8 research outputs found

    Orthogonal Frequency Division Multiplexing modulation and inter-carrier interference cancellation

    Get PDF
    The Orthogonal Frequency Division Multiplexing (OFDM) technique, wireless channel models, and a pair of new intercarrier interference self-cancellation methods are investigated in this thesis. The first chapter addresses the history of OFDM, along with its principles and applications. Chapter two consists of three parts: the principal, the modern OFDM models, and the Peak to Average Power Ratio (PAPR) problem. Chapter two also summarizes possible PAPR solutions. Chapter three discusses a series of well-known wireless channel models, as well as the general formula for wireless channels. In Chapter four, ICI problem has been discussed, along with its existing solutions. Chapter five focuses on two new ICI self-cancellation schemes, namely the clustering method and the multi-codebook method. These two new methods show promising results through the simulations. A summary of this thesis and the discussion of future research are also provided in Chapter five

    PAPR and ICI reduction techniques for OFDM based satellite communication systems

    Get PDF
    Multi-carrier systems such as orthogonal frequency division multiplexing (OFDM) are significantly affected by peak-to-average-power ratio (PAPR). Unfortunately, the high PAPR inherent to OFDM signals envelopes will occasionally drive high power amplifiers (HPAs) to operate in the nonlinear region of their characteristic curve. The nonlinearity of the HPA exhibits amplitude and phase distortions, which cause loss of orthogonality among the subcarriers (SCs), and hence, inter-carrier interference (ICI) is introduced in the transmitted signal. The ICI power is proportional to the amplitude of the signal at the amplifier input and it may cause a considerable bit error rate (BER) degradation. A plethora of research has been devoted to reduce the performance degradation due to the PAPR problem inherent to OFDM systems. Some of the reported techniques such as amplitude clipping have low-complexity; on the other hand, they suffer from various problems such as in-band distortion and out-of-band expansion. Signal companding methods have low-complexity, good distortion and spectral properties; however, they have limited PAPR reduction capabilities. Advanced techniques such as coding, partial transmit sequences (PTS) and selected mapping (SLM) have also been considered for PAPR reduction. Such techniques are efficient and distortionless, nevertheless, their computational complexity is high and requires the transmission of several side information (SI) bits. In this thesis, a new low-complexity scheme is proposed based on the PTS that employs two inverse fast Fourier transforms (IFFTs) and two circulant transform matrices, in order to reduce complexity and improve the system performance. Furthermore, the low-complexity scheme is simplified by omitting one of the circulant transform matrices in order to reduce both the computational complexity and the number of SI bits at the cost of a small reduction in PAPR and BER performance. It is well known that, accurate PAPR estimation requires oversampling of the transmitted signal, which in turn results in increased complexity. More importantly, minimising the PAPR does not necessarily minimise the distortion produced by the nonlinearity of the HPA. Therefore, minimising PAPR does not necessarily imply that the BER will be minimised too. Efficient and less complex schemes for BER reduction of OFDM systems in the presence of nonlinear HPA and/or carrier frequency offset (CFO) are proposed. These proposed techniques are based on predicting the distortion introduced by the nonlinearity of HPA and/or CFO. Subsequently, techniques such as the PTS and SLM are invoked to minimise the distortion and BER. Three distortion metrics are adopted in this thesis: inter-modulation distortion (IMD), peak interference-to-carrier ratio (PICR) and distortion-to-signal power ratio (DSR). Monte Carlo simulations will confirm that the DSR and PICR are more reliable than the PAPR and IMD for selecting the coefficients of the PTS and SLM to minimise the BER. Furthermore, complexity analyses demonstrate that the proposed schemes offer significant complexity reduction when compared to standard PAPR-based methods. A closed form solution for accurate BER for the OFDM signals perturbed by both the HPA nonlinearity and CFO was derived. Good agreement between the simulation results and the theoretical analysis can be obtained for different HPA parameters and CFOs. Finally, efficient approaches to reduce the impact of nonlinear power amplifiers with respect to the BER of OFDM systems are proposed. These are approaches based on: the well-established PAPR schemes, a power amplifier model and a simple single point cross correlator. The optimum phase sequence within the proposed approaches is selected by maximising the correlation between the input and output of the power amplifier model. Simulation results have confirmed that the BER using the proposed approaches is almost identical to the DSR, while the complexity is reduced significantly for particular system configurations.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Transmission OFDM pour la téléphonie cellulaire

    Get PDF
    Les communications numériques envahissent la quasi-totalité des domaines d'activités et la demande pour des systèmes de transmissions assurant des très hauts débits avec une qualité de service importante ne cesse de croître. De nombreuses applications sont apparues récemment sur la plupart des supports physiques de transmissions possibles (tant câblés que hertziens). Ceci a motivé la recherche de nouveaux modes de transmissions capables de supporter des transmissions à large bande. En effet le signal utile est perturbé par de nombreuses dégradations lors de sa transmission (pollution par du bruit et des parasites, atténuation et distorsion lors de la propagation,...). Pour cette raison, il est nécessaire de disposer de techniques de transmission efficaces combinées à des algorithmes de réception adéquats. En outre, le canal de propagation est généralement partagé entre plusieurs sources (la bande de fréquence est par exemple partagée entre les utilisateurs dans les systèmes cellulaires) ce qui nécessite des techniques d'accès multiples pour permettre plusieurs transmissions simultanées. Plusieurs techniques existent pour transmettre des données sur un canal de transmission. Celles ci peuvent être grossièrement divisées en 3 catégories: multiplexage en temps, par code ou en fréquence. Le multiplexage en temps (TDMA) est utilisé par exemple dans les systèmes de téléphonie cellulaire de 2e génération tandis que le multiplexage par code (CDMA) a été adopté pour les systèmes cellulaires de 3e génération UMTS. La 3e technique: le multiplexage fréquentiel, a été popularisée principalement par le succès des systèmes dits OFDM: Orthogonal Frequency Division Multiplexing [1]. Le principe des systèmes OFDM est d'utiliser plusieurs fréquences porteuses pour répartir un flot d'informations à transmettre à travers un canal de transmission à large bande sur plusieurs sous-canaux à bande étroite (chacun correspondant à une des fréquences). Ceci explique la dénomination de transmission multiporteuse qui est souvent utilisée pour parler des systèmes OFDM. Ce mémoire porte sur la conception des systèmes de transmission OFDM et étudie de nouveaux axes de recherche visant à améliorer leur performance et leur fiabilité. Il porte plus particulièrement sur l'un des problèmes les plus importants des systèmes OFDM: celui du facteur de crête ou PAPR: Peak to Average Power Ratio. Celui-ci est dû au fait que la transmission OFDM n'a pas la propriété d'être à enveloppe constante. En effet à cause de la modulation à l'émetteur des symboles à transmettre par la matrice d'IFFT, les symboles temporels transmis effectivement sur le canal ont un module qui n'est pas constant et varie largement. Ceci conduit à des problèmes de saturation de l'amplificateur de puissance utilisé pour amplifier le signal avant sa transmission via l'antenne émettrice. Il s'ensuit une distortion des symboles émis qui peut fortement dégrader les performances du système. Ce mémoire peut être vu comme étant formé de 2 parties qui sont interconnectées tout au long de ce document: - Conception et simulation d'un système OFDM traditionnel et adaptation de ce modèle à l'étude de la problématique mentionnée ci-dessus. Dans ce système, la structure des facteurs complexes de rotation est la même que la modulation de données QPSK. Par conséquent, on a besoin d'un canal supplémentaire pour la transmission de l'information concernant ces facteurs de rotation au récepteur. - Simulations et études des performances du système en utilisant l'approche PTS (Partial Transmit Sequences) modifiée pour diminuer la largeur de bande requise pour la transmission de l'information et du nombre de canaux utilisés. L'approche proposée change les valeurs des facteurs complexes de rotation et évite donc la transmission de l'information latérale concernant ces facteurs de rotation sur un canal supplémentaire. La structure proposée de l'approche PTS donne un bon compromis entre les performances au niveau de facteur de crête et la complexité du système. Elle permet de diminuer le rapport de PAPR de 2-3 dB dépendamment des valeurs des facteurs complexes de rotation comparativement au système OFDM-PTS classique

    Use of Chaotic Oscillations for Precoding and Synchronization in OFDM

    Get PDF
    This paper proposes a novel linear precoding method for Orthogonal Frequency Division Multiplex- ing (OFDM) based on the employment of the chaotic waveforms generated by the fourth-order chaotic os- cillator and orthonormalized by the Gram-Schmidt process. The proposed linear precoding method is aimed to increase resilience to the multipath propagation issues and reduce the Peak-to-Average Power Ratio (PAPR) of the transmitted signal. Moreover, the chaotic waveform enables novel timing synchronization methods to be implemented in the re- ceiver. The modeling of baseband Linear Precoded OFDM (LP-OFDM) data transmission system with Rayleigh channel has been performed in Simulink en- vironment to validate the proposed method and to com- pare the performance to the classic precoding meth- ods, such as Walsh-Hadamard Transform (WHT). Experiments have shown that in a high Signal-to-Noise Ratio (SNR) scenario, the employment of the novel precoding scheme allows reducing Bit Error Ratio (BER) by several dB compared to non-precoded OFDM. The proposed precoding method leads to the reduction of PAPR; however, it is not as efficient as classi- cal precoding schemes, such as WHT. Experimental evidence of synchronization of the chaotic oscillators within 50 samples long time interval is presented

    An Investigation into the Implementation and Performance of Spectrally Shaped Orthogonal Frequency Division Multiplex

    Get PDF
    Orthogonal Frequency Division Multiplex (OFDM) is a flexible, robust multi-carrier modulation scheme. The orthogonal spectral shaping and spacing of OFDM sub-carriers ensure that their spectra can be over-lapped without leading to undesirable inter-carrier interference. Conventional OFDM systems have non-band limited Sinc(x) shaped subcarrier spectra. An alternative form of OFDM, referred to hereafter as Spectrally Shaped OFDM, employs band limited Nyquist shaped sub-carrier spectra. The research described in this thesis investigates the strengths and weaknesses of Spectrally Shaped OFDM as a potential modulation scheme for future mobile radio applications. From this research a novel Digital Signal Processing architecture for modulating and demodulating Spectrally Shaped OFDM sub-carriers has been derived which exploits the combination of a complex Discrete Fourier Transform (DFT) and PolyPhase Network (PPN) filter. This architecture is shown to significantly reduce the minimum number of computations required per symbol compared to previous designs. Using a custom coded computer simulation, the effects of varying the key parameters of the novel architecture's PolyPhase Filter (PPN) filter an the overall system complexity, spectral performance and system signal-to-distortion have been extensively studied. From these studies it is shown that compared to similar conventional OFDM systems, Spectrally Shaped OFDM systems possess superior out-of-band spectral qualities but significantly worse Peak-to-Average-Power-Ratio (PAPR) envelope performance. lt is also shown that the absolute value of the end PPN filter coefficients (dependent on the roll-off factor of the sub-carrier spectral shaping) dictate the system signal-to-distortion ratio when no time-domain windowing of the PPN filter coefficients is applied. Finally the effects of a both time and frequency selective fast fading channels on the modulation scheme's uncoded Bit Error Rate (BER) versus Signal-to-Noise (SNR) performance are simulated. The results obtained indicate that Spectrally Shaped OFDM is more robust (lower BER) to frequency-selective fading than time-selective fading

    Semiconductor Optical Amplifiers and mm-Wave Wireless Links for Converged Access Networks

    Get PDF
    Future access networks are converged optical-wireless networks, where fixed-line and wireless services share the same infrastructure. In this book, semiconductor optical amplifiers (SOA) and mm-wave wireless links are investigated, and their use in converged access networks is explored: SOAs compensate losses in the network, and thereby extend the network reach. Millimeter-wave wireless links substitute fiber links when cabling is not economical

    Channel estimation for SISO and MIMO OFDM communications systems.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2010.Telecommunications in the current information age is increasingly relying on the wireless link. This is because wireless communication has made possible a variety of services ranging from voice to data and now to multimedia. Consequently, demand for new wireless capacity is growing rapidly at a very alarming rate. In a bid to cope with challenges of increasing demand for higher data rate, better quality of service, and higher network capacity, there is a migration from Single Input Single Output (SISO) antenna technology to a more promising Multiple Input Multiple Output (MIMO) antenna technology. On the other hand, Orthogonal Frequency Division Multiplexing (OFDM) technique has emerged as a very popular multi-carrier modulation technique to combat the problems associated with physical properties of the wireless channels such as multipath fading, dispersion, and interference. The combination of MIMO technology with OFDM techniques, known as MIMO-OFDM Systems, is considered as a promising solution to enhance the data rate of future broadband wireless communication Systems. This thesis addresses a major area of challenge to both SISO-OFDM and MIMO-OFDM Systems; estimation of accurate channel state information (CSI) in order to make possible coherent detection of the transmitted signal at the receiver end of the system. Hence, the first novel contribution of this thesis is the development of a low complexity adaptive algorithm that is robust against both slow and fast fading channel scenarios, in comparison with other algorithms employed in literature, to implement soft iterative channel estimator for turbo equalizer-based receiver for single antenna communication Systems. Subsequently, a Fast Data Projection Method (FDPM) subspace tracking algorithm is adapted to derive Channel Impulse Response Estimator for implementation of Decision Directed Channel Estimation (DDCE) for Single Input Single Output - Orthogonal Frequency Division Multiplexing (SISO-OFDM) Systems. This is implemented in the context of a more realistic Fractionally Spaced-Channel Impulse Response (FS-CIR) channel model, as against the channel characterized by a Sample Spaced-Channel Impulse Response (SS)-CIR widely assumed by other authors. In addition, a fast convergence Variable Step Size Normalized Least Mean Square (VSSNLMS)-based predictor, with low computational complexity in comparison with others in literatures, is derived for the implementation of the CIR predictor module of the DDCE scheme. A novel iterative receiver structure for the FDPM-based Decision Directed Channel Estimation scheme is also designed for SISO-OFDM Systems. The iterative idea is based on Turbo iterative principle. It is shown that improvement in the performance can be achieved with the iterative DDCE scheme for OFDM system in comparison with the non iterative scheme. Lastly, an iterative receiver structure for FDPM-based DDCE scheme earlier designed for SISO OFDM is extended to MIMO-OFDM Systems. In addition, Variable Step Size Normalized Least Mean Square (VSSNLMS)-based channel transfer function estimator is derived in the context of MIMO Channel for the implementation of the CTF estimator module of the iterative Decision Directed Channel Estimation scheme for MIMO-OFDM Systems in place of linear minimum mean square error (MMSE) criterion. The VSSNLMS-based channel transfer function estimator is found to show improved MSE performance of about -4 MSE (dB) at SNR of 5dB in comparison with linear MMSE-based channel transfer function estimator

    GigaHertz Symposium 2010

    Get PDF
    corecore