bound value, and the telemanipulation
setup is essentially being decoupled in one direction.
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1 Introduction

Iterative learning control (ILC) has been intensely re-
searched for over 30 years to improve the performance of
repetitive processes [1]. Most ILC algorithms use a known,
but potentially inaccurate model to compute the next it-
eration’s control signal. The majority of publications on
the topic of ILC considers linear-time-invariant or linear-
parameter-varying systems, although many applications re-
quire nonlinear models to represent the system’s dynamics
sufficiently. An example for such an application is a robotic
manipulator executing the same task repeatedly.

2 Approach

This paper adapts a general optimization-based ILC ap-
proach for arbitrary nonlinear systems [2] to be used for ma-
nipulators with n degrees-of-freedom in a closed-loop con-
figuration. Having derived the nonlinear inverse dynamics f,
the closed loop can be written as

f(yi(t),p) = ui(t) = c(ri(t),yi(t))

with iteration index i, the controller function c, output y ∈
Rn×1, parameter vector p, input u ∈ Rn×1 and reference
r ∈ Rn×1. Existing ILC approaches for robot manipula-
tors [3] use approximations of this nonlinear model, e.g.
obtained by linearizing f along a desired trajectory yd. In
this research we consider the full nonlinear system dynam-
ics and two possible modelling errors: unmodelled dynam-
ics and model parameter mismatch. The developed learning
approach consists of two steps that are executed at each it-
eration, as shown in Fig. 1. First, a model correction is

C Manipulator+
-

yd yi+

Model
correction

Model
inversion

ui

Δri

εi

ri

Memory

Memory

ILC algortihm

Figure 1: Closed-loop configuration and the ILC components

computed by processing the torque and joint angular posi-
tion measurements, ui,m(t) and yi,m(t), respectively. This
correction can be parametric or nonparametric such that the
above mentioned modelling errors can be compensated for,
and is found by solving the optimization problem

min
εεε i+1

‖ui,m− f(yi,m,p,εεε i+1)‖

s.t. εεε ≤ εεε i+1 ≤ εεε

with the correction term εεε . The resulting correction is then
used in the second step, the model inversion, to compute a
reference update ∆∆∆ri by solving another optimization prob-
lem

min
∆∆∆ri+1

‖c(yd +∆∆∆ri+1,yd)− f(yd,p,εεε i)‖

s.t. y≤ yd +∆∆∆ri+1 ≤ y
with yd being the iteration independent desired output and
the resulting reference ri+1 = yd +∆∆∆ri+1, which is finally
applied as the next iteration’s input to the closed loop. This
research focuses on the efficient solution of the optimization
problems and the trade-off between convergence speed and
robustness. The developed ILC approach is validated both
in simulation and experimentally for a 6 degrees-of-freedom
robotic manipulator.
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1 Introduction

This work proposes a controller for direct force-reflection
to guarantee passivity of a teleoperator in the presence of
time delays. Numerous architectures have been proposed
over the past thirty years to control bilateral teleoperators
with communication delays (see e.g., [1]). These architec-
tures can be classified in bilateral motion synchronization
schemes (master and slave controllers implement an as-stiff-
as-possible coupling between the two devices) and direct
force-reflection schemes (the slave controller mimics the op-
erator action, while the master controller reflects the slave-
environment interaction). The focus is on the latter, since
these architectures seem to have the most potential in terms
of performance. Direct force-reflecting architectures, how-
ever, suffer from contact instabilities that manifest itself as a
violent recoiling of the master device, such that the operator
is not able to make stable contact of the slave with the remote
environment. Communication delays play a significant role
in this unstable behavior. We therefore propose a two-layer
architecture designed according to the direct force-reflection
philosophy, such that stable slave-environment interaction
can be achieved.

2 The 2-layer architecture

The architecture is structured with an (inner) performance
layer and an (outer) passivity layer. In the performance
layer, any traditional controller for bilateral teleoperation
can be implemented. Here, we use the Position/Force-Force
controller. The passivity layer guarantees that, from the op-
erator and environment perspective, the overall teleoperator
is passive: the amount of energy that can be extracted from
the teleoperator is bounded from below and the rate of in-
crease of the stored energy in the teleoperator is bounded by
(twice) the environment and operator supplied power. Pas-
sivity is ensured by modulating the performance layer out-
puts and by injecting a variable amount of damping via an
energy-based logic that follows the innovative principle of
energy duplication and takes into account the detrimental
effects of time delays.

3 Experiments

The effectiveness of the proposed architecture is experimen-
tally verified by implementing it on a physical setup. The
round-trip communication delay is 100 ms, while the slave is
in free motion first, and then makes and breaks contact with
a hard environment. Without the passivity layer applied, sta-
ble slave-environment interaction could not be achieved due
to recoiling of the master device. With the proposed 2-layer
architecture applied, stable contact is achieved, see Figure 1.
Moreover, the injected damping is low in free motion, such
that the operator effort is low. When the slave makes con-
tact with the environment, the architecture prevents active
behavior by temporarily increasing the damping gains.
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Figure 1: Master- and slave positions (xm and xs, resp.) in free
motion (top left) and contact (top right). The damping
gains are low in free motion (bottom left) and increase
during impact and contact (bottom right), to prevent ac-
tive behavior.
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1 Abstract

The robotic task assignment problem is important in appli-
cations such as transport logistics and distribution systems
[1]. We investigate this problem under the setting where
m > 1 initially randomly distributed robots need to visit
n > 1 dispersed target points as fast as possible. The robot-
s know the position of every target and can communicate
with other robots that are within their limited communica-
tion range.

Generally, the multi-robot task assignment problem can be
solved by either centralized or distributed algorithms [2].
Centralized algorithms can obtain the optimal solution by
choosing one robot as the leader to collect all necessary data
and make decisions for the other robots [3], while distribut-
ed ones let each robot make its own plan based on the avail-
able local information [4]. In our setup, one robot does not
know the positions of those robots that are out of this robot’s
communication range. As the robots move around, howev-
er, the robotic network may connect over time. To solve the
task assignment problem, we propose two kinds of hybrid
algorithms borrowing advantages from both centralized and
distributed algorithms.

The first kind of task assignment algorithms is the single
traveling salesman algorithm (STSA), which is inspired by
[5]. STSA lets each robot precalculate an optimal closed
tour connecting in order the n targets as the traveling sales-
man problem (TSP). Since every robot has the same infor-
mation of the target positions, the obtained TSP tours for
all the robots are the same if all of them utilize the same
exact task assignment algorithm. Then, every robot moves
towards the nearest target on the TSP tour. Based on differ-
ent cooperative strategies for robots within communication
range, we design the follower-based STSA (STSA-F), the
jump-based STSA (STSA-J) and the division-based STSA
(STSA-D). For robots that have not communicated with any
other robots, they move along the TSP tour to find the next
available target after reaching a target.

Extending the STSA, we get the multiple traveling salesman
algorithm (MTSA). First, MTSA divides the n target points
into m subsets and connects the targets within each subset in
an optimal TSP tour. Then, each robot chooses the nearest

TSP tour and visits the targets on the tour in the clockwise
direction. If one TSP tour is chosen by two robots, they ne-
gotiate to resolve the conflict based on their distances to the
nearest target on the TSP tour when they can communicate
with each other.

The two kinds of algorithms assign tasks as described above
when the whole communication network is initially uncon-
nected. Once it is connected during the robots’ movement,
we choose that robot with the most 1-hop neighbours as the
leader to assign the unvisited targets to all the robots in a
centralized manner based on the position information of the
robots and the unvisited targets. If two or more robots have
the same number of the most 1-hop neighbours, we random-
ly choose one as the leader.

We compare the proposed algorithms with a greedy task as-
signment algorithm (GTAA), where robots always move to
the nearest available target. Simulation results show that the
STSA-D obtains satisfying solutions and longer communi-
cation range does not necessarily lead to better performance.
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1 Introduction

In recent years, research interest in unmanned aerial vehi-
cles (UAVs) has emerged due to their potential use for a wide
range of applications such as: smart flying sensor, formation
control of unmanned ground vehicles (UGVs) using an UAV
and habitat mapping. In order to accomplish the above men-
tioned missions, a prerequisite requirement is that the UAV
should be able to implement real-time autonomous naviga-
tion. Whereas most of the proposed approaches are suitable
for outdoors, only few techniques have been developed for
indoor environments. In this paper, a solution using only on-
board visual and inertial sensing which enables an UAV to
operate indoors is proposed. The approach comprises three
key components: pattern-based localization, IMU data pro-
cess, designed path planning and controller. This method-
ology opens new possibilities for the UAV to perform au-
tonomous navigation.

2 System setup

The proposed approach consists of three major components
running on a laptop connected to the UAV (Ar. Drone 2.0)
via wireless communication as shown in Figure 1. The first
component is the pattern based localization which allows
Ar. Drone 2.0 to determine its location and orientation in a
working space. The second component is IMU data process
which transmits and receives signals between Ar. Drone 2.0
and the ground station. The last component is a cascade con-
trol which guides the drone to follow the desired trajectories.

3 Path planning and control design

The paths are obtained base on modified A*, D* and Poten-
tial Fields algorithms. To perform experiments, a cascade
control is designed (Figure 2) such that the drone follows
the generated trajectories. There are two parts of the cascade
controller: inner-loop controller and outer-loop controller.
The inner-loop controller is performed inside the drone as
a black-box. The outer-loop controller is designed to im-
plement position control. The localization process provides
the current the drone pose in world coordinate based on the
ground patterns. The obtained free-collision path is sent to
the controller by a list of way-points [1].

Figure 1: The proposed navigation approach of an AR.Drone 2.0

Figure 2: The proposed cascade controller of an AR.Drone 2.0

4 Conclusion

In this study, we have presented an indoor flight approach
for a low-cost commercial AR. Drone 2.0 using only on-
board visual and internal sensing. The real-time experiment
demonstrates the feasibility of the proposed strategy which
opens an autonomous navigation possibility for the drone in
indoor environment.
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1 Introduction

In this paper we consider the problem of determining forma-
tion feasibility for networked multiple agents when individ-
ual agents are modelled by affine nonlinear control systems
with drift terms, and different agents may have different dy-
namics (i.e. heterogenous systems). By a formation graph is
meant an undirected graph whose nodes represent individual
agents with kinematics or dynamics constraints, and whose
edges capture inter-agent constraints that should be satisfied
to maintain a desired formation. We will give a feasibility
condition as well as formation abstraction control to gener-
ate feasible motions for a group of heterogenous agents to
achieve the desired formation maintenance task.

2 Formation feasibility and application

We assume that each individual agent’s dynamics are de-
scribed by the following affine nonlinear control system

ṗi = fi,0 +
l

∑
j=1

fi, jui, j (1)

where pi ∈ Rni is the state of agent i, ni is the number of
the state, fi,0 is a drift term, and ui, j is the control associ-
ated with the vector field fi, j. Such affine control system (1)
with the drift term is very general to describe many differ-
ent types of control systems, including control systems with
underactuation property or nonholonomic constraints. For
the system with drifts (1), we could write a corresponding
equation with equivalent constraints

ωi, j(pi)ṗi = qi, j, j = 1, · · · ,ni− l

where ωi, j is a row covector in the dual space (Rni)? and
the parameter ci, j can be obtained by the drift term fi,0.
We collect all the row vectors ωi, j in a compact form by
writing them as ωKi(pi)ṗ = qKi . By collecting all the kine-
matics constraints for all the agents, one can obtain ωK =
[ωT

K1
,ωT

K2
, · · · ,ωT

Kn
]T ,qK = [qT

K1
,qT

K2
, · · · ,qT

Kn
]T .

A family of formation constraints C is indexed by the edge
set, as C = {ci j}(vi,v j) ∈ E. For each edge (v j,v j), ci j is a
vector function defining the formation constraints between
agents i and j; the constraint is enforced if ci j(pi, p j) = 0.

Formation feasibility means that the constraints are satisfied
along the formation trajectories. We collect the formation
constraints for all the edges and define an overall formation

constraint denoted by CE = 0, where CE = [· · · ,cT
i j, · · · ]T .

By doing this, one can derive d
dt CE = LPCE + ∂CE

∂ t = 0,
where LPCE denotes the Lie derivative of CE along P (the
column vector which collects all agents’ vector states). By
grouping all the constraints for all the edges and write down
TF =−[( ∂C1

∂ t )
T ,( ∂C2

∂ t )
T , · · · ,( ∂Cm

∂ t )T ]T , we can reexpress the
above equation for formation constraint as wF(P) = TF ,
where wF(P) := LPCE .

The motion feasibility problem can be described as the so-
lution problem to the following equation

Ω(P) = T (2)

where Ω = [ωT
F ,ωT

K ]
T , and T = [T T

F ,q
T
K ]

T .

Theorem 1 The undirected formation has feasible motions
if the above equation (2) has solutions, or equivalently if T
belongs to the range of Ω.

Remark 1 For time-invariant formation we have ∂CE
∂ t = 0

and thus TF = 0; in the drift-free model case there holds
qi, j = 0 and thus qK = 0. In such special cases one has
T = 0, and Theorem 1 reduces to Theorem 4.1 of [1].

Application to coordination control of constant-speed
agents: Dynamics of constant-speed agent can be described
by (1). Such control problem has been discussed in [2], [3]
etc. The above obtained formation feasibility condition (as
well as the abstraction control concept [4]) provides more
insights to coordinate such networked heterogenous agents
with constant-speed constraints. More results will come in
a forthcoming paper.
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1 Introduction

Owing to many advances in computing and communication
technologies, recent years have witnessed a growing interest
towards cyber-physical systems (CPSs), i.e., systems where
physical processes are monitored by embedded computers
through networks[1]. The networked control architecture,
on the other hand, exposes the system to malicious attacks.

Our research deals with Denial-of-Service (DoS) attacks.
DoS attacks affect communication between process and
controllers, e.g. it may disrupt sensor-controller chan-
nel, controller-actuator channel or both channels. In this
work, we consider controller-actuator collocation scenario
as shown in Figure 1, i.e. DoS attacks only presents in
sensor-controller channel, under which our control objective
is to maintain closed-loop stability.

Process Sensor Transm.

Receiver

Network 
with DoS

Control system

Disturbance Noise

Actuator

Network Noise

Figure 1: Controller-actuator collocation under DoS attack

2 Predictor-based controller design against DoS

We propose a predictor-based controller, as shown in Fig-
ure 2, consisting of a finite-time observer, a predictor and
feedback gain. Both observer and predictor are equipped
with state-resetting mechanism and the resettings are trig-
gered when new measurements are available (in the absence
of DoS attack). In the presence of DoS attack, the controller
feeds the actuators with predicted control input.

Under such control scheme, we significantly improve sys-
tem robustness against DoS. One point to mention is that
robustness depends on observability of process [2].

3 Virtual one-step observability

In order to design a maximally robust controller, i.e. re-
move the impact of process observability on robustness,

Process

K

Observer

Sensor Transm.

Receiver

Network 
with DoS

Predictor

Control system

Disturbance

Network Noise

Actuator

Noise

Figure 2: Control configuration with predictor-based controller

we propose virtual one-step observation system as shown
in Figure 3. The network communication protocol is
acknowledgment-based. A predictor-based controller with
state resetting forms our control system.

With the control configuration in Figure 3, we maximize the
amount of DoS that one system can tolerate for a general
class of DoS signals [2].
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Figure 3: Virtual one-step observability control architecture
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1 Background

Increasing transmission speed has always been the target
for any telecommunication system. For that purpose, LTE-
Advanced adopted components carrier aggregation. Up to
5 components carrier can be aggregated (in 3GPP Release
10), and with 20 Mhz bandwith for each component, a to-
tal bandwith of 100 Mhz can be reached. 3GPP Release 13
will allow up to 32 components carrier aggregation. On the
other hand, power amplifier’s high efficiency is only possi-
ble in the nonlinear operation mode. But carrier aggregated
signal amplification in that mode leads to intermodulation
products. This paper focuses on intermodulation of carrier
aggregated components.

2 Introduction

As stated above, nonlinear amplification results in intermod-
ulation of carrier aggregated signals. Based on 3GPP Re-
lease 12, we will list all the possible carrier aggregations
and analyze all their intermodulations. We will answer to
the following questions:

-What are the frequencies of intermodulation products?

-Can transmission intermodulation products fall in the re-
ception frequencies of considered band? If they can, they
will cause interference with the received signal. This can
happen for the uplink transmission as well as for the down-
link transmission.

-For a given eNodeB(Base Station for LTE-Advanced), can
the downlink transmission intermodulation products fall in
the reception frequency bands of other LTE/LTE-A bands?

3 Methodology

Intermodulation products are calculated from band aggrega-
tions listed by 3GPP Release 12 and for a given transmis-
sion direction and the direction in which influence of inter-
modulation products is analyzed. The number of aggregated
bands is limited to three, and the order of intermodulation
products is also limited to three. The following figure illus-
trates the interference of uplink transmission intermodula-
tion products with the reception frequencies. The example
is given for carrier aggregation of band 4 and band 17 in
uplink transmission.

Figure 1: Bands 4 and 17 and their IMD products, transmission
up

4 Results and Discussion

We were able to calculate the intermodulation products of
aggregated bands in LTE-Advanced system. The calculation
showed that the answer for both question in the introduc-
tion section is positive. There are intermodulation products
which fall in reception frequencies of a given band. This
will put more requirements on linearity of power amplifiers
both in uplink and downlink transmission.

5 Conclusion

Carrier aggregation is an attractive technique but his prac-
tical implementation remains difficult due to, among other
things, intermodulation distortions. The above example il-
lustrated that phenomena with only 2 bands aggregation.
3GPP Release 13 will allow up to 32 carriers, and there will
be more intermodulation products.
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1 Abstract

We consider the stability analysis and feedback stabilization
of nonlinear continuous time dynamical systems that arise in
biomedical and biological applications. The stability analy-
sis problem for the underlying classes of systems translates
into computing domains of attraction of equilibria of inter-
est. The feedback stabilization problem is aimed at either
enlarging the domain of attraction(DOA) or at destabilizing
one equilibrium and stabilizing another. The tool for an-
swering the problems above consists of Lyapunov functions
(LFs). It is well known that finding an explicit form of a
LF for general nonlinear systems is a very difficult problem,
still not systematically tackled for general system classes.

For evolutionary models, such as those describing tumor
growth of HIV, one can construct, as stemming from
Zubov’s method, rational LFs. These functions can be used
to estimate nonconservative DOAs. In [1], a recursive proce-
dure which generates a rational control LF and a polynomial
feedback stabilizer for nonlinear systems was proposed. For
polynomial systems, it was shown that the existence of a
polynomial feedback stabilizer is guaranteed by the exis-
tence of a rational control LF. The proposed procedure is
illustrated in Figure 1 for a classical Lotka–Voltera tumor
growth model [1]. For that system the problem of enlarging
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Figure 1: DOA estimate and vector fields of the closed loop tumor
system.

the tumor dormancy equilibrium via feedback stabilization
was considered.

For nonevolutionary models, derived via biochemical reac-
tions which lead to rational (Hill terms) systems, the pro-
cedures based on the rational (control) LF are conserva-
tive, due to required polynomial approximations. An ap-
proach for computing Lyapunov functions for nonlinear
continuous–time differential equations is developed via a

new, Massera–type construction [2],

W (x(t)) :=
∫ t+d

t
V (x(τ))dτ.

This construction is enabled by imposing a finite–time cri-
terion on the integrated function V . By means of this ap-
proach, we relax the assumptions of exponential stability on
the system dynamics, while still allowing integration over
a finite time interval. The resulting Lyapunov function can
be computed based on any K∞–function of the norm of the
solution of the system. In addition, we show how the devel-
oped converse theorem can be used to construct an estimate
of the domain of attraction. We consider the Hypothalamus-
Pituitary-Adrenal glands (HPA) axis system, defined by

ẋ1 =

(
1+ξ

xα
3

1+ xα
3
−ψ

xγ
3

xγ
3 + c̃γ

3

)
− w̃1x1

ẋ2 =

(
1−ρ

xα
3

1+ xα
3

)
x1− w̃2x2 (1)

ẋ3 = x2− w̃3x3.

The HPA axis is a system which acts mainly at maintaining
body homeostasis by regulating the level of cortisol. The
three hormones involved in the HPA axis are the CRH (x1),
the ACTH (x2) and the cortisol (x3). Disorders of the HPA

Figure 2: DOA estimates of the two stable equilibria of the HPA
system.

axis lead to bistability, corresponding to stable hypocorti-
solic and hypercortisolic equilibria, with DOAs shown in
Figure 2.

References
[1] A. I. Doban and M. Lazar, “Feedback stabilization via Ra-
tional Control Lyapunov Functions,” in 54th IEEE Conference on
Decision and Control (CDC), Osaka, Japan, 2015, pp. 1148–1153.
[2] ——, “Computation of Lyapunov functions for nonlinear
differential equations via a Massera-type converse,” submitted to
the 15th annual European Control Conference (ECC), 2016.

Book of Abstracts 35th Benelux Meeting on Systems and Control

142



Sampling–based stability verification

Ruxandra Bobiti and Mircea Lazar
Department of Electrical Engineering

Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven

The Netherlands
Email: r.v.bobiti@tue.nl, m.lazar@tue.nl

1 Introduction

The problem of stability verification for discrete–time non-
linear systems via Lyapunov functions is considered. De-
pending on the system dynamics, the candidate Lyapunov
function and the set of initial states of interest, one gener-
ally needs to handle large, possibly non–feasible optimiza-
tion problems. To avoid such problems, we put forward a
constructive sampling–based approach to stability analysis.

The proposed approach verifies the decrease condition for
a candidate Lyapunov function on a finite sampling of a
bounded set of initial conditions and then it extends the
validity of the Lyapunov function to an infinite set of ini-
tial conditions by exploiting continuity properties. This re-
sult involves no apriori analytic description of the continu-
ity property and it is based on multi–resolution sampling,
to perform efficient state–space exploration. Moreover, the
stability verification is decentralized in the sampling points,
which makes the method scalable to any degree.

2 Main result

Verification of an inequality of the type F (x) ≤ 0 for all x ∈
S, where F : Rn → R and S ⊂ Rn is a set, can be posed [1]
as the verification of the inequality F (xδ) ≤ −σ(δ) in all
the sampling points xδ generated using δ–sampling for the
set S, where σ is the continuity function of the nonlinear
function F .

Here, the following improvements are proposed. Firstly, the
σ function is computed automatically, and not analytically,
for every sampling point as follows: linearize the system
in every sampling point xs and compute a σ in the form
of a Lipschitz constant for every sampling box and account
for the linearization error to maintain formal guarantees.
Secondly, allow for multi–resolution state–space sampling
to avoid unnecessary verification in regions where a very
coarse sampling suffices, thus improving scalability.

Consider the discrete–time autonomous nonlinear system

xk+1 = G(xk), k ∈ Z+, (1)

where xk ∈ S is the state, S is a compact set with 0 ∈
int(S), and G : Rn → Rn is a nonlinear function. The

problem of verifying KL–stability of system (1) on a com-
pact set S , can be posed via Finite–Step Lyapunov functions
(FSLFs). For a fixed candidate FSLF V , which is continu-
ous, two times differentiable (e.g., a quadratic function), the
property function to be verified is:

F (x) = V (GM (x))− ρ (V (x)) , ∀x ∈ S, (2)

with σ ∈ K and σ < id.

By applying this approach to compute the DOA of origin
for the 2D example in [2], we obtain the result in Figure 1,
which is larger than the one reported in [2].

Figure 1: DOA for the origin of a 2D system (green).
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1 Abstract

The object of our work is the `2-gain analysis of discrete-
time linear switching systems. These systems can be found
in many areas of applications, such as networked control
systems, viral mitigation, congestion control, etc... The sys-
tems considered are of the form

xt+1 =Aσ(t)xt +Bσ(t)wt ,

zt =Cσ(t)xt +Dσ(t)wt ,
(1)

where xt ∈Rn, zt ∈Rm and wt ∈Rd are respectively the state
of the system, its output and disturbance input at time t. The
parameter σ(t) is the mode of the system at time t, and takes
value in a finite set {1, · · · ,N}.
The sequence of modes, σ(0), σ(1), . . ., is called the switch-
ing sequence of the system. These sequences are often as-
sumed to be non-deterministic. They may also be subjected
to logical constraints. We encode these constraints through a
graph Θ on N nodes. In this graph, a directed edge is present
between node i and node j if σ(t) = i, σ(t +1) = j is valid.
Our interest lies in the computation of the L2-gain of such
systems. This quantity is defined as

γ = sup
x0=0,∑∞

t=0 |wt |22=1,σ(·) accepted.

(
∞

∑
t=0
|zt |22

)
.

The `2-gain can be interpreted as the maximum output en-
ergy produced by the system relative to the energy of the
disturbance signal. When γ < 1, we say that the system (1)
is contractive.
For LTI systems we can decide contractivity by using the
well-known KYP Lemma. The LTI system is contractive if
and only if there exists a quadratic norm |x|2Q = x>Qx acting
as a storage function. The condition is easily cast under the
form of a LMI. Since switching systems generalize LTI sys-
tems, it is natural to ask to which extend the KYP Lemma

1Research supported by the Belgian Interuniversity Attraction Poles,
and the Concerted Research Actions of the French Community of Belgium.
M.P. is a FRIA (F.R.S.-FNRS) Fellow; R.J. is a FNRS Research Associate.

2R. Essick and G. E. Dullerud were partially supported by grants NSA
SoS W911NSF-13-0086 and AFOSR MURI FA9550-10- 1-0573

can still be used for analyzing the `2-gain of switching sys-
tems. We give answers to the two following questions.

Question 1. Is there an exact characterization of the gain in
terms of storage functions?
We show that for any constant γ̄ , the gain is γ < γ̄ if and only
if there exists a set of N norms of Rn, {| · |σ}σ∈{1,...,N}, such
that ∀x ∈Rn,∀w ∈Rd , for all accepted transitions (σ−,σ+)
in the graph Θ,

|Aσ+x+Bσ+w|2σ+
+ |Cσ+x+Dσ+w|22 ≤ |x|2σ− + γ̄2|w|22, (2)

In other words, the gain can be exactly characterized in
terms of switching storage functions. The fact that the norms
are not necessarily quadratic naturally leads us to a second
question.

Question 2. When is there a solution to (2) where all norms
are quadratic?
We will show that if the gain of the system on the switch-
ing system obtained by scaling the matrices of (1) as fol-
lows, {√nAσ ,

√
nBσ ,Cσ ,Dσ}σ∈{1,...,N}, is lower than γ̄ ,

then there is a set of quadratic norms solving eq. (2).
This can be turned into a sufficient condition for deciding
whether a system is not contractive.

Our results take root in the frameworks developed in [1] for
stability and performance analysis of switching systems and
[2] for the exact characterization of stability of switching
systems through the existence of multinorms. This research
is part of an ongoing work whose goal is to establish arbitrar-
ily precise estimations of the `2-gain of switching systems.
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1 Introduction

We consider the problem of determining the stability of ma-
trix sets, that is, determining whether all infinite products of
matrices from a given set converge to zero, or more gener-
ally to a common invariant subspace. This problem appears
in several situations in control engineering, computer sci-
ence, and applied mathematics. For instance, the stability of
matrix sets characterizes the stability of switching dynam-
ical systems, which have numerous applications in control
(see [2] and references therein).

Deciding the stability of a matrix set is notoriously difficult
and its decidability is not known. The related problem of
the existence of an infinite product whose norm diverges is
undecidable [2]. However, it is possible to decide stability
when the set has the finiteness property, that is, when there
is a bound k such that the existence of an infinite noncon-
verging product implies the existence of an infinite noncon-
verging periodic product with period smaller than or equal
to k. Indeed, when such a bound k exists, checking the sta-
bility of the set can be done by checking the stability of all
products whose length is smaller than or equal to k. The
finiteness property is known to hold if the matrix set has a
common nonincreasing polyhedral norm and in this case, a
bound k is known, which only depends on the nonincreasing
norm [3].

In this work, we push further the analysis of sets with a
common nonincreasing polyhedral norm and we look for the
smallest valid bound k.

2 Application: Stochastic Matrices

Our work is motivated by problems in consensus systems,
where the matrices are stochastic (nonnegative matrices with
rows summing to one), and hence always share a same com-
mon nonincreasing polyhedral seminorm. The convergence
to a rank one matrix of all products of matrices taken from a
set of stochastic matrices is also of crucial importance in the
context of nonhomogeneous Markov chains [4].

1This text presents research results of the Belgian Network DYSCO,
funded by the Interuniversity Attraction Poles Program, initiated by the
Belgian Science Policy Office. The research is also supported by the Con-
certed Research Action (ARC) of the French Community of Belgium.

2Raphaël Jungers is a FNRS research associate.

3 Main Results

We provide a stronger bound k such that the existence of an
infinite nonconverging product implies the existence of an
infinite nonconverging periodic product with period smaller
than or equal to k. This bound holds for both polyhedral
norms and polyhedral seminorms. In the latter case, the ma-
trix products do not necessarily converge to 0, but to a com-
mon invariant space. We prove the tightness of our bound,
in the sense that for any polyhedral seminorm, there is a set
of matrices such that not all infinite products converge, but
every periodic product with period smaller than our bound
does converge. Our technique is based on the analysis of the
structure of the face lattice of the unit ball of the nonincreas-
ing seminorm (see [1] for proofs and further explanations).

4 Computing the Bound

Explicitly evaluating our bound requires evaluating the size
of the largest antichain in the lattice of the unit ball of the
nonincreasing seminorm. This may be challenging in some
cases. We therefore link our problem with the Sperner prop-
erty: the property that, for some graded posets, – in this case
the face lattice of the unit ball of the norm – the size of the
largest antichain is equal to the size of the largest rank level.

On the one hand, we show that this property holds for a poly-
hedron that is invariant for stochastic matrices. This allows
us to evaluate our bound in that case. The value that we
obtain for stochastic matrices is smaller by a factor of 3

2
√

πn
than the best bound that was previously known for these ma-
trices, n being the dimension of the matrices. One the other
hand, we show that some other sets of matrices with invari-
ant polyhedral seminorms lead to posets that do not have the
Sperner property.
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1 Abstract

In recent years, the issue of security has become ever more
prevalent in the analysis and design of cyber-physical sys-
tems (CPSs), namely systems that exhibit a tight conjoining
of computational resources and physical resources. This re-
search is concerned with a type of attacks to the communica-
tion links, such that timeliness of the information exchange
is disrupted via packet loss, namely DoS attack [1]-[4].

We investigate the issue of DoS with respect to consensus
networks [9]. Consensus is a prototypical problem in dis-
tributed settings with a huge range of applications, spanning
from formation and cooperative robotics to surveillance and
distributed computing; see for instance [5]-[7]. On the other
hand, self-triggered coordination turns out to be of major
interest when consensus has to be achieved in spite of possi-
bly severe communication constraints [8]. In this respect, a
remarkable feature of self-triggered coordination lies in the
possibility of ensuring consensus properties in the absence
of any global information on the graph topology and with no
need to synchronize the agents local clocks [5].

Specifically, inspired by [5], we consider a self-triggered
consensus network. At each sampling time, a certain subset
of active agents poll their neighbors obtaining relative mea-
surements of the consensus variable of interest: the available
information is then used by the active agents to update their
controls and compute their next update times. The attacker
objective is to prevent consensus by denying communication
among the agents. We assume that the network nodes make
use of a shared communication medium. Under DoS, none
of the network nodes can send or receive information. By in-
troducing a notion of Persistency-of-Communication (PoC),
we provide a characterization of DoS frequency and dura-
tion such that consensus is not destroyed. Consistent with
the constraints imposed by the communication medium,
PoC stipulates that disruptions of the graph connectivity
cannot exceed a prescribed threshold.

These results land themselves to many possible extensions.
First, it is interesting to quantify the effect of DoS on conver-
gence time. Second, it is important to investigate the case of
partial communication failure, i.e. the case where DoS can

affect the various network links separately.
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INTRODUCTION

Decentralized control and optimization in large populations
of non-cooperative agents are of interest to various scientific
disciplines, such as engineering, mathematics, social sciences,
system biology and economics. Since for large populations the
analytic solution of the game equations becomes computation-
ally intractable, aggregative games [1]–[3] represent a viable
solution method to address large population control objectives
where the behavior of each agent is affected by some aggregate
effect of all the agents, rather than by specific one-to-one
effects. This feature appears in several applications, including
demand side management (DSM) for smart grids [4]–[8], and
congestion control for networks of shared resources [9].

Along these lines, Mean Field (MF) games have emerged
as a methodology to study multi-agent coordination problems
where each individual agent is influenced by the statistical
distribution of the population, and its contribution to the popu-
lation distribution vanishes as the number of agents grows [10],
[11]. Unlike aggregative games, the distinctive feature of MF
games is the emphasis on the limit of infinite population size,
as this abstraction allows one to approximate the average
population behavior based on its statistical properties only.

Here we consider aggregative games, as in [7], [8], where
we assume that the agents do not have access to the statis-
tical properties of the population but, on the contrary, react
optimally to a common external signal, which is broadcast
by a central coordinator. The aggregative control problem is
then defined as the task of designing an incentive signal that
the central coordinator should broadcast so that the decen-
tralized optimal responses of the agents generate a MF Nash
equilibrium. Unlike state-of-the-art approaches, our methods
can handle agents subject to heterogeneous, compact, convex
constraints, e.g. arising from different linear dynamics, convex
state and input constraints. We build on mathematical defini-
tions and tools from convex analysis and operator theory [12],
[13], establishing useful regularity properties of the mapping
describing the aggregate population behavior. In this way, we
solve the aggregative control problem iteratively via specific
feedback mappings and show global asymptotic convergence
to a desired incentive signal generating a MF almost Nash
equilibrium in a decentralized fashion, making our methods
scalable with the population size.

DYNAMIC AGGREGATIVE CONTROL

Given the aggregative game formulation in [14], we assume
that each agent i reacts to a broadcast incentive signal z ∈ Rn

through the optimal-response mapping

xi ?(z) := arg min
y∈X i

y>Qy + 2(Cz + c)>y,

where Q � 0. Moreover, we formalize the average popu-
lation behavior through the aggregation mapping A(z) :=
1
N

∑N
i=1 x

i ?(z).
Our main results provide mild conditions on the problem

data Q,C under which a dynamic control of the kind

z(k+1) = (1− αk)z(k) + αkA
(
z(k)
)
,

where αk ∼ 1/k, ensures global convergence to a fixed
point z̄ of A, which generates the MF ε-Nash equilibrium{
xi ?(z̄)

}N
i=1

, with ε = O(1/N).
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1 Motivation and Introduction

Every time we send or received a text or a phone call, our
mobile phones generate metadata. Collected at large scale,
they have been used to design transportation systems, plan-
ning disaster responses, and fight epidemics [1]. Whereas
the field and the use of machine learning algorithms on mo-
bile phone metadata has been evolving fast, it however cur-
rently lacks the standardization needed to thrive. Numerous
crucial implementation choices are often lost from one re-
search paper to another making it hard to replicate results,
quantify the impact of new methods, and transfer learning.

2 Proposed approach

We have introduced bandicoot2, an open-source Python
toolbox, to solve these issues. It extracts more than 160 ro-
bust behavioral features from mobile phone metadata, and
focuses on making it easy for researchers and practitioners
to load metadata and compute robust features from them.

bandicoot indicators fall into three categories (see fig. 1):
• Individual indicators (e.g. percent of nocturnal inter-

actions, time it takes someone to answer text mes-
sages) describe an individual’s phone usage.

• Spatial indicators (e.g. entropy of visited antennas,
radius of gyration) describe mobility patterns.

• Social network (e.g. clustering coefficient, assortativ-
ity) describe individuals’ social network and compare
their behaviors with those of their contacts.

Emphasis is put on correctness and consistency through nu-
merous unit tests covering 91% of the source code, by the
detection of incorrect entries, and reporting variables to as-
sess data quality.

1This research was supported by the PAI project DYSCO. Luc Rocher
holds a F.R.S.-FNRS fellowship (Belgian Fund for Scientific Research).

2The bandicoot website is accessible at bandicoot.mit.edu. The
source code is distributed under the permissive MIT license, and hosted on
GitHub.

Figure 1: bandicoot indicators are computed from individual,
spatial, and social network patterns

bandicoot is currently used with machine learning tech-
niques to perform large scale experiments, by both carri-
ers (e.g. Orange, Telenor), NGOs, and international orga-
nizations. Researches include gender or personality predic-
tion [2], marketing experiments [3], and contributions from
the Orange ‘D4D’ Challenge to address socio-economic de-
velopment in Ivory Coast.
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1 Introduction

Disturbance feedforward control (DFC) can be used
to improve disturbance suppression performance of air
mount systems with air tanks. Those tanks often give
rise to acoustic resonances that subsequently limit per-
formance. This paper, which is in line with our work in
[1], presents a self-tuning DFC strategy that improves
performance and can deal with acoustic resonances.

A description of the uncontrolled air mount system con-
sists of the transfer functions P1 (from base frame ac-
celeration r to payload accleration y), and P2 (from
control force u to y). Bode diagrams for P1 and P2 are
given in Figure 1, which assumes a fourth-order model
with one acoustic resonance.
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Figure 1: Bode diagrams for P1 (solid) and P2 (dashed).

2 Disturbance feedforward control

Figure 2 shows the self-tuning controller structure. Us-
ing the z-transformation, the control signal reads

U(z) =
4∑

i=1

wi(z)Bi(z)R(z), (1)

with z ∈ C, basis functions Bi which are orthonormal [2]
to optimize convergence speed, and self-tuning weights
wi. The goal is to find all wi such that the filtered-
error e is minimized. This is done with a self-tuning
algorithm based on Filtered-error Least Mean Squares
(FeLMS). The update block in Figure 2 performs the
updates of wi. Filter F removes sensor noise, and N is
used for residual output shaping in the frequency do-
main. Two feedforward controllers CFF are considered,
i.e. a reduced-order (RO) controller and a full-order
(FO) controller. The RO controller has two basis func-
tions, while the FO controller has four basis functions.
The latter can compensate for the acoustic resonance.

r y1

y2 y

e

u

w plant

+

–F

P1

P2

update

CF F

N

Figure 2: Implementation of the self-tuning controller.

3 Results

Figure 3 shows Bode plots of transmissibility functions,

T (s) = P1(s) + P2(s)CFF (s)F (s), (2)

i.e. the transfer functions from r to y. It is observed
that the RO controller only increases disturbance sup-
pression up to the acoustic resonance frequency. The
FO controller also increases performance at frequencies
beyond the acoustic resonance. The controlled systems
suffer from performance deterioration at very low and
high frequencies due to causality aspects [3].
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Figure 3: Transmissibility functions
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1 Introduction

The Dutch scientist Huygens was in 1665 probably the first
scientist who observed synchronization among pendulum
clocks, and although synchronization of coupled mechanical
oscillators has a long history in science, some properties
are still not fully understood. In this project we investigate
local stability of the synchronized solutions of two coupled
metronomes.

2 Experimental Results

Figure 1 depicts the experimental setup that was used in
this study [1], consisting of a rectangular platform made of
lightweight foam that is suspended at the corners by thin
cables. Experimental results show that, depending on the
platform parameters, it is possible to observe a regime with
only in-phase synchronization or a regime with coexisting in-
and anti-phase synchronization.

Figure 1: Experimental setup with metronomes placed side by
side.

3 Modeling the Experimental Setup

Figure 2 shows a schematic representation of the experimen-
tal setup, which is modeled as a beam with one degree of
freedom and its motion is constrained by an assumed constant
linear spring and damper.
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Figure 2: Schematic diagram of experimental setup. Top view of
the setup (left) and front view of a metronome (right).

The equations of motion for this setup are given by

Mt ẍ+ cẋ+ kx =−
2

∑
i=1

p(θ̈i cosθi− θ̇ 2
i sinθi), (1)

Iθ̈1 +dθ̇1 + pgsinθ1 = u(θ1, θ̇1)− pẍcosθ1, (2)

Iθ̈2 +dθ̇2 + pgsinθ2 = u(θ2, θ̇2)− pẍcosθ2. (3)

where Mt = M+2mp +2mb, p = mp`p−mb`b, I = mp`
2
p +

mb`
2
b, and u(θ , θ̇) is a pulsating escapement function which

drives the pendulum. This model is verified by comparing
experimental results with computer simulations.

4 Local Stability Analysis

To investigate synchronization regimes, a numerical continu-
ation and bifurcation tool is used. With this tool, existence
and local stability of the limit synchronized solutions is de-
termined as the platform parameter values are varied.

Figure 3 presents the result when the platform mass M is
subject to change. Note that the upper line represents the
anti-phase solution branch and the lower line the in-phase
solution branch. As can be seen, only the in-phase solution
is stable for the estimated platform mass. By lowering the
platform mass to, for example, M = 0.1 kg, a stable in- as
well anti-phase solution is obtained.

0 0.1 0.2 0.3 0.4 0.5
0

π

100

100
estimated

platform mass
↓

platform mass M (kg)

∆θ
(r

ad
)

stable solutions unstable solutions

Figure 3: Bifurcation diagram for phase difference ∆θ as function
of the platform mass M. Upper/lower line denote anti/in-
phase solution.
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1 Introduction

In this abstract, we propose a scheduled controller design
for systems which, from an input/output point-of-view, ex-
hibit switched dynamics as a result of varying sensor con-
figurations available in the measurement system. Input-to-
state stability (ISS) of the closed-loop system is guaran-
teed from data-based conditions using measured plant fre-
quency response functions (FRFs), opposed to approaches
known from literature that often require parametric plant
models. Moreover, the scheduled controller is based on local
linear time-invariant (LTI) controllers designed using clas-
sical frequency-domain loop-shaping techniques and plant
FRFs. Therefore, for the considered class of systems, this
work bridges the gap between switched systems theory (with
formal stability guarantees) and industrial control practice,
commonly exploiting frequency-domain design tools and
non-parametric models, e.g., plant FRFs.

2 Class of Systems

The considered class of systems is given by the following
switched single-input-multi-output (SIMO) model

P :





ẋP(t) = APxP(t)+BPuP(t)
yP0(t) =CP0xP(t)

yP1(t) =

{
CP1xP(t) if θ(t) ∈ Λ
∅ if θ(t) /∈ Λ,

(1)

with xP ∈RnP the state vector, nP the number of states, AP ∈
RnP×nP , BP ∈ RnP×1, input uP ∈ R, CPi ∈ R1×nP , outputs
yPi ∈R, i= 0,1, where ∅ indicates that yP1(t) is unavailable,
θ(t) ∈ Θ ⊂ Rnθ , a vector of nθ time varying parameters,
and Λ⊂ Θ. We associate the following single-input-single-
output (SISO) transfer functions

Pi(s) =
yPi(s)
uP(s)

, i = 0,1, (2)

to (1), with s ∈ C and yPi(s), uP(s), the Laplace transforms
of yPi(t), uP(t), respectively.

3 Scheduled Control

A simplified version of the scheduled control system pro-
posed in [1] is depicted in Figure 1, with disturbance d(t) ∈

PC(α(θ)) Σ

Σ

Σ
yP1

yP0

uP
r

d
−

−
e0

e1

Figure 1: Simplified scheduled control system representation.

R, reference signal r(t) ∈ R, and tracking errors ei(t) =
r(t)− yPi(t), i = 0,1. The scheduled controller C(α(θ)) is
based on local LTI controllers C0(s), C1(s), which are ded-
icated designs for P0(s), P1(s), respectively. For α(θ) = 0,
the controller output resembles C0(s)e0(s), for α(θ) = 1 it
resembles C1(s)e1(s). The dynamics of the closed-loop sys-
tem are described by a non-minimal LTI system in negative
feedback with a varying α(θ(t)) ∈ [0,1], i.e., a Lur’e-type
system. As a result, stability can be studied using a gener-
alized version of the circle criterion presented in [1], which
only requires FRFs of P0(s) and P1(s) to establish ISS of the
closed-loop system with respect to r and d .

4 Wafer Stage Measurements

Measurements with the scheduled controller are performed
on the z-axis (vertical direction) of an industrial wafer stage
system, which is well described by (1). A significant per-
formance increase can be seen in Figure 2, where the mea-
surement results in time-domain are depicted and compared
to the case where P0(s) and C0(s) are used for all θ ∈ Θ. A
detailed analysis can be found in [1].
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Figure 2: The z-axis error in time-domain. We have, α(θ) = 1
and θ(t) ∈ Λ in the yellow window, while α(θ) = 0
and θ(t) /∈ Λ elsewhere, i.e. α(θ) is switched.
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Li-ion batteries are the most promising energy storage sys-
tems due to their high energy/power densities and high ef-
ficiency. Nevertheless, safety concerns force the utilization
of battery-management systems (BMS). Among its tasks, a
BMS must be able to monitor internal state evolution, such
as state-of-charge (SOC) and state-of-health (SOH). To do
so, a model of the system along with an estimator are re-
quired.

Many kinds of battery models have been proposed in the
literature. Among them, the electrochemical model is the
most suitable to control the electrochemical states in a wide
operating range. Although more accurate and physically
meaningful, this model comes associated with a computa-
tional burden due to its complexity. Therefore, reduced-
order models must be considered for the BMS design. In
this context, the equivalent-hydraulic model (EHM) [1] is a
simple representation of the lithium diffusion process that
takes place within the electrode solid particles. It is based
on two relevant electrochemical states, namely bulk and sur-
face concentration. On the one hand, the lithium at the bulk
defines the SOC of the battery-cell. On the other hand, the
lithium at the surface is related to the instantaneous avail-
able energy. Although the EHM is originally a linear model,
it depends on the diffusion coefficient, which is unknown.
To tackle this problem, an extra state was included to ac-
count for the uncertain parameter in state estimation. This
EHM was used to design an extended Kalman filter (EKF)
for state estimation from available measurements (current
and voltage).

Regarding estimators, most of the estimators proposed in the
literature rely on state observers. In this context, the EKF
is able to properly handle measurement noise and model-
ing uncertainties. As stochastic stability of the EKF is not
guaranteed, sufficient conditions for its stability were anal-
ysed. These conditions are based on the so-called observ-
ability rank condition, double differentiability of the model
functions as well as state boundedness. While the first and
second conditions were not difficult to prove, numerical sim-
ulations were performed to check the third one. The results
show that, given a sufficiently small initial estimation error,
the estimation error remains bounded, even for large mea-
surement noise.

The designed state observer based on EHM was used as the
first step out of a two steps procedure (see Figure 1). Step

Battey CellI(t) V (t)

css

SOHpower fade

D

SOCState observer based on
equivalent

hydraulic model

Parameter estimation of
solid phase diffusion model

Figure 1: Block diagram of the estimation scheme.

1 consisted in the estimation of the SOC and the surface
concentration (css). The latter state estimate is then used in
step 2 of the procedure to estimate the SOH power fade [2].

The proposed approach was compared with two other meth-
ods proposed in the literature. The first one consists of an
adaptive output function inversion, while the second one
uses a fourth-order EKF based on the so-called electrode
average model. In order to perform this study, virtual data
was generated using a battery-cell simulator fed with an
UDDS (urban dynamometer driving schedule) current pro-
file. The initial state estimates were set to incorrect values.
Under these conditions, the EKF based on EHM provided
an overall good estimation of the considered state trajec-
tories for both SOC and surface concentration. Moreover,
the proposed method outperforms the other two methods
with respect to surface concentration estimation of the neg-
ative electrode. In contrast with the other two methods, the
one proposed here is based on a simple third-order model
that allows a straightforward and more accurate estimation
of SOC and surface concentration. Other contributions of
the proposed approach include the estimation of both state
and model parameters (i.e. the imperfect knowledge of the
model has been accounted for) and the analysis of the sta-
bility properties of the designed EKF.
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1 Abstract

Throughout the years, the study of feedback control has
yielded a variety of design techniques. Although control
engineers stick to classical open loop shaping, modern tech-
niques gain relevance as they provide the means to push per-
formance to the limit while taking uncertainty into account.
The H∞ design framework [1] is a modern approach which
takes objectives and constraints rigorously into account.
However, practical difficulties are still overruling their ben-
efits, sustaining the dominance of standard PID control.
In order to ease H∞ controller design, we are developing
a Matlab LTI Control Toolbox1 that provides the means to
do a state-of-the-art controller design. It provides an inter-
face to specify the control configuration and a set of require-
ments. Unstable and improper weighting functions are al-
lowed, reducing the amount of post-processing. The follow-
ing paragraphs show how to use this LTI toolbox.

2 Control configuration

The control configuration incorporates the connections be-
tween all dynamic systems. As an example, the plant in
Fig. 1 is described by Code example 1.
In order to make systems G and S available to the toolbox,
they are declared as an LT Isys. Their inputs and outputs
can then be assigned to a new convenience variable, e.g.
‘u = G.in’, or connected to eachother, e.g. ‘S.in == y’.

K G

S

r e u y

-

Figure 1: Representation of a control configuration. G and S are
dynamic systems which make up the plant. K indicates
the controller which eventually closes the loop.

1 G = LTIsys(G); %make G.in and G.out available
2 S = LTIsys(S);
3
4 lti_begin()
5 signal r %declare the reference
6
7 u = G.in; %define u as G’s input
8 y = G.out; %define y as G’s output
9 e = r - S.out; %define the error

1The developed LTI control toolbox is freely available on github:
https://github.com/maartenverbandt/lti toolbox

10 S.in == y; %connect S to G
11 K.in = e; %set controller input
12 K.out = u; %set controller output
13 lti_end

Code example 1: LTI control toolbox code to describe the con-
trol configuration depicted in Figure 1.

3 Control requirements

The control requirements are formulated as a set of objec-
tives and constraints. These usually consist of some target
closed-loop transfer function, multiplied by some frequency
dependent weight.
As an example, consider the problem of a servo mechanism
with a fixed required bandwidth. This translates to a con-
straint on the sensitivity, r→ e (2). Also robustness can be
maximized (1), leading to the next optimization problem:

minimize
K

wwwWT
y
r

www
∞

(1)

subject to
wwwWS

e
r

www
∞
6 1 (2)

1 WT = Weight.HF(10,2);
2 WS = Weight.LF(1,1);
3
4 lti_begin()
5 %% ... %% plant declaration
6
7 ctrl_begin(’my_controller’)
8 minimize(WT*(y/r))
9 subject to

10 WS*(e/r) <= 1
11 ctrl_end
12 lti_end

Code example 2: LTI control toolbox code to design the con-
troller as described by problem (1)-(2).
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1 Introduction

Ironless linear motors (ILMs), as shown in Figure 1, ideally
have very high precision. The parasitic forces and torques
are minimized by design thanks to the symmetrical stator
topology and the lack of an iron core.

A- C-

z

xy A+ B+ B- C+

Figure 1: Cross-sectional view of an ironless linear motor.

However, in reality, there are deviations from the design
parameters which result in various parasitic forces and
torques [1]. Most of the research in the literature focused
on compensation for parasitic force in the driving direction,
while the parasitic forces and torques in non-driving direc-
tions are usually neglected. The aim of this paper is to de-
velop a feedback linearization law, which is known as com-
mutation in linear motors literature, to compensate for para-
sitic forces and torques in ILMs simultaneously.

2 Modeling

By using Fourier modeling, a modeling technique based on
Fourier approximation, the propulsion force Fx, the normal
force Fz and the torque Ty can be modeled as [2]:

Fx = Kx(q)i, (1)

Fz = Kz(q)i+ iT Gz(q)i, (2)

Ty = Kt(q)i+ iT Gt(q)i, (3)

where q is the position vector of the translator:

q =
[
x z

]T
, (4)

i is the vector of the currents through the coils:

i =
[
iA1 iB1 iC1 . . . iANc

iBNc
iCNc

]T
, (5)

Nc is the number of sets of three-phase coils, Kx(q), Kz(q),
Kt(q) are [1× 3Nc] matrices, Gz(q), Gt(q) are [3Nc× 3Nc]
matrices which are dependent on the position q of the trans-
lator.

3 Commutation

Commutation in linear motors is a mechanism that calcu-
lates the currents through the coils to achieve the desired
forces and torque. Let us consider the case where the trans-
lator consists of two sets of three-phase coils, i.e. Nc = 2.
Denoting the desired forces and torque as F∗x , F∗z and T ∗y .
The commutation problem can be formulated as:

min
i

iT i

subject to

Φ(i) =




Kxi−F∗x
iT Gzi+Kzi−F∗z
iT Gt i+Kt i−T ∗y

iA1 + iB1 + iC1
iA2 + iB2 + iC2



= 0. (6)

The optimization problem is then solved by the following
proposed iteration:

ik+1 = ∇Φ(ik)−R∇Φ(ik)ik−∇Φ(ik)−RΦ(ik), (7)

where ∇Φ(ik)−R is the minimum norm generalized inverse,
or the right inverse, of ∇Φ(ik):

∇Φ(ik)−R = ∇Φ(ik)T (∇Φ(ik)∇Φ(ik)T )−1. (8)

The proposed commutation algorithm is simulated with the
finite element method model of an example motor. It is veri-
fied that with the proposed commutation, the desired propul-
sion force is achieved and the parasitic forces and torques in
non-driving directions are eliminated. This is promising for
real time application since the method does not require any
embedded optimization solver.
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1 Introduction

Generalized Repetitive Control(GRC) proposed in [1] has an
excellent performance to reject periodic disturbances. This
controller is designed by convex optimization, and it makes
the difficulty to re-design GRC online. In motor drive ap-
plications, disturbance frequency changes according to the
rotation speed. Therefore, it is needed to re-design the GRC
controller online. In this paper, we propose a new algorithm
which enables us to re-design GRC online. This method is
based on FIR re-designing method proposed in [2].

2 FIR Redesigning Method

When GRC is added to the loop, the frequency characteris-
tics of the modifying sensitivity function is expressed as

MS(z) = 1−X(z) (1)

X(z) :=
K2

∑
k=K1

Xkz−k (2)

This research objective is to transform the frequency char-
acteristics of the modifying sensitivity function by the trans-
formation of the frequency characteristics of X(z). X(z)
is designed as a linear phase FIR filter to which FIR re-
designing method proposed in [2] is applied.

Firstly, X(z) is expressed in the form

X0(z) = z−Nd
N

∑
k=−N

akzk

:= H0:p(z)H0:a(z) (3)

H0:p(z) := z−Nd (4)

H0:a(z) :=
N

∑
n=0

An

(
z+ z−1

2

)n

(5)

The amplitude of H0:p(z) is 1 and there is no phase delay
in H0:a. The characteristics of H0:p(z) and H0:a(z) is de-
signed separately to achieve desirable frequency character-
istics. The phase characteristics are stretched by adding de-
lay operators to H0:p(z). Noting that the amplitude charac-
teristics of H0:a is a polynomial function of cosΩ, the am-
plitude characteristics is transformed by distorting the fre-
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Figure 1: Simulation Result of FIR Redesigning Method

quency axis. Such a transformation is realized by the substi-
tution of variables

z+ z−1

2
= K0 +K1

(
Z +Z−1

2

)
(6)

The property of this linear mapping is decided by the param-
eters K0 and K1. These parameters should be set according
to the relationship between prototype frequency response
H0:a(z) and the transformed frequency response H1:a(z). In
this paper, the parameters which equalize the properties of
H1:a(z) and H0:a(z) at zero and cutoff frequency are selected.
Figure 1 demonstrates this re-designing method.

3 Conclusion

In this paper, a new algorithm which enables to re-design
GRC online is proposed. It is our next step to update the fil-
ter coefficients dynamically to achieve dynamic loop shap-
ing.
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1 Introduction
In our modern society there is an ever increasing need for
higher computational power and storage capacities together
with a reduction at the production costs. In the semiconduc-
tor industry, these demands are translated into an effort to
achieve a larger wafer size and a smaller circuit detail, from
the scale of 30nm down to 5nm, together with an increase in
the positioning speed. The transition from dual-stage posi-
tioning systems [1] to a magnetically levitated planar actu-
ator is necessary towards the successful implementation of
the concept. However, the nonlinear position- and velocity-
dependent electromagnetic interaction between the transla-
tor and the coils as well as deformation due to thermal ef-
fects and the high accelerations of the translator restrict the
performance capabilities of this approach.

In this research we will introduce a Linear Parameter Vary-
ing (LPV) framework to model these effects and capture the
unknown relations in terms of a low complexity model by
using a data driven modelling approach. By making use of
this model we will synthesize controllers that can attenuate
these dynamical aspects and realize the intended high ac-
curacy behaviour of the magnetically levitated positioning
system under high throughput demands. The LPV frame-
work is capable of capturing position dependent and nonlin-
ear behaviour, nonstationary characteristics or dependence
on external variables by employing a low complexity model,
which is achieved by capturing these effects in terms of
scheduling variables that are assumed to be measurable in
the system.

2 Modelling and identification of planar motor system
Modelling the magnetically levitated planar motor requires
the derivation of an analytic description of the underlying
mathematical relations. For this reason a multi-physical
model of the motor has been already established in previous
research, which entails a magnetostatic, a mechanical and
a thermal model. Nonetheless, this analytic model has its
own limitations due to manufacturing imperfections or un-
foreseen dynamics. For this reason, it is our aim to comple-
ment it by employing an LPV identification approach, since
it allows for the incorporation of the position and velocity
dependence in the coil-magnet interaction.

To this end, the recent developments in the machine learn-
ing community and their close interaction with system iden-
tification have proven themselves a valuable tool towards

the increase of the accuracy of the estimated model. This
synergy offers an increased flexibility to system identifica-
tion through the use of kernel functions and it has recently
been formulated to achieve data-driven LPV modelling, both
within the prediction error [2] and subspace [3] context.

3 Control of planar motor system
Following the development of a reliable and low complex-
ity LPV model of the planar motor system, in this research
we will focus on controlling the planar motor in 6 degrees
of freedom using LPV control techniques. Two main tar-
gets will be pursued: the efficient cancellation of the de-
formations in the plate due to the thermal aberrations and
the asymmetric spatial distribution of the forces during high
accelerations, as well as the nanometer accurate reference
tracking during a high speed scanning. Due to a possibly
high-dimensional model, model reduction techniques can be
of use prior to the implementation of the controller. More-
over, the highly coupled nature of the system dynamics will
be tackled with the use of a multiple input multiple output
(MIMO) controller based on the LPV concept. The design
of an LPV feedforward controller will enable the significant
reduction of the error within the required margins. Finally,
the feedback controller will compensate for the remaining
errors due to model uncertainty. The designed controller
will be experimentally validated in the magnetic planar mo-
tor prototype, which was designed and contructed in the
technological university of Eindhoven [4].
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Abstract: Based on the electrochemical processes within a
lithium-ion battery, state of health indicators are deduced
from the solid phase diffusion coefficients that describe the
propagation of lithium in each electrode. The estimation
of these coefficients, which is seen as a partial differential
equation (PDE) identification problem, is here the focus.

The reliability and the durability of lithium-ion batter-
ies can be strongly affected by their operating conditions.
Therefore, there is a need for an on-line monitoring sys-
tem that constantly provides an estimate of their state-of-
charge (SOC) and their state-of-health (SOH). This is one of
the roles of a battery-management system. Contrary to the
SOC, there is no fixed definition for the SOH. In general,
the SOH is related to the physical quantities that control the
electrochemical processes inside the battery. Therefore, any
parameter that varies with the battery usage could be con-
sidered as an indication of the battery SOH. Here, the SOH
power fade is computed from the solid phase diffusion coef-
ficient, denoted as D, which describes the lithium propaga-
tion in each electrode. Considering the single-particle model
in which each electrode is idealized as a single spherical par-
ticle, the lithium propagation is described by the following
PDE [1]:





∂ c̄s
∂ t

(t,r) = D
∂ 2c̄s
∂ r2 (t,r) for r ∈ [0, R], t > 0

c̄s(t,r) = 0 for r = 0, t > 0

R
∂ c̄s

∂ r
(t,r)− c̄s(r, t) = −R2

D
J(t) for r = R, t > 0

with c̄s(t,r) = rcs(t,r)

(1)

where cs(t,r) is the lithium concentration, within each par-
ticle which is dependent on both time t and polar coordinate
r. The pore-wall molar flux J(t) is related to the input cur-
rent I(t).

Although the parameter D is assumed to be constant in
(1), it actually evolves with aging and operating conditions.
This feature is used to define a SOH power fade indicator
from the diffusion time constant defined as τ = R2

D [2]. Let-
ting τinit denote the value of τ when the battery is operated
for the first time, and τpres denote the present value of τ , this
indicator can be written as

SOH =
τpres

τinit
. (2)

To determine (2), it is necessary to estimate D and R from

Battey CellI(t) V (t)

css

SOHpower fade

D

SOCState observer based on
equivalent

hydraulic model

Parameter estimation of
solid phase diffusion model

Figure 1: Organization chart for diffusion parameter estimation.

battery operating data. The SOH power fade estimation can
then be seen as a PDE parameter estimation problem.

In Fig. 1, a two step procedure is proposed to estimate
this diffusion coefficient. In step 1, the lithium concentra-
tion at the particle surfaces of each electrode, css, is esti-
mated from the current intensity and the voltage. This part
is the focus of the companion paper [3]. From the latter
estimate and the current intensity, the diffusion coefficient
is then identified. This paper focusses on step 2 where the
lithium concentration, css, is supposed to be known.

The proposed method properly accounts for measure-
ment noise and provides a confidence interval for the esti-
mates. It relies on a three step procedure. A temporal trans-
fer function (TF) is first highlighted from the PDE describ-
ing the evolution of the lithium concentration inside the par-
ticles. Because the obtained TF is unstable, a solution based
on the pre-filtering of the data is then developed. Next a
nonlinear parameter estimation problem for the TF identifi-
cation is solved by resorting to the so-called simplified re-
fined instrumental variable method. This method is known
to deliver unbiased estimated parameters whatever the kind
of noise is. From this first estimation, the diffusion coeffi-
cients are then computed by employing the weighted least-
squares method. A resampling scheme is used to estimate a
confidence interval for the estimated parameters.
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ẋ k

(t
)

=
A

k
x k

(t
)

+
B

k
u

(t
),

y k
(t

)
=

C
k
x k

(t
)

+
D

k
u

(t
),

su
ch

th
at

H
(j

)
k

(σ
)

=
H

(j
) (σ

),

fo
r

gi
ve

n
p

oi
n

ts
σ

,
an

d
a

gi
ve

n
n

u
m

b
er

of
d

er
iv

at
iv

es
at

ea
ch

p
oi

n
t.

C
on

se
q

u
en

tl
y:

A
p

p
ro

xi
m

a
ti

o
n

b
y

ra
ti

o
n

a
l

in
te

rp
o

la
ti

o
n

2
8

/
5

6

35th Benelux Meeting on Systems and Control Book of Abstracts

167



T
he

ge
ne

ra
l

in
te

rp
ol

at
io

n
fr

am
ew

or
k

•
G

o
a

l:
pr

o
d

u
ce

H
k
(s

),
th

at
ap

pr
ox

im
at

es
a

la
rg

e
or

d
er

H
(s

),
by

m
ea

n
s

of
in

te
rp

o
la

ti
o

n
at

a
se

t
of

p
oi

n
ts
σ
i:

H
k
(σ

i)
=

H
(σ

i)
,
i

=
1,
··
·,

k
.

•
F

or
M

IM
O

sy
st

em
s

in
te

rp
ol

at
io

n
co

n
d

it
io

n
s

ar
e

im
p

os
ed

in
sp

ec
ifi

ed
d

ir
ec

ti
on

s:
ta

n
g

en
ti

a
l

in
te

rp
o

la
ti

o
n

.

P
ro

b
le

m
:

F
in

d
re

d
u

ce
d

m
o

d
el

sa
ti

sf
yi

n
g:

`∗ i
H

k
(µ

i)
=

`∗ i
H

(µ
i)

,
H

k
(λ

j)
r j

=
H

(λ
j)

r j
,
i,
j

=
1,
··
·,

k
.

In
te

rp
ol

at
or

y
pr

oj
ec

ti
on

s

V
k

=
[ (λ

1
E
−

A
)−

1
B

r 1
,
··
·,

(λ
k
E
−

A
)−

1
B

r k
] ,

W
∗ k

=

  
`∗ 1

C
(µ

1
E
−

A
)−

1

. . .
`∗ k

C
(µ

k
E
−

A
)−

1

  .

•
C

o
n

se
q

u
en

ce
:

K
ry

lo
v

m
et

h
o

d
s

m
at

ch
m

om
en

ts
w

it
h

o
u

t
co

m
p

u
ti

n
g

th
em

.

Q
:

H
o

w
to

ch
o

o
se

th
e

in
te

rp
o

la
ti

o
n

p
o

in
ts

a
n

d
ta

n
g

en
ti

a
l

d
ir

ec
ti

o
n

s?

2
9

/
5

6

C
ho

ic
e

of
in

te
rp

ol
at

io
n

p
oi

nt
s:

O
pt

im
al
H

2
m

o
de

l
re

du
ct

io
n

R
ec

al
l:

th
e
H

2
n

or
m

of
a

st
ab

le
sy

st
em

Σ
is

:

‖Σ
‖ H

2
=

(
1 2π

∫
+
∞

−
∞

tr
ac
e

[H
(i
ω

)H
∗ (
−
iω

)]
d
ω

)
1 2

w
h

er
e

H
(s

)
=

C
(s

E
−

A
)−

1
B

,
is

th
e

sy
st

em
tr

an
sf

er
fu

n
ct

io
n

.

G
o

a
l:

co
n

st
ru

ct
a
re
d
u
ce
d
sy
st
em

su
ch

th
at

Σ
k

=
ar

g
m

in
d

eg
(Σ̂

)=
k

∥ ∥ ∥Σ
−

Σ̂
∥ ∥ ∥ H

2

.

T
h

e
op

ti
m

iz
at

io
n

pr
ob

le
m

is
n

o
n

co
n

ve
x.

W
e

pr
op

os
e

fi
n

d
in

g
re

d
u

ce
d

or
d

er
m

o
d

el
s

th
at

sa
ti

sf
y

fi
rs

t-
or

d
er

n
ec

es
sa

ry
op

ti
m

al
it

y
co

n
d

it
io

n
s.

3
0

/
5

6

F
ir

st
-o

rd
er

ne
ce

ss
ar

y
op

ti
m

al
it

y
co

nd
it

io
ns

L
et

H
k

so
lv

e
th

e
op

ti
m

al
H

2
pr

ob
le

m
an

d
le

t
λ̂
i

d
en

ot
e

it
s

p
ol

es
.

A
ss

u
m

in
g

fo
r

si
m

p
lic

it
y

th
at

m
=

p
=

1,
th

e
fo

llo
w

in
g

in
te

rp
o

la
ti

o
n

co
n

d
it

io
n

s
h

ol
d

:

H
(−
λ̂
∗ i
)

=
H

k
(−
λ̂
∗ i
)

an
d

d d
s

H
(s

)∣ ∣ ∣ ∣ s=
−
λ̂
∗ i

=
d d
s

H
k
(s

)∣ ∣ ∣ ∣ s=
−
λ̂
∗ i

T
h

u
s

th
e

op
ti

m
al

re
d

u
ce

d
sy

st
em

H
k

m
at

ch
es

th
e

fi
rs

t
tw

o
m

om
en

ts
of

th
e

or
ig

in
al

sy
st

em
at

th
e

m
ir

ro
r

im
a

g
e

o
f

it
s

p
o

le
s.

3
1

/
5

6

IR
K

A
(I

te
ra

ti
ve

R
a

ti
o

n
a

l
K

ry
lo

v
A

lg
o

ri
th

m
)

1
M

a
ke

a
n

in
it

ia
l

se
le

ct
io

n
o

f
σ
i,

fo
r

i
=

1
,·
··
,k

2
W

=
[(
σ

1
E
∗
−

A
∗ )
−

1
C
∗ ,
··
·,

(σ
k

E
∗
−

A
∗ )
−

1
C
∗ ]

3
V

=
[(
σ

1
E
−

A
)−

1
B
,
··
·,

(σ
k

E
−

A
)−

1
B

]

4
w

h
il

e
(n

o
t

co
n

ve
rg

ed
)

E
k

=
W
∗ E

V
,

A
k

=
W
∗ A

V
,

σ
i
←
−
−
λ
i(

A
k
,E

k
)

+
N

ew
to

n
co

rr
ec

ti
o

n
,

i
=

1
,·
··
,k

,

W
=

[(
σ

1
E
∗
−

A
∗ )
−

1
C
∗ ,
··
·,

(σ
k

E
∗
−

A
∗ )
−

1
C
∗ ]

,

V
=

[(
σ

1
E
−

A
)−

1
B
,
··
·,

(σ
k

E
−

A
)−

1
B

].

5
E
k

=
W
∗ E

V
,

A
k

=
W
∗ A

V
,

B
k

=
W
∗ B

,
C
k

=
C

V

•
E

xa
m

p
le

:
C

o
ol

in
g

pr
o

ce
ss

in
a

ro
lli

n
g

m
ill

.
B

ou
n

d
ar

y
co

n
tr

ol
of

2D
h

ea
t

eq
u

at
io

n
:

fi
n

it
e

el
em

en
t

d
is

cr
et

iz
at

io
n

yi
el

d
s:

A
,

E
∈
R

7
9

8
4

1
×

7
9

8
4

1
,

B
∈
R

7
9

8
4

1
×

7
,

C
∈
R

6
×

7
9

8
4

1
.

3
2

/
5

6

Book of Abstracts 35th Benelux Meeting on Systems and Control

168



N
um

er
ic

al
re

su
lt

s

IR
K

A
is

co
m

p
ar

ed
w

it
h

:

1
M

o
d

al
A

p
pr

ox
im

at
io

n
H

m
o
d
a
l:

ch
o

os
e

20
d

om
in

an
t

m
o

d
es

of
H

(s
).

2
H
ω

:
in

te
rp

ol
at

io
n

p
oi

n
ts

jω
w

h
er

e
‖H

(
ω

)‖
is

d
om

in
an

t.
3

H
re
a
l:

20
in

te
rp

ol
at

io
n

p
oi

n
ts

in
th

e
m

ir
ro

r
im

ag
es

of
th

e
p

ol
es

of
H

(s
).

H
IR

K
A

H
m

o
d
a
l

H
ω

H
re

a
l

R
el

a
ti

ve
H
∞

er
ro

r
0
.0

3
0

0
.1

0
3

0
.5

4
2

0
.2

4
7

!
"
!
#

!
"
!
$

!
"
!
%

!
"
!
&

!
"
"

!
"
!
%

!
"
!
'

!
"
!
&

!
"
!
!

()
*
+
,-
).
/
01
*
2
3

,44,5,!,5
)
,44,

6
7
/
*
,8
97
:,
7
(,
:;
*
,*
))
7
),
1
<
1
:*
=
1

,

,

5
>?
@
A

5
=
7
/
.
9

5
BC

5
)*
.
9

3
3

/
5

6

S
o

m
e

re
fe

re
n

ce
s:

In
te

rp
o

la
to

ry
m

o
d

el
re

d
u

ct
io

n

A
.C

.
A

n
to

u
la

s,
C

.A
.

B
ea

tt
ie

,
a

n
d

S
.

G
u

g
er

ci
n

,
In
te
rp
o
la
to
ry

m
o
d
el

re
d
u
ct
io
n
o
f
la
rg
e-
sc
a
le

sy
st
em

s,
in

E
ffi

ci
en

t
m

o
d

el
in

g
a

n
d

co
n

tr
o

l
o

f
la

rg
e-

sc
a

le
sy

st
em

s,
K

.
G

ri
g

or
ia

d
is

a
n

d
J.

M
o

h
a

m
m

a
d

p
o

u
r

E
d

s,
S

p
ri

n
g

er
V

er
la

g
,

p
a

g
es

3
-5

8
(2

0
1

0
).

A
.R

.
K

el
le

m
s,

D
.

R
o

o
s,

N
.

X
ia

o
,

S
.J

.
C

ox
:

L
ow

-d
im

en
si

o
n

a
l,

m
or

p
h

o
lo

g
ic

a
ll

y
a

cc
u

ra
te

m
o

d
el

s
o

f
su

b
th

re
sh

o
ld

m
em

b
ra

n
e

p
o

te
n

ti
a

l,
J.

C
o

m
p

u
t.

N
eu

ro
sc

ie
n

ce
,

2
7

:1
6

1
-1

7
6

(2
0

0
9

).

C
.A

.
B

ea
tt

ie
a

n
d

S
.

G
u

g
er

ci
n

,
In
te
rp
o
la
to
ry

p
ro
je
ct
io
n
m
et
h
o
d
s
fo
r
st
ru
ct
u
re

p
re
se
rv
in
g

m
o
d
el

re
d
u
ct
io
n

,
S

ys
t.

C
o

n
t.

L
et

t.
,

5
8

(2
0

0
9

).

C
.A

.
B

ea
tt

ie
a

n
d

S
.

G
u

g
er

ci
n

,
M
o
d
el

R
ed

u
ct
io
n
b
y
R
a
ti
o
n
a
l
In
te
rp
o
la
ti
o
n

,
in

”
M

o
d

el
R

ed
u

ct
io

n
a

n
d

A
p

p
ro

xi
m

a
ti

o
n

fo
r

C
o

m
p

le
x

S
ys

te
m

s”
,

ed
it

ed
b

y
P

et
er

B
en

n
er

,
A

lb
er

t
C

o
h

en
,

M
ar

io
O

h
lb

er
g

er
,

a
n

d
K

ar
en

W
il

lc
ox

,
B

ir
k

h
ä
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ŷ(

t)
=

b Cx̂
(t

)
+

b Du
(t

)

w
ith

:
b E

=
W

T
E

V
,

b A
=

W
T

A
V

,
b B

=
W

T
B

,
b C

=
C

V
,

b D
=

D
.

6
/2

6

O
ut

lin
e

M
od

el
R

ed
uc

tio
n

vi
a

P
ro

je
ct

io
n

M
od

el
R

ed
uc

tio
n

by
In

te
rp

ol
at

io
n

In
te

rp
ol

at
or

y
P

ro
je

ct
io

ns
fo

rH
2

O
pt

im
al

A
pp

ro
xi

m
at

io
n

IR
K

A

D
es

ce
nt

al
go

rit
hm

s

7
/2

6

Ta
ng

en
tia

li
nt

er
po

la
tio

n

b H(
s)

is
a

rig
ht

-ta
ng

en
tia

li
nt

er
po

la
nt

to
H

(s
)

at
s

=
�

i
al

on
g

th
e

rig
ht

ta
ng

en
td

ire
ct

io
n

r i
2

C
m

,
if

H
(�

i)
r i

=
b H(

�
i)

r i
.

S
im

ila
rly

,
b H(

s)
is

a
le

ft-
ta

ng
en

tia
li

nt
er

po
la

nt
to

H
(s

)
at

s
=

µ
i

al
on

g
th

e
le

ft
ta

ng
en

td
ire

ct
io

n
` i
2

C
q
,

if

`T i
H

(µ
i)

=
`T i

b H(
µ

i)
.

W
e

sa
y

th
at

b H(
s)

is
a

bi
ta

ng
en

tia
lH

er
m

ite
in

te
rp

ol
an

tt
o

H
(s

)
at

s
=

�
i

al
on

g
th

e
rig

ht
ta

ng
en

td
ire

ct
io

n
r i
2

C
m

an
d

th
e

le
ft

ta
ng

en
td

ire
ct

io
n
` i
2

C
q
,

if

`T i
H
0 (
�

i)
r i

=
`T i

b H0
(�

i)
r i

.

w
he

re
0

de
no

te
s

di
ffe

re
nt

ia
tio

n
w

ith
re

sp
ec

tt
o

s.

8
/2

6

Book of Abstracts 35th Benelux Meeting on Systems and Control

176



Pe
tro

v-
G

al
er

ki
n

P
ro

je
ct

io
ns

fo
rT

an
ge

nt
ia

lI
nt

er
po

la
tio

n

Th
eo

re
m

.
G

iv
en

H
(s

),
le

t
b H(

s)
de

no
te

a
re

du
ce

d
tra

ns
fe

rf
un

ct
io

n
ob

ta
in

ed
by

pr
oj

ec
tio

n
us

in
g

th
e

ba
se

s
V

an
d

W
.

G
iv

en
ar

e
�
,
µ
2

C
,r
2

C
m

an
d
`
2

C
q
.

(a
)

If
(�

E
�

A
)�

1
B

r
2

R
an

ge
(V

),

th
en

H
(�

)r
=

b H(
�
)r

;

(b
)

If
⇣ `T

C
(µ

E
�

A
)�

1
⌘ T
2

R
an

ge
(W

),

th
en

`T
H

(µ
)

=
`T

b H(
µ
);

(c
)

If
bo

th
(a

)a
nd

(b
)h

ol
d,

an
d
�

=
µ

,t
he

n

`T
H
0 (
�
)r

=
`T

b H0
(�

)r
.

R
em

ar
k.

N
ot

ic
e

th
at

th
e

va
lu

es
th

at
ar

e
in

te
rp

ol
at

ed
ar

e
ne

ve
r

ex
pl

ic
itl

y
co

m
pu

te
d;

th
is

is
a

si
gn

ifi
ca

nt
ad

va
nt

ag
e

of
th

e
Pe

tro
v-

G
al

er
ki

n
pr

oj
ec

tio
n

fra
m

ew
or

k.

9
/2

6

A
si

m
pl

e
ex

am
pl

e
(B

ea
tti

e
-G

ug
er

ci
n)

C
on

si
de

rt
he

sy
st

em

A
=

2 4
�

6
�

11
�

6
1

0
0

0
1

0

3 5
,

B
=

2 4
�

1
1

0
1

1
0

3 5
,

C
=


1

0
1

1
�

1
0

� ,
E

=
I 3

,
D

=
0.

)
H

(s
)

=
1

s3
+

6s
2

+
11

s
+

6


10

s2
�

10
s

+
1

�
s2
�

5s
+

6
�

18
s
�

6

� .

W
e

ch
oo

se
�

1
=

µ
1

=
0,

an
d

ta
ng

en
td

ire
ct

io
ns

r 1
=


1 2

�
an

d
` 1

=


3 1

� .

Th
e

co
rr

es
po

nd
in

g
Pe

tro
v-

G
al

er
ki

n
pr

oj
ec

tio
n

is
gi

ve
n

by
:

V
=

(�
1
E
�

A
)�

1
B

r 1
=

2 4
�

2
�

1 4

3 5
,

W
=

(�
1
E
�

A
)�

T
C

T
` 1

=

2 4
0.

5
�

1
6.

5

3 5
.

10
/2

6

Th
is

pr
oj

ec
tio

n
yi

el
ds

th
e

re
du

ce
d

m
od

el

b E
=

26
,
b A

=
�

5,
b B

=
⇥

6
�

0.
5

⇤ ,
b C

=


2
�

1

�
)

b H(
s)

=
1

26
s

+
5


12

�
1

�
6

0.
5

� .

C
he

ck
in

g
th

e
in

te
rp

ol
at

io
n

co
nd

iti
on

s:

H
(�

1
)r

1
=

b H(
�

1
)r

1
=


2
�

1

� ,
X

`T 1
H

(�
1
)

=
`T 1

b H(
�

1
)

=
⇥

6
�

0.
5

⇤ ,
X

`T 1
H
0 (
�

1
)r

1
=

`T 1
b H0

(�
1
)r

1
=
�

26
.
X

N
ot

ic
e

th
at

b H(
s)

do
es

no
tf

ul
ly

in
te

rp
ol

at
e

H
(s

)
at

s
=

�
1

=
0:

H
(�

1
)

=


5/

3
1/

6
1

�
1

�
6=


2.

4
�

0.
2

�
1.

2
0.

1

�
=

b H(
�

1
).

11
/2

6

To
en

fo
rc

e
fu

ll
m

at
rix

in
te

rp
ol

at
io

n,
w

e
ne

ed

V
m

=
(�

1
E
�

A
)�

1
B

=

2 4
0
�

1
�

1
0

5/
3

7/
6

3 5
,

W
m

=
(�

1
E
�

A
)�

T
C

T
=

2 4
1/

6
0

0
�

1
11

/
6

1

3 5
.

Th
is

le
ad

s
to

a
re

du
ce

d
sy

st
em

of
or

de
r2

:

b H m
(s

)
=


10

1
6
�

6

�✓
s


11
0

71
96

42

�
�


�

60
�

6
�

36
36

�◆
�

1


10
1

6
�

6

�

b H m
(s

)
in

te
rp

ol
at

es
H

(s
)

an
d

H
0 (

s)
at

s
=

�
1

=
0:

H
(�

1
)

=
b H m

(�
1
)

=


5/

3
1/

6
1

�
1

� ,
H
0 (
�

1
)

=
b H0 m

(�
1
)

=


�

55
/
18

�
71

/
36

�
8/

3
�

7/
6

� .

C
on

cl
us

io
n.

Th
e

fu
nd

am
en

ta
ld

iff
er

en
ce

be
tw

ee
n

ta
ng

en
tia

la
nd

fu
ll

in
te

rp
ol

at
io

n
is

th
at

in
th

e
fo

rm
er

ca
se

,e
ac

h
in

te
rp

ol
at

io
n

co
nd

iti
on

co
nt

rib
ut

es
on

e
ad

di
tio

na
lo

rd
er

to
th

e
re

du
ce

d
di

m
en

si
on

.
In

th
e

la
tte

rc
as

e
ge

ne
ri

ca
lly

m
or

p
di

m
en

si
on

s
ar

e
ad

de
d.

12
/2

6

35th Benelux Meeting on Systems and Control Book of Abstracts

177



Th
e

ge
ne

ra
lc

as
e

G
iv

en
H

(s
)

=
C

(s
E
�

A
)�

1
B

+
D

,

r
rig

ht
in

te
rp

ol
at

io
n

po
in

ts
{�

i}
r i=

1
an

d
rig

ht
di

re
ct

io
ns

{r
k
}r k=

1
2

C
m

,
r

le
ft

in
te

rp
ol

at
io

n
po

in
ts

{µ
j}

r j=
1

an
d

le
ft

di
re

ct
io

ns
{`

k
}r k=

1
2

C
q
,c

on
st

ru
ct

V
=

h (�
1
E
�

A
)�

1
B

r 1
,

··
·,

(�
rE
�

A
)�

1
B

r r
i

an
d

W
=

h (µ
1
E
�

A
)�

T
C

T
` 1

,
··

·,
(µ

rE
�

A
)�

T
C

T
` r
i .

Th
en

,
b H(

s)
=

b C(
sb E
�

b A)
�

1
b B

co
ns

tr
uc

te
d

by
a

Pe
tro

v-
G

al
er

ki
n

pr
oj

ec
tio

n
sa

tis
fie

s
th

e
in

te
rp

ol
at

io
n

co
nd

iti
on

s:

H
(�

i)
r i

=
b H(

�
i)

r i
,

`T i
H

(µ
i)

=
`T i

b H(
µ

i)
;

ad
di

tio
na

lly
if

µ
i
=

�
i
)

`T i
H
0 (
�

i)
r i

=
`T i

b H0
(�

i)
r i

.

R
em

ar
k.

Th
e

m
ai

n
co

st
in

in
te

rp
ol

at
or

y
m

od
el

re
du

ct
io

n
re

su
lts

fro
m

so
lv

in
g

la
rg

e-
sc

al
e

(ty
pi

ca
lly

sp
ar

se
)s

ys
te

m
s.

Th
er

e
is

no
ne

ed
to

so
lv

e
la

rg
e-

sc
al

e
Ly

ap
un

ov
or

R
ic

ca
ti

eq
ua

tio
ns

,g
iv

in
g

in
te

rp
ol

at
or

y
m

et
ho

ds
a

co
m

pu
ta

tio
na

la
dv

an
ta

ge
.

13
/2

6

O
ut

lin
e

M
od

el
R

ed
uc

tio
n

vi
a

P
ro

je
ct

io
n

M
od

el
R

ed
uc

tio
n

by
In

te
rp

ol
at

io
n

In
te

rp
ol

at
or

y
P

ro
je

ct
io

ns
fo

rH
2

O
pt

im
al

A
pp

ro
xi

m
at

io
n

IR
K

A

D
es

ce
nt

al
go

rit
hm

s

14
/2

6

O
pt

im
iz

at
io

n
pr

ob
le

m
:

gi
ve

n
H

(s
),

fin
d

a
re

du
ce

d
m

od
el

b H(
s)

,t
ha

tm
in

im
iz

es
th

e
H

2
er

ro
r:

� � �H
�

b H� � � H
2

=
m

in
di

m
(e H

)=
r

� � �H
�

e H� � � H
2
.

R
ec

al
l:

sm
al

lH
2

er
ro

ri
nd

uc
es

sm
al

lt
im

e
do

m
ai

n
er

ro
rk

y
�

ŷk
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Ĥ
� � �2 H

2
=

n X i=
1

�
i

h H
(�

�
i)
�

Ĥ
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Â

x̂(
t)

+
B̂

u(
t)

,
ŷ(
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Ĉ
2

R
p⇥

r ,
D̂
2

R
p⇥

m
.

4
/4

2

In
te

rp
ol

at
or

y
re

du
ct

io
n

fo
rl

in
ea

rs
ys

te
m

s

G
iv

en
le

ft
in

te
rp

ol
at

io
n

po
in

ts
:
{µ

i}
q i=

1
⇢

C
,l

ef
tt

an
ge

nt
ia

ld
ire

ct
io

ns
:
{`

i}
q i=

1
⇢

C
p
,a

nd
rig

ht
in

te
rp

ol
at

io
n

po
in

ts
:
{�

i}
k i=

1
⇢

C
,w

ith
rig

ht
ta

ng
en

tia
ld

ire
ct

io
ns

:
{r

i}
k i=

1
⇢

C
m

,

fin
d
⌃̂

,s
uc

h
th

at
th

e
as

so
ci

at
ed

tra
ns

fe
rf

un
ct

io
n

Ĥ
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Ĥ
(�

i)
r i

=
H

(�
i)

r i
fo

r
i=

1,
··

·,
k

.

If
in

st
ea

d
of

⌃
w

e
ar

e
gi

ve
n

le
ft

re
sp

on
se

s:
{v

i}
q i=

1
⇢

C
m

,r
ig

ht
re

sp
on

se
s:

{w
i}

k i=
1
⇢

C
p
,

fin
d

a
(lo

w
or

de
r)

sy
st

em
⌃̂

,s
uc

h
th

at
Ĥ
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p
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D
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d
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b
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p
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b
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b
e

co
n
n
ec

te
d

to
an

A
C

n
et

w
or

k
v
ia

A
C

or
D

C
-A

C
in

ve
rt

er
s

[3
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at
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p
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p
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e

su
rv

ey
p
ap

er
s

[4
3,

8,
59

,
73

,
40

].

R
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.
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p
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n
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b
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b
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b
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b
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b
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b
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p
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n
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e
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d
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v
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ed

in
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d
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p
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h
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e
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m
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h
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d
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d
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d
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l
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p
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h
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p
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p
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p
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p
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d
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a
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b
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b
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p
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b
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b
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b
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p
h

o
f
o
rd

er
n

is
a

tu
p
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h
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h
e

l-
th

ed
g
e

co
n
n
ec

ti
n
g

n
o
d
es

i
a
n
d

k
is

d
en

o
te

d
a
s

e l
=
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=
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|⇥

|E
|
is

d
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e l
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p
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ro
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.
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v
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p
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p
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b
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p
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Ṡ
=
−
∇

S
T
R
(V

)∇
S
+
(y
−

y)
T
ñ I

0
0

Y
(V

)ô (u
−

u)
T

C
.D

e
Pe

rs
is

(R
U

G
)

C
on

tro
lt

he
or

y
fo

rp
ow

er
gr

id
s

B
en

el
ux

S
ys

te
m

s
&

C
on

tro
l

22
/3

8

C
on

tro
lle

rs

O
ut

pu
tr

eg
ul

at
io

n

δ̇
=

ω
ω̇

=
−
(ω
−
ω
∗ )
−
(P
−

P
∗ )

+
u P

V̇
=

f(
V
,Q
,u

Q
)

⇔
ẋ
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rü
n
e,

O
n
co

n
d
it
io
n
s
u
n
d
er

w
h
ic
h
re
ce
d
in
g
h
or
iz
o
n
co

n
tr
o
l
d
el
iv
er
s
a
p
p
ro
xi
m
a
te
ly

o
p
ti
m
a
l
so
lu
ti
o
n
s,

p
.
2

S
et
up

W
e

co
ns

id
er

no
nl

in
ea

r
di

sc
re

te
ti

m
e

co
nt

ro
l

sy
st

em
s

x
u
(n

+
1)

=
f

(x
u
(n

),
u

(n
))
,

x
u
(0

)
=
x

w
it

h
x
u
(n

)
∈
X

,
u

(n
)
∈
U

,
X

,
U

no
rm

ed
sp

ac
es

U
su

al
in

te
rp

re
ta

ti
on

:

x
u
(n

)
=

st
at

e
of

th
e

sy
st

em
at

ti
m

e
t n

u
(n

)
=

co
nt

ro
l

ac
ti

ng
fr

om
ti

m
e
t n

to
t n

+
1

f
=

so
lu

ti
on

op
er

at
or

of
a

co
nt

ro
lle

d
O

D
E

/P
D

E
or

of
a

di
sc

re
te

ti
m

e
m

o
de

l
(o

r
a

nu
m

er
ic

al
ap

pr
ox

im
at

io
n

of
on

e
of

th
es

e)

L
ar
s
G
rü
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rü
n
e,

O
n
co

n
d
it
io
n
s
u
n
d
er

w
h
ic
h
re
ce
d
in
g
h
or
iz
o
n
co

n
tr
o
l
d
el
iv
er
s
a
p
p
ro
xi
m
a
te
ly

o
p
ti
m
a
l
so
lu
ti
o
n
s,

p
.
1
0

E
xa
m
pl
e:

tr
aj
ec
to
ri
es

0
5

1
0

1
5

2
0

2
5

0

0
.51

1
.52

n

x(n)

N
=

5

L
ar
s
G
rü
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rü
n
e,

O
n
co

n
d
it
io
n
s
u
n
d
er

w
h
ic
h
re
ce
d
in
g
h
or
iz
o
n
co

n
tr
o
l
d
el
iv
er
s
a
p
p
ro
xi
m
a
te
ly

o
p
ti
m
a
l
so
lu
ti
o
n
s,

p
.
1
6

A
ss
um

pt
io
ns

ne
ed
ed

fo
r
th
is
co
ns
tr
uc
ti
on

W
ha

t
do

w
e

ne
ed

to
m

ak
e

th
is

co
ns

tr
uc

ti
on

w
or

k?
[G

r.
’1

3]

(1
)

C
on

ti
nu

it
y

of
V
N

ne
ar
x
e

(u
ni

fo
rm

in
x

an
d
N

)
I

en
su

re
s

th
at

w
e

ca
n

pr
ol

on
g

th
e

tr
aj

ec
to

ry
in

th
e

m
id

d
le

w
it

h
ou

t
ch

an
gi

n
g

th
e

va
lu

e
of

th
e

ta
il

to
o

m
u

ch

(2
)

T
ur

np
ik

e
pr

op
er

ty

I
en

su
re

s
th

at
th

e
fi

n
it

e
h

or
iz

on
op

ti
m

al
tr

aj
ec

to
ri

es
st

ay
fo

r
a

ce
rt

ai
n

ti
m

e
n

ea
r

th
e

op
ti

m
al

eq
u

ili
br

iu
m
x
e

I
n

ot
e:

in
n

u
m

er
ic

al
ex

am
p

le
s

w
e

of
te

n
ob

se
rv

e
ex

p
on

en
ti

al
tu

rn
p

ik
e,

i.
e.

,
th

e
m

in
im

u
m

d
is

ta
n

ce
to
x
e

sh
ri

n
ks

ex
p

on
en

ti
al

ly
fa

st
as
N

in
cr

ea
se

s

In
st

ea
d

of
th

e
tu

rn
pi

ke
pr

op
er

ty
,

in
th

e
M

P
C

lit
er

at
ur

e
an

ot
he

r
pr

op
er

ty
is

us
ua

lly
im

p
os

ed
:

st
ri

ct
di

ss
ip

at
iv

it
y

L
ar
s
G
rü
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ü

lle
r

’1
6]

:
U

nd
er

su
it

ab
le

co
nt

ro
lla

bi
lit

y
co

nd
it

io
ns

,
st

ri
ct

di
ss

ip
at

iv
it

y
is

eq
ui

va
le

nt
to

a
ro

bu
st

tu
rn

pi
ke

pr
op

er
ty

pl
us

op
ti

m
al

it
y

of
th

e
eq

ui
lib

ri
um

(x
e
,u

e
)

(d
et

ai
ls

in
th

e
se

co
nd

pa
rt

of
th

is
pl

en
ar

y)

T
he

pr
ev

io
us

ex
am

pl
e

is
st

ri
ct

ly
di

ss
ip

at
iv

e
w

it
h
λ

(x
)

=
−
x

2
/2

T
ra

ck
in

g
ty

p
e

fu
nc

ti
on

al
s

ar
e

st
ri

ct
ly

di
ss

ip
at

iv
e

w
it

h
λ
≡

0

L
ar
s
G
rü
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rü
n
e,

O
n
co

n
d
it
io
n
s
u
n
d
er

w
h
ic
h
re
ce
d
in
g
h
or
iz
o
n
co

n
tr
o
l
d
el
iv
er
s
a
p
p
ro
xi
m
a
te
ly

o
p
ti
m
a
l
so
lu
ti
o
n
s,

p
.
2
0

35th Benelux Meeting on Systems and Control Book of Abstracts

245



Ill
us
tr
at
io
n
of

(2
)
an
d
(3
)

e
x

ε

x

n
K

(N
)

1

(2
):
x
µ
N

(n
)

co
nv

er
ge

s
to

th
e
ε 1

(N
)-

ba
ll

ar
ou

nd
x
e

(3
):

co
st

of
al

l
ot

he
r

tr
aj

ec
to

ri
es

re
ac

hi
ng

th
e

ba
ll

at
ti

m
e
K

is
(3

):
hi

gh
er

th
an

th
at

of
x
µ
N

(n
)

up
to

th
e

er
ro

r
K
ε 1

(N
)

+
ε 2

(K
)

L
ar
s
G
rü
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rü
n
e,

O
n
co

n
d
it
io
n
s
u
n
d
er

w
h
ic
h
re
ce
d
in
g
h
or
iz
o
n
co

n
tr
o
l
d
el
iv
er
s
a
p
p
ro
xi
m
a
te
ly

o
p
ti
m
a
l
so
lu
ti
o
n
s,

p
.
2
2

Book of Abstracts 35th Benelux Meeting on Systems and Control

250



S
ch
em

es
w
it
h
te
rm

in
al
co
ns
tr
ai
nt
s

Im
p

os
in

g
x
u
(N

)
=
x
e

im
pr

ov
es

th
e

pr
ev

io
us

re
su

lt
s

T
he

or
em

:
[A

n
ge

li/
A

m
ri

t/
R

aw
lin

gs
’1

2;
D

ie
h

l/
R

aw
lin

gs
’1

1]

U
nd

er
st

ri
ct

di
ss

ip
at

iv
it

y
an

d
co

nt
ro

lla
bi

lit
y,

th
e

re
su

lt
in

g
M

P
C

sc
he

m
e

yi
el

ds
av

er
ag

ed
op

ti
m

al
tr

aj
ec

to
ri

es

,
i.e

,

J
cl ∞

(x
,µ

N
)
≤
`(
x
e
,u

e
)

+

fo
r

w
hi

ch
x
e

is
as

ym
pt

ot
ic

al
ly

st
ab

le
,

i.e
.,

‖x
µ
N

(k
,x

)
−
x
e
‖
≤
β

(‖
x
−
x
e
‖,
k
)

+
.

In
ad

di
ti

on
[G

r.
/P

an
in

’1
5]

w
e

ge
t

ap
pr

ox
.

tr
an

si
en

t
op

ti
m

al
it

y

J
cl K

(x
,µ

N
(x

))
≤
J
K

(x
,u

)
+

+
ε 2

(K
)

L
ar
s
G
rü
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rü
n
e,

O
n
co

n
d
it
io
n
s
u
n
d
er

w
h
ic
h
re
ce
d
in
g
h
or
iz
o
n
co

n
tr
o
l
d
el
iv
er
s
a
p
p
ro
xi
m
a
te
ly

o
p
ti
m
a
l
so
lu
ti
o
n
s,

p
.
2
2

35th Benelux Meeting on Systems and Control Book of Abstracts

251



S
ch
em

es
w
it
h
te
rm

in
al
co
ns
tr
ai
nt
s

Im
p

os
in

g
x
u
(N

)
=
x
e

im
pr

ov
es

th
e

pr
ev

io
us

re
su

lt
s

T
he

or
em

:
[A

n
ge

li/
A

m
ri

t/
R

aw
lin

gs
’1

2;
D

ie
h

l/
R

aw
lin

gs
’1

1]

U
nd

er
st

ri
ct

di
ss

ip
at

iv
it

y
an

d
co

nt
ro

lla
bi

lit
y,

th
e

re
su

lt
in

g
M

P
C

sc
he

m
e

yi
el

ds
av

er
ag

ed
op

ti
m

al
tr

aj
ec

to
ri

es
,

i.e
,

J
cl ∞

(x
,µ

N
)
≤
`(
x
e
,u

e
)

+
�
�
��

X
X
X X

ε 1
(N

)

fo
r

w
hi

ch
x
e

is
as

ym
pt

ot
ic

al
ly

st
ab

le
,

i.e
.,

‖x
µ
N

(k
,x

)
−
x
e
‖
≤
β

(‖
x
−
x
e
‖,
k
)

+
ε 1

(N
).

In
ad

di
ti

on
[G

r.
/P

an
in

’1
5]

w
e

ge
t

ap
pr

ox
.

tr
an

si
en

t
op

ti
m

al
it

y

J
cl K

(x
,µ

N
(x

))
≤
J
K

(x
,u

)
+

+
ε 2

(K
)

L
ar
s
G
rü
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rü
n
e,

O
n
co

n
d
it
io
n
s
u
n
d
er

w
h
ic
h
re
ce
d
in
g
h
or
iz
o
n
co

n
tr
o
l
d
el
iv
er
s
a
p
p
ro
xi
m
a
te
ly

o
p
ti
m
a
l
so
lu
ti
o
n
s,

p
.
2
2

Book of Abstracts 35th Benelux Meeting on Systems and Control

252



E
xa
m
pl
e:

cl
os
ed

lo
op

co
st

J
cl K

(x
,µ

N
(x

))
≤
J
K

(x
,u

)
+
K
ε 1

(N
)

+
ε 2

(K
)

vs
.

J
cl K

(x
,µ

N
(x

))
≤
J
K

(x
,u

)
+
K
ε̃ 1

(N
)

+
ε 2

(K
)

0
5

1
0

1
5

2
0

2
5

8

8
.59

9
.51
0

1
0
.51
1

1
1
.51
2

1
2
.51
3

K

J
K

cl
(x,µ

5
)

 

 

n
o
 t

e
rm

in
a

l 
c
o
n
d

it
io

n
s

te
rm

in
a

l 
c
o
n

d
it
io

n
s

B
ut

:
te

rm
in

al
co

ns
tr

ai
nt

s
ca

n
ca

us
e

in
fe

as
ib

ili
ty

an
d

se
ve

re
nu

m
er

ic
al

pr
ob

le
m

s

L
ar
s
G
rü
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rü
n
e,

O
n
th
e
re
la
ti
o
n
b
et
w
ee
n
d
is
si
p
a
ti
vi
ty

a
n
d
th
e
tu
rn
p
ik
e
p
ro
p
er
ty
,
p
.
6

D
is

si
pa

ti
vi

ty
D

efi
ni

ti
on

[W
ill

em
s

’7
2]

T
he

sy
st

em
is

ca
lle

d
di

ss
ip

at
iv

e
if

fo
r

al
l
x
∈
X

,
u
∈
U

th
e

in
eq

ua
lit

y

λ
(x

+
)
≤
λ
(x
)
+
s(
x
,u
)

ho
ld

s

T
he

sy
st

em
is

ca
lle

d
st

ri
ct

ly
di

ss
ip

at
iv

e
if

th
er

e
ar

e
x
e
∈
X

,
α
∈
K

su
ch

th
at

fo
r

al
l
x
∈
X

,
u
∈
U

th
e

in
eq

ua
lit

y

λ
(x

+
)
≤
λ
(x
)
+
s(
x
,u
)
−
α
(‖
x
−
x
e
‖)

ho
ld

s

α
∈
K

:
α
:
R

+ 0
→

R
+ 0

,
co

nt
in

uo
us

,
st

ri
ct

ly
in

cr
ea

si
ng

,
α
(0
)
=

0
r

(0
, 
0
)

r
α

( 
)

L
ar
s
G
rü
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rü
n
e,

O
n
th
e
re
la
ti
o
n
b
et
w
ee
n
d
is
si
p
a
ti
vi
ty

a
n
d
th
e
tu
rn
p
ik
e
p
ro
p
er
ty
,
p
.
8

H
is

to
ry

D
is

si
pa

ti
vi

ty
w

as
de

fi
ne

d
fo

r
co

nt
in

uo
us

ti
m

e
sy

st
em

s
in

[J
an

C
.

W
ill

em
s,

D
is

si
p

at
iv

e
D

yn
am

ic
al

S
ys

te
m

s,
P

ar
t

I
&

II
,

19
72

]

(t
h

is
is

on
e

of
th

e
ra

re
o

cc
as

io
n

s
in

w
h

ic
h

th
e

or
ig

in
al

p
ap

er
ca

n

st
ill

b
e

re
co

m
m

en
d

ed
as

on
e

of
th

e
b

es
t

re
ad

in
gs

on
th

e
to

p
ic

)

It
w

as
th

e
re

su
lt

of
th

e
en

de
av

ou
r

to
ge

ne
ra

lis
e

pa
ss

iv
it

y

(p
as

si
vi

ty
=

d
is

si
p

at
iv

it
y

w
it

h
s(
x
,u

)
=
〈y
,u
〉,

w
h

er
e
y
=
h
(x
)

is

th
e

ou
tp

u
t

of
th

e
sy

st
em

)

P
as

si
vi

ty
,

in
tu

rn
,

is
a

cl
as

si
ca

l
pr

op
er

ty
of

el
ec

tr
ic

al
ci

rc
ui

ts
w

hi
ch

do
no

t
co

nt
ai

n
ac

ti
ve

el
em

en
ts

S
tr

ic
t

(o
r

st
ro

ng
)

di
ss

ip
at

iv
it

y
is

m
en

ti
on

ed
in

[W
ill

em
s

’7
2]

bu
t

is
no

t
so

of
te

n
us

ed
;

st
ri

ct
pa

ss
iv

it
y

is
m

or
e

co
m

m
on

ly
fo

un
d

T
ra

ns
la

ti
on

to
di

sc
re

te
ti

m
e

sy
st

em
s

is
qu

it
e

st
ra

ig
ht

fo
rw

ar
d

[B
yr

n
es

/L
in

’9
4]

L
ar
s
G
rü
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rü
n
e,

O
n
th
e
re
la
ti
o
n
b
et
w
ee
n
d
is
si
p
a
ti
vi
ty

a
n
d
th
e
tu
rn
p
ik
e
p
ro
p
er
ty
,
p
.
9

A
pp

lic
at

io
ns

D
is

si
pa

ti
vi

ty
ca

n
b

e
us

ed
fo

r
de

si
gn

in
g

as
ym

pt
ot

ic
al

ly
st

ab
ili

si
ng

fe
ed

ba
ck

co
nt

ro
lle

rs
,

i.e
.,

fo
r

fi
nd

in
g

a
m

ap
u
=
F
(x
)

su
ch

th
at
x
+
=
f
(x
,F

(x
))

ha
s

an
as

ym
pt

ot
ic

al
ly

st
ab

le
eq

ui
lib

ri
um

x
∗ :

If
w

e
ca

n
co

ns
tr

uc
t
F

w
it

h
s(
x
,F

(x
))
<

0
fo

r
x
6=
x
∗ ,

th
en

λ
(x

+
)
≤
λ
(x
)
+
s(
x
,F

(x
))
<
λ
(x
),

x
6=
x
∗

im
pl

ie
s

th
at
λ

b
ec

om
es

a
L

ya
pu

no
v

fu
nc

ti
on

fo
r

th
e

sy
st

em

(i
n

ca
se

of
st

ri
ct

di
ss

ip
at

iv
it

y
w

it
h
x
∗
=
x
e
,

th
e

no
n-

st
ri

ct
in

eq
ua

lit
y
s(
x
,F

(x
))
≤

0
is

su
ffi

ci
en

t)

C
on

st
ru

ct
in

g
F

is
pa

rt
ic

ul
ar

ly
ea

sy
in

ca
se

of
pa

ss
iv

it
y,

b
ec

au
se

fo
r
s(
x
,u
)
=
〈y
,u
〉i

t
su

ffi
ce

s
to

de
fi

ne
th

e
ou

tp
ut

fe
ed

ba
ck
F
(y
)
:=
−
y

L
ar
s
G
rü
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rü
n
e,

O
n
th
e
re
la
ti
o
n
b
et
w
ee
n
d
is
si
p
a
ti
vi
ty

a
n
d
th
e
tu
rn
p
ik
e
p
ro
p
er
ty
,
p
.
1
0

A
pp

lic
at

io
ns

V
ar

io
us

st
ab

ili
ty

pr
op

er
ti

es
ca

n
b

e
fo

rm
ul

at
ed

vi
a

di
ss

ip
at

iv
it

y :

(a
sy

m
pt

ot
ic

)
st

ab
ili

ty
of

th
e

eq
ui

lib
ri

um
x
e

ca
n

b
e

co
nc

lu
de

d
fo

r
al

l
so

lu
ti

on
s

if
th

e
sy

st
em

is
(s

tr
ic

tl
y)

di
ss

ip
at

iv
e,
s(
x
,u
)
≤

0
an

d
th

e
st

or
ag

e
fu

nc
ti

on
λ

is
b

ou
nd

ed
fr

om
b

el
ow

an
d

ab
ov

e
by
K ∞

-f
un

ct
io

ns
in

‖x
−
x
e
‖

(K
∞

-f
u

n
ct

io
n

s
=

u
n

b
ou

n
d

ed
K

-f
u

n
ct

io
n

s)

in
pu

t-
to

-s
ta

te
st

ab
ili

ty
of

th
e

eq
ui

lib
ri

um
x
e

ca
n

b
e

co
nc

lu
de

d
if

th
e

sy
st

em
is

st
ri

ct
ly

di
ss

ip
at

iv
e,
s(
x
,u
)

is
co

nt
in

uo
us

an
d

b
ou

nd
ed

fr
om

ab
ov

e
by

a
K

-f
un

ct
io

n
in

‖u
‖

an
d

th
e

st
or

ag
e

fu
nc

ti
on

λ
is

b
ou

nd
ed

fr
om

b
el

ow
an

d
ab

ov
e

by
K ∞

-f
un

ct
io

ns
in
‖x
−
x
e
‖

In
b

ot
h

ca
se

s,
λ

is
a

L
ya

pu
no

v
fu

nc
ti

on

L
ar
s
G
rü
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rü
n
e,

O
n
th
e
re
la
ti
o
n
b
et
w
ee
n
d
is
si
p
a
ti
vi
ty

a
n
d
th
e
tu
rn
p
ik
e
p
ro
p
er
ty
,
p
.
1
8

E
xa

m
pl

e
2:

op
ti

m
al

tr
aj

ec
to

ri
es

0
5

1
0

1
5

2
0

2
5

0

0
.51

1
.52

2
.53

3
.54

4
.55

5
.5

n

x(n)

O
pt

im
al

tr
aj

ec
to

ri
es

fo
r
N

=
5,
..
.,
15

L
ar
s
G
rü
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rü
n
e,

O
n
th
e
re
la
ti
o
n
b
et
w
ee
n
d
is
si
p
a
ti
vi
ty

a
n
d
th
e
tu
rn
p
ik
e
p
ro
p
er
ty
,
p
.
2
1

H
is

to
ry

A
pp

ar
en

tl
y

fi
rs

t
de

sc
ri

b
ed

by
[v

on
N

eu
m

an
n

19
45

]

N
am

e
“t

ur
np

ik
e

pr
op

er
ty

”
co

in
ed

by
[D

or
fm

an
/S

am
u

el
so

n
/S

ol
ow

19
57

]

E
xt

en
si

ve
ly

st
ud

ie
d

in
th

e
19

70
s

in
m

at
he

m
at

ic
al

ec
on

om
y,

cf
.

su
rv

ey
[M

cK
en

zi
e

19
83

]

R
en

ew
ed

in
te

re
st

in
re

ce
nt

ye
ar

s
[Z

as
la

vs
ki

’1
4,

T
ré
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rü
n
e,

O
n
th
e
re
la
ti
o
n
b
et
w
ee
n
d
is
si
p
a
ti
vi
ty

a
n
d
th
e
tu
rn
p
ik
e
p
ro
p
er
ty
,
p
.
2
1

H
is

to
ry

A
pp

ar
en

tl
y

fi
rs

t
de

sc
ri

b
ed

by
[v

on
N

eu
m

an
n

19
45

]

N
am

e
“t

ur
np

ik
e

pr
op

er
ty

”
co

in
ed

by
[D

or
fm

an
/S

am
u

el
so

n
/S

ol
ow

19
57

]

E
xt

en
si

ve
ly

st
ud

ie
d

in
th

e
19

70
s

in
m

at
he

m
at

ic
al

ec
on

om
y,

cf
.

su
rv

ey
[M

cK
en

zi
e

19
83

]

R
en

ew
ed

in
te

re
st

in
re

ce
nt

ye
ar

s
[Z

as
la

vs
ki

’1
4,

T
ré
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rü
n
e,

O
n
th
e
re
la
ti
o
n
b
et
w
ee
n
d
is
si
p
a
ti
vi
ty

a
n
d
th
e
tu
rn
p
ik
e
p
ro
p
er
ty
,
p
.
2
7

M
P

C
fo

r
E

xa
m

pl
e

2

0
2

4
6

8
1

0
1

2
1

4
1

6
1

8
2

0
0

0
.51

1
.52

2
.53

3
.54

4
.55

5
.5

n

x(n)

L
ar
s
G
rü
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ü
lle

r
’1

4,
M

ü
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rü
n
e,

O
n
th
e
re
la
ti
o
n
b
et
w
ee
n
d
is
si
p
a
ti
vi
ty

a
n
d
th
e
tu
rn
p
ik
e
p
ro
p
er
ty
,
p
.
3
6

T
ow

ar
ds

ne
w

re
su

lt
II

I

R
ec

al
l

th
e

fi
rs

t
tw

o
eq

ui
va

le
nc

es
in

th
e

fi
rs

t
th

eo
re

m
:

T
he

or
em

:
T

he
fo

llo
w

in
g

st
at

em
en

ts
ar

e
eq

ui
va

le
nt

(a
)

T
he

sy
st

em
is

st
ri

ct
ly

di
ss

ip
at

iv
e

w
it

h
su

pp
ly

ra
te

s(
x
,u
)
=
`(
x
,u
)
−
`(
x
e
,u

e
)

an
d

b
ou

nd
ed

st
or

ag
e

fu
nc

ti
on

(b
)

T
he

ne
ar

eq
ui

lib
ri

um
tu

rn
pi

ke
pr

op
er

ty
ho

ld
s

an
d

th
e

eq
ui

lib
ri

um
is

un
if

or
m

ly
ne

ar
op

ti
m

al

C
an

w
e

re
pl

ac
e

th
e

ne
ar

eq
ui

lib
ri

um
tu

rn
pi

ke
pr

op
er

ty
by

th
e

(m
or

e
in

tu
it

iv
e

an
d

“c
la

ss
ic

al
”)

ne
ar

op
ti

m
al

tu
rn

pi
ke

pr
op

er
ty

?

Y
es

,
bu

t
ag

ai
n

w
e

ne
ed

ad
di

ti
on

al
as

su
m

pt
io

ns

L
ar
s
G
rü
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rü
n
e,

O
n
th
e
re
la
ti
o
n
b
et
w
ee
n
d
is
si
p
a
ti
vi
ty

a
n
d
th
e
tu
rn
p
ik
e
p
ro
p
er
ty
,
p
.
3
8

N
ew

re
su

lt
II

I
T

he
or

em
:

A
ss

um
e
`

is
b

ou
nd

ed
an

d
th

e
sy

st
em

is
lo

ca
lly

co
nt

ro
lla

bl
e

ar
ou

nd
x
e

T
he

n
th

e
fo

llo
w

in
g

st
at

em
en

ts
ar

e
eq

ui
va

le
nt

(a
)

T
he

sy
st

em
is

st
ri

ct
ly

di
ss

ip
at

iv
e

w
it

h
su

pp
ly

ra
te

s(
x
,u
)
=
`(
x
,u
)
−
`(
x
e
,u

e
)

an
d

b
ou

nd
ed

st
or

ag
e

fu
nc

ti
on

an
d

x
e

is
ch

ea
pl

y
re

ac
ha

bl
e

(b
)

T
he

ne
ar

op
ti

m
al

tu
rn

pi
ke

pr
op

er
ty

ho
ld

s
an

d
x
e

is
un

if
or

m
ly

ne
ar

op
ti

m
al

Id
ea

of
pr

o
of

:
ch

ea
p

re
ac

ha
bi

lit
y

an
d

un
if

or
m

ne
ar

op
ti

m
al

it
y

of
x
e
,

re
sp

ec
ti

ve
ly

,
al

lo
w

to
pa

ss
fr

om
th

e
ne

ar
eq

ui
lib

ri
um

to
th

e
ne

ar
op

ti
m

al
tu

rn
pi

ke
pr

op
er

ty
an

d
vi

ce
ve

rs
a

N
ot

e:
th

e
im

pl
ic

at
io

n
“(

b)
⇒

st
ri

ct
di

ss
ip

at
iv

it
y”

al
so

ho
ld

s
w

it
ho

ut
as

su
m

in
g

lo
ca

l
co

nt
ro

lla
bi

lit
y

L
ar
s
G
rü
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Université Catholique de Louvain
Belgium
cosmoks@hotmail.gr

Veaceslav Spinu
Eindhoven University of Technology
The Netherlands
v.spinu@tue.nl

Tjerk Stegink
University of Groningen
The Netherlands
t.w.stegink@rug.nl

Maarten Steinbuch
Eindhoven University of Technoloyg
The Netherlands
m.steinbuch@tue.nl

Armin Steinhauser
Katholieke Universiteit Leuven
Belgium
armin.steinhauser@kuleuven.be

Zhiyong Sun
University of Groningen
The Netherlands
f.g.fokkens@rug.nl

Jan Swevers
Katholieke Universiteit Leuven
Belgium
jan.swevers@kuleuven.be

Hadi Taghvafard
University of Groningen
The Netherlands
taghvafard@gmail.com

Adrien Taylor
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I

Welcome

The Organizing Committee has the pleasure of welcom-
ing you to the 35th Benelux Meeting on Systems and
Control, at Kontakt der Kontinenten in Soesterberg,
The Netherlands.

Aim

The aim of the Benelux Meeting is to promote re-
search activities and to enhance cooperation between
researchers in Systems and Control. This is the thirty-
fifth in a series of annual conferences that are held al-
ternately in Belgium and The Netherlands.

Scientific Program Overview

1. Mini course by Athanasios C. Antoulas (Rice Uni-
versity, USA) on Data-driven model reduction
for large-scale dynamical systems.

2. Plenary lectures by Claudio De Persis (Univer-
sity of Groningen, The Netherlands) on A control
theoretic framework for power grids.

3. Plenary lectures by Lars Grüne (Bayreuth Uni-
versity, Germany) on:

• Receding horizon control.

• Dissipativity and the turnpike prop-
erty.

4. Contributed short lectures. See the list of sessions
for the titles and authors of these lectures.

Directions for speakers

For a contributed lecture, the available time is 25 min-
utes. Please leave a few minutes for discussion and room
changes, and adhere to the indicated schedule. In each
room overhead projectors are available. When using a
projector, you have to provide a notebook yourself and
you have to start your lecture with the notebook up and
running and the external video port switched on.

Registration

The Benelux Meeting registration desk, located in the
foyer, will be open on Tuesday, March 22, from 10:00
to 14:00. Late registrations can be made at the Benelux

Meeting registration desk, when space is still available.
The on-site fee schedule is:

Arrangement Price
single room 575
shared room 475
only meals (no dinners) 375
one day (no dinner) 275

The registration fee includes:

• Admission to all sessions.

• A copy of the Book of Abstracts.

• Coffee and tea during the breaks.

• In the case of an accommodation arrangement:
lunch and dinner on Tuesday; breakfast, lunch,
and dinner on Wednesday; and breakfast and
lunch on Thursday.

• In the case of a only meals (no dinner) arrange-
ment: lunch on Tuesday, Wednesday, and Thurs-
day.

• In the case of a one day (no dinner) arrangement:
lunch on Tuesday, or Wednesday, or Thursday.

• Free use of a wireless Internet connection (WiFi).

The registration fee does not include:

• Cost of phone calls.

• Special ordered drinks during lunch, dinner, in the
evening, etc.

Organization

The Organizing Committee of the 35th Benelux Meeting
consists of

Vincent Blondel

Universite Catholique de Louvain

E-mail: vincent.blondel@uclouvain.be

Ming Cao

University of Groningen

E-mail: m.cao@rug.nl

Raffaella Carloni

University of Twente

E-mail: r.carloni@utwente.nl

Claudio De Persis

University of Groningen

E-mail: c.de.persis@rug.nl
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Sergio Grammatico

Eindhoven University of Technology

E-mail:s.grammatico@tue.nl

Maurice Heemels

Eindhoven University of Technology

E-mail: m.heemels@tue.nl

Paul M.J. van den Hof

Eindhoven University of Technology

E-mail: p.m.j.vandenhof@tue.nl

Clara M. Ionescu

University of Ghent

E-mail: claramihaela.ionescu@ugent.be

Dimitri Jeltsema

Delft University of Technology

E-mail: d.jeltsema@tudelft.nl

Raphael Jungers

Universite Catholique de Louvain

E-mail:raphael.jungers@uclouvain.be

Robain de Keyser

University of Ghent

E-mail: robain.dekeyser@ugent.be

Tamas Keviczky

Delft University of Technology

E-mail: t.keviczky@tudelft.nl

Mircea Lazar

Eindhoven University of Technology

E-mail: m.lazar@tue.nl

Sarthak Misra

University of Twente

E-mail: s.misra@utwente.nl

Rudy R. Negenborn

Delft University of Technology

E-mail:r.r.negenborn@tudelft.nl

Henk Nijmeijer

Eindhoven University of Technology

E-mail: h.nijmeijer@tue.nl

Arjan J. van der Schaft

University of Groningen

E-mail: a.j.van.der.schaft@math.rug.nl

Jacquelien M.A. Scherpen

University of Groningen

E-mail: j.m.a.scherpen@rug.nl

Bart de Schutter

Delft University of Technology

E-mail: b.deschutter@tudelft.nl

Hans Stigter

University of Wageningen

E-mail: hans.stigter@wur.nl

Stefano Stramigioli

University of Twente

E-mail: s.stramigioli@utwente.nl

Roland Toth

Eindhoven University of Technology

E-mail:r.toth@tue.nl

Hans J. Zwart

University of Twente

E-mail: h.j.zwart@utwente.nl

The meeting has been organized by Raffaella Carloni
(University of Twente), Dimitri Jeltsema (Delft Univer-
sity of Technology), and Mircea Lazar (Eindhoven Uni-
versity of Technology).

Sponsor

The meeting is supported by the following organizations:

• Dutch Institute for Systems and Control (DISC).

• Netherlands Organization for Scientific Research
(NWO).

Conference location

The lecture rooms of Kontakt der Kontinenten are situ-
ated on the ground floor. Consult the map at the end of
this booklet to locate rooms. During the breaks, coffee
and tea will be served in the foyer. Announcements and
personal messages will be posted near the main confer-
ence room. Accommodation is provided in the confer-
ence center and in the cottages. Breakfast will be served
between 7:00 and 8:30 AM. Room keys can be picked up
at lunch time on the first day and need to be returned
before 10:00 on the day of departure. Parking is free of
charge.

The address of Kontakt der Kontinenten is

Amersfoortsestraat 20
3769 AS Soesterberg
The Netherlands
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Best junior presentation award

Continuing a tradition that started in 1996, the 35th

Benelux Meeting will close with the announcement of
the winner of the Best Junior Presentation Award. This
award is given for the best presentation, given by a ju-
nior researcher, and it consists of a trophy that may be
kept for one year and a certificate. The award is specifi-
cally given for quality of presentation rather than qual-
ity of research, which is judged in a different way. At
the meeting, the chairs of sessions will ask three vol-
unteers in the audience to fill out an evaluation form.
After the session, the evaluation forms will be collected
by the Prize Commissioners who will then compute a
ranking. The winner will be announced on Thursday,
March 24, in room St. Janzaal, at 16:40. The evalua-
tion forms of each presentation will be returned to the
junior researcher who gave the presentation. The Prize
Commissioners are Bayu Jayawardhana (University of
Groningen), Hans Zwart (University of Twente), and
Julien Hendrickx (Université Catholique de Louvain).

The organizing committee counts on the cooperation of
the participants to make this contest a success.

Website

An electronic version of the Book of Abstracts can be
downloaded from the Benelux Meeting web site.

Meetings

The following meetings are scheduled:

• Board DISC on Tuesday, March 22, 19:30 – 21:00
(during dinner).

• Management Team DISC on Wednesday, March
23, room Angola, 21:00 – 22:30.

DISC certificates and best thesis
award

The ceremony for the distribution of the DISC certifi-
cates and for the Best Thesis Award will be held on
Thursday, March 24, room St. Janzaal, 16:20–16:40.
The jury of the Best Thesis Award is formed by Hans
Butler (Eindhoven University of Technology), André
Ran (Vrije Universiteit Amsterdam), and Tamas Ke-
viczky (Delft University of Technology).
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