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Abstract. This paper proposes a novel linear precoding
method for Orthogonal Frequency Division Multiplex-
ing (OFDM) based on the employment of the chaotic
waveforms generated by the fourth-order chaotic os-
cillator and orthonormalized by the Gram-Schmidt
process. The proposed linear precoding method
is aimed to increase resilience to the multipath
propagation issues and reduce the Peak-to-Average
Power Ratio (PAPR) of the transmitted signal.
Moreover, the chaotic waveform enables novel timing
synchronization methods to be implemented in the re-
ceiver. The modeling of baseband Linear Precoded
OFDM (LP-OFDM) data transmission system with
Rayleigh channel has been performed in Simulink en-
vironment to validate the proposed method and to com-
pare the performance to the classic precoding meth-
ods, such as Walsh-Hadamard Transform (WHT).
Experiments have shown that in a high Signal-to-Noise
Ratio (SNR) scenario, the employment of the novel
precoding scheme allows reducing Bit Error Ratio
(BER) by several dB compared to non-precoded OFDM.
The proposed precoding method leads to the reduction
of PAPR; however, it is not as efficient as classi-
cal precoding schemes, such as WHT. Experimental
evidence of synchronization of the chaotic oscillators
within 50 samples long time interval is presented.
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1. Introduction

Orthogonal Frequency Division Multiplexing (OFDM)
is one of the most widely used modulation schemes
nowadays. Considering spectral efficiency and high
accuracy of the equalization, OFDM offers an ele-
gant way to overcome the problem of multi-path prop-
agation and implement high-speed wired and wire-
less communication systems. However, high spec-
tral efficiency comes at the cost of several challeng-
ing issues. Firstly, high Peak-to-Average Power Ra-
tio (PAPR) of the transmitted signal puts very high
requirements for communication system power bud-
get and linearity. In communication systems where
the transmission medium is nonlinear, for example,
Power Line Communication (PLC) and Visible Light
Communication (VLC), this problem becomes partic-
ularly challenging [1]. The second drawback of OFDM
is the very low Signal-to-Noise Ratio (SNR) of some
subcarriers due to destructive interference caused by
multi-path propagation. A similar situation occurs
in the case of narrowband interference caused by other
communication systems or hardware imperfections.

One of the approaches that solve both of the men-
tioned problems simultaneously is the linear transfor-
mation of the data symbols before the multicarrier
modulation. Linear transformation, which in this case
is referred to as LP, allows to spread of information
over several subcarriers and, therefore, prevents loss
of information due to the low SNR of some subcarri-
ers. Moreover, it is possible to design LP schemes that
lead to the reduction of waveform PAPR and other
effects, such as spectrum shaping [2]. Linear precod-
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ing can be applied not only to Cyclic Prefix OFDM
(CP-OFDM) but also to other multicarrier mod-
ulations, such as Unique Word OFDM (UW-
OFDM) [3], Generalized Frequency Division Multiplex-
ing (GFDM) [4], Wavelet (WOFDM) [5] as well as
OFDM-based index modulations [6].

There is a large variety of linear precoding meth-
ods described in the literature, depending on the ap-
plication where they are employed. A fair compar-
ison of different Linear Precoding (LP) matrices for
the PAPR reduction is presented in [7]. In the pre-
vious decade, much attention has been paid to simple
precoding schemes using Walsh-Hadamard Transform
(WHT) [8], Discrete Hartley Transform (DHT) [9] and
other well-known orthonormal matrices.

The use of Discrete Fourier Transform (DFT) for
the precoding of the OFDM, which uses Inverse Dis-
crete Fourier Transform (IDFT) for the modulation,
leads to the creation of a single-carrier waveform
with minimal PAPR. This feature is widely exploited
in many precoders. For example, the authors of [10]
propose to combine Gaussian integer sequences and
DFT. In publication [11], the authors successfully use
Inverse Fast Fourier Transform (IFFT) based precod-
ing to mitigate periodic noise in PLC. In paper [12],
authors explore DFT precoding for circular M-QAM
constellations. The adaptive frequency domain precod-
ing scheme reported in [13] employs Singular Value De-
composition (SVD) for the diagonalization of the chan-
nel matrix and resembles the approach commonly
used for the precoding in Multiple-Input Multiple-
Output (MIMO) systems. General precoding scheme
for OFDM with adjustable PAPR is proposed in [14].
There are special precoders [15] for VLC which allow
to overcome problems caused by nonlinearity of light
emitting diodes.

Non-periodic broadband signals produced by chaotic
circuits have characteristics that make them suitable
for scrambling and precoding. There are plenty of ex-
amples where chaotic waveforms or chaotic sequences
are employed for the LP. In a publication [16], authors
propose to use chaotic scrambling to reduce PAPR
of the transmitted OFDM signal. In the paper, [17]
the authors present chaotic interleaving in conjunc-
tion with a neuro-fuzzy system for noise cancellation
in OFDM system in PLC. In papers [18] and [19] the re-
searchers present novel methods which employ chaos
to increase the immunity of OFDM against nonlin-
ear distortion of Light-Emitting Diode (LED) in VLC
communication systems.

Linear precoding using orthogonalized chaotic se-
quences generated by the Logistic map has been re-
ported by our research group in [20]. Recent pub-
lication [21] goes even further. The authors propose
to use DFT to diagonalize matrix consisting of cycli-

cally shifted chaotic sequences generated by the Lo-
gistic map. The resulting precoding matrix is orthog-
onal, and it is efficiently employed for linear precod-
ing. Finally, the precoding can also be performed
after the multicarrier modulation [22]. In this case,
precoding is performed in the time domain and leads
to different properties of the transmitted waveform.

OFDM employs IDFT for multicarrier modulation
and DFT for multicarrier demodulation. Since DFT
operates on vectors of discrete samples, it is necessary
to synchronize symbol output in the transmitter and
input in the receiver. This fact leads to the neces-
sity to use an additional layer of the synchronization
- symbol synchronization [23]. In the classic OFDM
systems, this type of synchronization is achieved by
correlating repeating parts of OFDM symbols with
Cyclic Prefix (CP). The chaotic synchronization [24]
is a nonlinear phenomenon that allows the synchro-
nization of two similar chaotic systems by sending
one of the state variables to another chaotic system.
Chaotic signals are useful for synchronization in com-
munication systems [25] and also allow the construc-
tion of multiple access systems [26]. In paper [27]
authors provide a very detailed analysis of a novel
synchronization algorithm, where the controller uses
Fourier series for the uncertainty estimation. Also, au-
thors of another research [28] demonstrate a secure and
novel digital communication scheme, which employs
chaotic synchronization for the decryption of the in-
formation. This paper describes an approach where
chaotic sequences are used simultaneously for two pur-
poses. Firstly, chaotic sequences are used for linear
precoding of OFDM signal for improving Bit Error Ra-
tio (BER) and reducing PAPR. Some preliminary re-
sults of this aspect were previously reported in [20].
Secondly, we demonstrate that the same chaotic wave-
forms can be used for Non Data Aided (NDA) timing
synchronization in the OFDM communication system.SECTION POLICIES VOLUME: XX | NUMBER: X | 2021 | MONTH
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Fig. 1: Conventional OFDM baseband model.

Multiple Access (MC) system class. The informational
data flow is split into parallel flows with lower data
rates and transferred on mutually orthogonal subcar-
riers. Fig. 1 shows a structure of the OFDM sys-
tem,consisting of two main parts - Quadrature Ampli-
tude Modulation (QAM) mapper and detector as well
as OFDM transmitter and receiver. Firstly informa-
tion bits are mapped by QAM mapper, then converted
to parallel flow by serial to parallel (S/P) converter.
Payload and pilot signals are transferred on N subcar-
riers employing IDFT operation:

s = T−1x, (1)

where T−1 is the IDFTmatrix. PS converter is used for
the OFDM signal transformation into a serial flow. To
eliminate Intersymbol Interference (ISI) impact on sys-
tem performance to the beginning of the each OFDM
symbol the CP is added before transmission, thus scp
is obtained:

scp = [sN−L+1 sN−L+2 . . . sN s1 s2 . . . sN ], (2)

where N is the number of subcarriers and L is the
length of the CP. After that, the signal is upconverted
to the carrier frequency and sent to the communica-
tion channel. The impact of the equivalent baseband
Rayleigh channel can be modeled by Finite Impulse Re-
sponse (FIR) filter with time-varying random complex
taps h and Additive White Gaussian Noise (AWGN),
denoted as w. Therefore, the received baseband signal
is described as follows:

rcp = h ∗ scp +w, (3)

where ∗ denotes circular convolution. At the receiver,
the CP of the received symbol rcp is removed:

r = [rcp L+1 rcp L+2 . . . rcp L+N ] (4)

Then the symbol is converted into a parallel vec-
tor, and for QAM detection transformed into the
Frequency-Domain (FD) by the DFT operation:

y = Tr, (5)

where T is the DFT matrix while the signal without
the CP is r. A frequency selective channel leads to
the linear distortion of the transmitted OFDM signal,
resulting in loss of orthogonality between the subcar-
riers and Intercarrier Interference (ICI) and it leads to
growth of BER. To improve the performance of the
OFDM system, signal equalization in the FD is em-
ployed:

x̂k =
rk

Ĥk

(6)

The estimate of channel frequency response, vector
Ĥ, which in case of ideal channel estimation is equal to
the DFT of the channel impulse response, is calculated
using the reference pilot-tones. If channel character-
istic is obtained, the linear distortion, i. e., the ISI
caused by the channel, can be eliminated by the lin-
ear equalizer. After equalization and parallel to serial
conversion, the signal is demodulated.

2.2. Model of linearly precoded
OFDM system

The Linear Precoded OFDM (LP-OFDM) system is
obtained via the insertion of an inverse orthogonal
transform before the IDFT in the transmission side
and an orthogonal transform after the DFT and the
Frequency-Domain Equalization (FDE) in the receiver.
Thus, the information bits are being spread over the
whole frequency band of the OFDM symbol before
the IDFT operation. Improved frequency diversity of
the OFDM signal allows the decreasing impact of fre-
quency selective channel and reduction of the signal
PAPR.

Current research is devoted to the study of the novel
precoding method, based on Orthogonal Circulant Ma-
trix Transform (OCT). The results are compared with
the classical approach based on WHT. Fig.5 presents
the structure of LP-OFDM system model.

1) Walsh-Hadamard transform (WHT)

The WHT is one of the orthogonal transforms, which
carries out an orthogonal, linear, involutional, symmet-
ric operation on 2n numbers. The n-th order real ma-
trix of WHT is defined as follows:

Un = U1 ⊗Un−1 = U1⊗n, (7)

where

U1 =

[
1 1
1 −1

]
(8)

Examples of FD and Time-Domain (TD) pulse
shapes, obtained by WHT precoding, are shown in
Fig.2.
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Fig. 1: Conventional OFDM baseband model.

This article is organized as follows: the
Sec. 2. provides an overview and mathemat-
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ical background of OFDM with linear precoding.
The Sec. 3. describes and compares the simulation
results. In Sec. 3.2. BER performance results are
presented, whereas in Sec. 3.3. , PAPR measurements
are analyzed. In Sec. 3.4. the problem of chaotic
oscillator synchronization is explored. The conclusion
section is devoted to the overview of the obtained
results.

2. System Model

2.1. Model of Conventional OFDM
System

A brief description of the OFDM system is given
in the current section. The OFDM system belongs
to an Multicarrier (MC) system class. The informa-
tional data flow is split into parallel flows with lower
data rates and transferred on mutually orthogonal sub-
carriers. Figure 1 shows a structure of the OFDM sys-
tem,consisting of two main parts - Quadrature Ampli-
tude Modulation (QAM) mapper and detector as well
as OFDM transmitter and receiver. Firstly informa-
tion bits are mapped by QAM mapper, then converted
to parallel flow by serial to parallel (S/P) converter.
Payload and pilot signals are transferred on N subcar-
riers employing IDFT operation:

s⃗ = T−1x⃗, (1)

where T−1 is the IDFT matrix. PS converter is used
for the OFDM signal transformation into a serial flow.
To eliminate Inter-Symbol Interference (ISI) impact
on system performance to the beginning of the each
OFDM symbol the CP is added before transmission,
thus s⃗cp is obtained:

s⃗cp = [sN−L+1 sN−L+2 . . . sN s1 s2 . . . sN ], (2)

where N is the number of subcarriers and L is
the length of the CP. After that, the signal is upcon-
verted to the carrier frequency and sent to the commu-
nication channel. The impact of the equivalent base-
band Rayleigh channel can be modeled by Finite Im-
pulse Response (FIR) filter with time-varying random
complex taps h⃗ and Additive White Gaussian Noise
(AWGN), denoted as w⃗. Therefore, the received base-
band signal is described as follows:

r⃗cp = h⃗ ∗ s⃗cp + w⃗, (3)

where ∗ denotes circular convolution. At the receiver,
the CP of the received symbol r⃗cp is removed:

r⃗ = [rcp L+1 rcp L+2 . . . rcp L+N ]. (4)

Then the symbol is converted into a parallel vector,
and for QAM detection transformed into the Frequency

Domain (FD) by the DFT operation:

y⃗ = Tr⃗, (5)

where T is the DFT matrix while the signal with-
out the CP is r⃗. A frequency selective channel leads
to the linear distortion of the transmitted OFDM sig-
nal, resulting in loss of orthogonality between the sub-
carriers and Inter-Carrier Interference (ICI) and it
leads to growth of BER. To improve the performance
of the OFDM system, signal equalization in the FD is
employed:

x̂k =
rk

Ĥk

. (6)

The estimate of channel frequency response, vector
ˆ⃗
H, which in case of ideal channel estimation is equal
to the DFT of the channel impulse response, is calcu-
lated using the reference pilot-tones. If channel charac-
teristic is obtained, the linear distortion, i. e., the ISI
caused by the channel, can be eliminated by the lin-
ear equalizer. After equalization and parallel to serial
conversion, the signal is demodulated.

2.2. Model of Linearly Precoded
OFDM System

The Linear Precoded OFDM (LP-OFDM) system is
obtained via the insertion of an inverse orthogo-
nal transform before the IDFT in the transmission
side and an orthogonal transform after the DFT and
the Frequency-Domain Equalizer (FDE) in the re-
ceiver. Thus, the information bits are being spread
over the whole frequency band of the OFDM symbol
before the IDFT operation. Improved frequency diver-
sity of the OFDM signal allows the decreasing impact
of frequency selective channel and reduction of the sig-
nal PAPR.
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Fig. 4: Pulse shapes, obtained by 1/10 decimation and 64 sam-
ple grouping of composite signal from Chua’s circuit.
Pulses on the right plot are obtained by applying IDFT
to the OCT basis functions shown on the left plot.

the chaotic matrix V is being orthonormalized via the
Gram-Schmidt process [37]:

z1 = v1, u1 =
z1

‖z1‖
(17)

z2 = v2 − φz1
(v2), u2 =

z2

‖z2‖
(18)

z3 = v3 − φz1
(v3)− φz2

(v3), u3 =
z3

‖z3‖
(19)

z4 = v4 − φz1 (v4)− φz2 (v4)− φz3 (v4), u4 =
z4

‖z4‖
(20)

...
...

zk = vk −
k−1∑
j=1

φzj
(vk), uk =

zk

‖zk‖
,

(21)

where
φz (v) =

〈v, z〉
〈z, z〉

z, (22)

is projection of vector v on the vector z. The re-
sults of Gram-Schmidt process are stored in the matrix
U = [u1x u2x . . . uNx], which is generated via the or-
thogonal vector set zk normalization. It is important
to remember that the orthogonalization process keep
the first row of OCT matrix unchanged.

Examples of pulses before and after Gram-Schmidt
orthonormalization for non-decimated chaotic se-
quences and 1/10 decimated chaotic sequences are
shown in Fig.3 and Fig.4, respectively. The values of
parameters used for the generation of chaotic precoding
sequences are presented in Table 1 and Table 2. Or-
thonormalized chaotic sequences are basis functions of
the OCT, and these sequences can be stored in a mem-
ory table instead of generating them each time, there-
fore, reducing the complexity of implementation. On

Tab. 1: Parameters of chaotic sequence generation for the OCT.

Initial conditions Time
step

Decima-
tion
factor

Length

p1 p2 p3 p4 dt M N
0.05 0.06 0.07 0.08 0.1 1 64
0.05 0.06 0.07 0.08 0.1 10 64

Tab. 2: Coefficients of differential equations.

γ θ σ c d λ1 λ2 λ3 λ4
0.5 10 1.5 3 1 -2.6302 -0.6054 -0.587 0.7763

the other hand, the synchronization feature of chaotic
sequences opens the possibility of continuously chang-
ing basis functions. The computational complexity of
the offered OCT precoder is around N2 additions and
N2 multiplications, since the orthonormalized matrix
U is impossible to factorize into smaller matrices.

It is worth mentioning that some other orthogonal-
ization processes have the potential to give different re-
sults. For example, the orthonormalization processes
[38] and [39] proposed by our research group generate a
set of orthogonal waveforms from one reference. In this
case, the created precoding matrix can be factorized
and, therefore, fast precoding algorithms are available.

3) Design of LP-OFDM model

Fig.5 presents a model of the LP-OFDM system. The
inverse orthogonal transform U−1, respectively WHT
or OCT, is used to spread the QAM modulated data
and pilot signal x over all samples of FD signal a:

a = U−1x, (23)

where U−1 is the inverse orthogonal transform (in the
current case the OCT or the WHT) . Some examples of
basis functions for the WHT and the OCT transform
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Fig. 5: Linearly precoded OFDM System Model with pilot sig-
nal precoding
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Fig. 2: Linearly precoded OFDM System Model with pilot
signal precoding.

Current research is devoted to the study of the novel
precoding method, based on Othogonalized Circu-
lant Transform (OCT). The results are compared
with the classical approach based on WHT. Figure 2
presents the structure of LP-OFDM system model.
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Fig. 3: Pulse shapes of 64 sample WHT. Pulses on the right plot are obtained by applying IDFT to the WHT basis functions,
shown on the left plot.

1) Walsh-Hadamard Transform (WHT)

The WHT is one of the orthogonal transforms, which
carries out an orthogonal, linear, involutional, symmet-
ric operation on 2n numbers. The n-th order real ma-
trix of WHT is defined as follows:

Un = U1 ⊗Un−1 = U1⊗n, (7)

where
U1 =

[
1 1
1 −1

]
. (8)

Examples of FD and Time Domain (TD) pulse
shapes, obtained by WHT precoding, are shown
in Fig. 3.

2) Orthogonalized Chaotic Transform
(OCT)

The OCT, used for the OFDM precoding, is based
on the chaos phenomenon and orthonormalization.
Such distinct properties of chaotic sequences as non-
periodicity and the possibility of synchronization can
be efficiently exploited in an MC communication sys-
tems. The first step is the generation of a chaotic se-
quence, and there is a large variety of generation al-
gorithms. Since we plan to use the chaotic sequence
for the chaotic synchronization, the chaos generator is
based on a modified Chua’s circuit. It is a simple elec-
tronic circuit exhibiting chaotic behavior, which has
been widely studied [29], [30] and [31]. This circuit has
been extensively studied by our research group also
in the context of Chaos Shift Keying (CSK) [32] and
Frequency Modulation CSK (FM-CSK) [33] communi-
cation systems.

The dynamics of Chua’s circuit can be modeled by
means of a set of three nonlinear ordinary differential

equations in the variables p1(t), p2(t) and p3(t):

dp1
dt

= α(p2 − p1 − g(p1)),

dp2
dt

= p1 − p2 − p3,

dp3
dt

= βp2,

(9)

where g(p1) is a nonlinear function:

g(p1) = m1p1 +
1

2
(m0 −m1)[|p1 + 1| − |p1 − 1|], (10)

and α and β are real numbers. By varying α and β
parameters, one can observe the period-doubling bifur-
cation route to chaos. Chua’s circuit, for the first time,
was described more than 30 years ago, and from that
time, many modifications of Chua’s circuit have been
introduced [34], [35] and [36]. Therefore, to include
the possibility of utilizing chaotic sequences for syn-
chronization of the LP-OFDM system, we have chosen
one of the modified Chua’s circuit versions - a fourth-
order chaos oscillator, whose dynamics is described by
a set of four nonlinear differential equations in the vari-
ables p1(t), p2(t), p3(t) and p4(t):

dp1
dt

= −g(p1 − p3)− p2,

dp2
dt

= p1 + γp2,

dp3
dt

= θ(g(p1 − p3)− p4),

dp4
dt

= σp3,

(11)

where g(p1 − p3) is a nonlinear function:

g(p1 − p3) =

{
c(p1 − p3 − d) if (p1 − p3) ≤ d

0 if (p1 − p3) > d
,

(12)
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Fig. 4: Pulse shapes, obtained by 64 sample grouping of composite signal from Chua’s circuit. Pulses on the right plot are obtained
by applying IDFT to the OCT basis functions shown on the left plot.

and γ, θ, σ, c and d are real numbers. In order to gen-
erate the chaotic sequence, which could also be used
for synchronization, the weighted sum of all state vari-
ables with weights λ1, λ2, λ3, λ4 (given in Tab. 2) and
the nonlinear function is used:

R =

(
λ1

dp1
dt

+ λ2
dp2
dt

+ λ3
dp3
dt

+ λ4
dp4
dt

)
+ g(p1 − p3)

(13)

The length of the generated vector R⃗, which is
a discrete-time version of the function R, is restricted
to MN2 elements. This sequence is decimated by
a factor M :

⃗̃R = [R1 RM R2M . . . RMN RM(N+1) . . . RMNN ].
(14)

The decimated chaotic sequence R̃ of length N2

is then reshaped into matrix V with dimensions
N ×N . The number of of OFDM subcarriers is equal
to the number and the length of the sequences . Thus,
chaotic matrix is defined as follows:

V = [v⃗1x v⃗2x . . . v⃗Nx] =
v1 v2 · · · vN

vN+1 vN+2 · · · v2N
· · · · · · · · · · · ·

v(N−1)N+1 v(N−1)N+2 · · · vNN

 .
(15)

Despite chaotic sequences having low cross-
correlation, they are not entirely orthogonal; therefore,
the chaotic matrix V is being orthonormalized via

the Gram-Schmidt process [37]:

z⃗1 = v⃗1, u⃗1 =
z⃗1

∥z⃗1∥
,

(16)

z⃗2 = v⃗2 − ϕz⃗1 (v⃗2), u⃗2 =
z⃗2

∥z⃗2∥
,

(17)

z⃗3 = v⃗3 − ϕz⃗1 (v⃗3)− ϕz⃗2 (v⃗3), u⃗3 =
z⃗3

∥z⃗3∥
,

(18)

z⃗4 = v⃗4 − ϕz⃗1 (v⃗4)− ϕz⃗2 (v⃗4)− ϕz⃗3 (v⃗4), u⃗4 =
z⃗4

∥z⃗4∥
,

(19)
...

...

z⃗k = v⃗k −
k−1∑
j=1

ϕz⃗j (v⃗k), u⃗k =
z⃗k

∥z⃗k∥
,

(20)

where

ϕz⃗ (v⃗) =
⟨v⃗, z⃗⟩
⟨z⃗, z⃗⟩

z⃗, (21)

is projection of vector v⃗ on the vector z⃗. The re-
sults of Gram-Schmidt process are stored in the matrix
U = [u⃗1x u⃗2x . . . u⃗Nx], which is generated via the or-
thogonal vector set z⃗k normalization. It is important
to remember that the orthogonalization process keep
the first row of OCT matrix unchanged.

Examples of pulses before and after Gram-Schmidt
orthonormalization for non-decimated chaotic se-
quences and 1/10 decimated chaotic sequences are
shown in Fig. 4 and Fig. 5, respectively. The values
of parameters used for the generation of chaotic pre-
coding sequences are presented in Tab. 1 and Tab. 2.
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Fig. 5: Pulse shapes, obtained by 1/10 decimation and 64 sample grouping of composite signal from Chua’s circuit. Pulses
on the right plot are obtained by applying IDFT to the OCT basis functions shown on the left plot.

Orthonormalized chaotic sequences are basis func-
tions of the OCT, and these sequences can be stored
in a memory table instead of generating them each
time, therefore, reducing the complexity of implemen-
tation. On the other hand, the synchronization feature
of chaotic sequences opens the possibility of contin-
uously changing basis functions. The computational
complexity of the offered OCT precoder is around N2

additions and N2 multiplications, since the orthonor-
malized matrix U is impossible to factorize into smaller
matrices.

Tab. 1: Parameters of chaotic sequence generation for the OCT.

Initial conditions Time Decimation Lengthstep factor
p1 p2 p3 p4 dt M N

0.05 0.06 0.07 0.08 0.1 1 64
0.05 0.06 0.07 0.08 0.1 10 64

Tab. 2: Coefficients of differential equations.

γ θ σ c d λ1 λ2 λ3 λ4

0.5 10 1.5 3 1 -2.63 -0.605 -0.587 0.776

It is worth mentioning that some other orthogonal-
ization processes have the potential to give different
results. For example, the orthonormalization pro-
cesses [38] and [39] proposed by our research group
generate a set of orthogonal waveforms from one ref-
erence. In this case, the created precoding matrix can
be factorized and, therefore, fast precoding algorithms
are available.

3) Design of LP-OFDM Model

Figure 2 presents a model of the LP-OFDM system.
The inverse orthogonal transform U−1, respectively
WHT or OCT, is used to spread the QAM modulated

data and pilot signal x⃗ over all samples of FD signal a⃗:

a⃗ = U−1x⃗, (22)

where U−1 is the inverse orthogonal transform (in
the current case the OCT or the WHT). Some examples
of basis functions for the WHT and the OCT trans-
form were shown on the left side of Fig. 3, Fig. 4, and
Fig. 5. Inverse and direct WHT transforms are equal,
as the WHT matrix is Hermitian. The LP-OFDM time
domain signal s⃗ is formed as the precoded informa-
tional signal a⃗ multiplication by the IDFT:

s⃗ = T−1a⃗ = T−1U−1x⃗, (23)

where T−1 is the IDFT matrix. The results of ap-
plying IDFT to some basis functions (as examples)
for the WHT and the OCT transforms were shown
on the right sides of Fig. 3, Fig. 4, and Fig. 5. After
these operations signal parallel to serial conversion is
done and according to (2) the CP is added before each
OFDM symbol - ⃗scp. The signal experiences the same
impact (3) of the communication channel as in case
of OFDM.

In the receiver firstly the CP is removed according
to (4) and then received signal is converted into the par-
allel vector r⃗. The next step of the signal processing is
the DFT:

b⃗ = Tr⃗, (24)

where T is the DFT matrix and b⃗ is the received pre-
coded informational signal. The channel estimation
and equalization in the FD is done by units "FD est"
and "FD EQ" in Fig. 2. The estimated symbols âk are
obtained by division of the received FD symbols bk by
estimate of channel frequency response Ĥk:

âk =
bk

Ĥk

. (25)

© 2022 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 265



INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 20 | NUMBER: 3 | 2022 | SEPTEMBER

Since pilot signals in the transmitter were precoded,
for the estimation of Ĥk it is necessary to use precoded
versions of the pilot signals.

Finally, the reconstruction of the QAM data samples
ˆ⃗x from the spread equalized ones ˆ⃗a is performed by
the direct orthogonal transform:

ˆ⃗x = Uˆ⃗a, (26)

where U is the orthogonal transform (respectively
the OCT or WHT). And last step in receiver signal
processing is binary data detection via the QAM de-
tector.

Spreading of the pilot tones by the precoder may
reduce equalization efficiency. To explore this aspect,
the model of the LP-OFDM system without pilot sig-
nals precoding, shown in Fig. 6, has been constructed
as well.
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to (4) and then received signal is converted into the
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is the DFT:
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where T is the DFT matrix and b is the received pre-
coded informational signal. The channel estimation
and equalization in the frequency domain (FD) is done
by units "FD est" and "FD EQ" in Fig.5. The esti-
mated symbols âk are obtained by division of the re-
ceived FD symbols bk by estimate of channel frequency
response Ĥk:

âk =
bk

Ĥk

(26)

Since pilot signals in the transmitter were precoded,
for the estimation of Ĥk it is necessary to use precoded
versions of the pilot signals.

Finally, the reconstruction of the QAM data samples
x̂ from the spread equalized ones â is performed by the
direct orthogonal transform:

x̂ = Uâ, (27)

where U is the orthogonal transform (respectively the
OCT or WHT). And last step in receiver signal pro-
cessing is binary data detection via the QAM detector.

Spreading of the pilot tones by the precoder may
reduce equalization efficiency. To explore this aspect,
the model of the LP-OFDM system without pilot sig-
nals precoding, shown in Fig.6, has been constructed
as well.

3. Simulation Results

3.1. Parameters of simulation

The validity of the proposed precoding scheme has
been verified using computer simulations in MATLAB
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Fig. 6: Linearly precoded OFDM system model without pilot
signals precoding.

Tab. 3: Parameters of simulated communication systems

Parameter Value
Total number of subcarriers 64
Number of data subcarriers 64
Length of the CP 16
Number of data symbols per frame 20
Number of training symbols per frame 4
Total number of symbols per frame 24
Training sequence ZC [41]
Number of bits transferred 108

Simulink environment. Two models of baseband LP-
OFDM communication systems have been created –
with pilot tone precoding, as shown in Fig. 5, and
without pilot tone precoding, as shown in Fig. 6. Each
model had the possibility to switch among three differ-
ent precoding matrices: unit matrix (no precoding),
WHT matrix, OCT matrix. The transmission was
carried out using 24 symbol frames consisting of 20
data symbols and 4 training symbols for block-type
FD channel estimation and Zero-Forcing (ZF) equal-
ization [40]. The dispersive communication channel
was modeled using a model of baseband Rayleigh chan-
nel with 4 complex taps changing once per frame and
AWGN. Perfect timing and frequency synchronization
between OFDM transmitter and receiver was ensured
by employing identical and synchronous clock signals.
A summary of the simulation setup is given in Table 3.

3.2. Bit error ratio performance

Fig. 7 shows BER plots for different precoding schemes
and pilot tone insertion methods. From the figure can
be seen that if the scheme without pilot tone precoding
is used, the linear precoding leads to improvement of
the communication system, as BER decreases in both
cases using WHT matrix and using OCT matrix, es-
pecially in high SNR mode. On the other hand, the
linear precoding of pilot tones leads to degradation of
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3. Simulation Results

3.1. Parameters of Simulation

The validity of the proposed precoding scheme has
been verified using computer simulations in MAT-
LAB Simulink environment. Two models of baseband
LP-OFDM communication systems have been created
- with pilot tone precoding, as shown in Fig. 2, and
without pilot tone precoding, as shown in Fig. 6.
Each model had the possibility to switch among three
different precoding matrices: unit matrix (no precod-
ing), WHT matrix, OCT matrix. The transmission
was carried out using 24 symbol frames consisting
of 20 data symbols and 4 training symbols for block-
type FD channel estimation and Zero Forcing (ZF)
equalization [40]. The dispersive communication chan-
nel was modeled using a model of baseband Rayleigh
channel with 4 complex taps changing once per frame
and AWGN. Perfect timing and frequency synchroniza-
tion between OFDM transmitter and receiver was en-
sured by employing identical and synchronous clock

signals. A summary of the simulation setup is given
in Tab. 3.

Tab. 3: Parameters of simulated communication systems.

Parameter Value
Total number of subcarriers 64
Number of data subcarriers 64

Length of the CP 16
Number of data symbols per frame 20

Number of training symbols per frame 4
Total number of symbols per frame 24

Training sequence ZC [41]
Number of bits transferred 108

3.2. Bit Error Ratio Performance

Figure 7 shows BER plots for different precod-
ing schemes and pilot tone insertion methods.
From the figure can be seen that if the scheme with-
out pilot tone precoding is used, the linear precoding
leads to improvement of the communication system,
as BER decreases in both cases using WHT matrix
and using OCT matrix, especially in high SNR mode.
On the other hand, the linear precoding of pilot tones
leads to degradation of the communication system
and higher BER compared to non-precoded OFDM.
As it can be seen from Fig. 8, the linear precoding
causes loss of pilot tone amplitude uniformity, which is
the main advantage of Zadoff-Chu sequences [41] used
for the channel estimation. Lower amplitudes of some
pilot tones lead to degradation of channel estimation
accuracy on some frequencies and higher average BER
of the communication system.
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Fig. 7: Performance of the MC communication systems with
different modulation schemes.

3.3. Peak-to-Average Power Ratio
Measurements

The Complementary Cumulative Distribution Func-
tions (CCDFs) of time-domain signals have been cal-
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culated to measure the impact of linear precoding
on the PAPR of the transmitted signal. As it can be
seen from Fig. 9, all methods of linear precoding lead
to the reduction of PAPR of the transmitted waveform.
This is especially pronounced in the case of linear pre-
coding using WHT matrix, which leads to a reduc-
tion of peak value by approximately 1.5 dB. Whereas
OCT reduces peak value and narrows the distribution
of the time domain signal just slightly.
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3.4. Chaotic Synchronization

To check the applicability of the proposed LP se-
quences for chaotic synchronization, a discrete-time
model of chaotic drive system - response system pair
has been studied. Chaotic synchronization is well
explored for continuous-time systems [28], whereas
OFDM is based exclusively on the discrete-time sig-
nal processing. This is the main problem of chaotic
synchronization in the LP-OFDM system.

We have tested the impact of sampling and deci-
mation on the chaotic synchronization between two
continuous-state discrete-time models of modified
Chua’s circuits (11). In our research, we used the so-
called observer-based chaotic synchronization [42] as
shown in Fig. 10. The experimental setup is as fol-
lows: sampled chaotic sequences (13) are generated
off-line by the modified Chua’s circuit model. They
are used for OCT-based LP (see Sec. 2.2. ). This re-
search tested two versions of chaotic sequences: based
on non-decimated output from the modified Chua’s cir-
cuit (M = 1) and on decimated (M = 10) one. For
synchronization, we employ only 2N samples of R̃, i.e.,
the first two rows of V.
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the communication system and higher BER compared
to non-precoded OFDM. As it can be seen from Fig. 8,
the linear precoding causes loss of pilot tone amplitude
uniformity, which is the main advantage of Zadoff-Chu
sequences [41] used for the channel estimation. Lower
amplitudes of some pilot tones lead to degradation of
channel estimation accuracy on some frequencies and
higher average BER of the communication system.

3.3. Peak-to-average power ratio
measurements

The Complementary Cumulative Density Function
(CCDF) of time-domain signals have been calculated
to measure the impact of linear precoding on the PAPR
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of the transmitted signal. As it can be seen from Fig.
9, all methods of linear precoding lead to the reduction
of PAPR of the transmitted waveform. This is espe-
cially pronounced in the case of linear precoding using
WHT matrix, which leads to a reduction of peak value
by approximately 1.5 dB. Whereas OCT reduces peak
value and narrows the distribution of the time domain
signal just slightly.

3.4. Chaotic synchronization

To check the applicability of the proposed LP sequences
for chaotic synchronization, a discrete-time model of
chaotic drive system – response system pair has been
studied. Chaotic synchronization is well explored for
continuous-time systems [28], whereas OFDM is based
exclusively on the discrete-time signal processing. This
is the main problem of chaotic synchronization in the
LP-OFDM system.

We have tested the impact of sampling and deci-
mation on the chaotic synchronization between two
continuous-state discrete-time models of modified
Chua’s circuits (11). In our research, we used the so-
called observer-based chaotic synchronization [42] as
shown in Fig.10. The experimental setup is as follows:
sampled chaotic sequences (13) are generated off-line
by the modified Chua’s circuit model. They are used
for OCT-based LP (see Subsection 2.2. ). This re-
search tested two versions of chaotic sequences: based
on non-decimated output from the modified Chua’s cir-
cuit (M = 1) and on decimated (M = 10) one. For
synchronization, we employ only 2N samples of R̃, i.e.,
the first two rows of V .

In the first experiment, the sampled and recorded
output of the drive chaotic system consisting of 128
samples is sent to the response chaotic system model.
Phase trajectories of the drive and response systems,
initialized at different conditions, show stable synchro-
nization within approximately 50 samples. In the sec-
ond experiment, we used 10 times decimated (i.e., low-
pass filtered and downsampled) output of the drive
system. Before sending it to the response system,
the sequence is 10 times interpolated. The aim of
the experiment is to observe the impact of decima-
tion/interpolation on chaotic synchronization. The ex-
periment shows that the response system, which is
started at random initial conditions, can still synchro-
nize, although with reduced accuracy. Phase trajecto-
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In the first experiment, the sampled and recorded
output of the drive chaotic system consisting of 128
samples is sent to the response chaotic system model.
Phase trajectories of the drive and response systems,
initialized at different conditions, show stable synchro-
nization within approximately 50 samples. In the sec-
ond experiment, we used 10 times decimated (i.e., low-
pass filtered and downsampled) output of the drive
system. Before sending it to the response system,
the sequence is 10 times interpolated. The aim
of the experiment is to observe the impact of decima-
tion/interpolation on chaotic synchronization. The ex-
periment shows that the response system, which is
started at random initial conditions, can still synchro-
nize, although with reduced accuracy. Phase trajecto-
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ries of the drive and response chaotic systems, as well
as error plots, are shown in Fig. 11.

Those encouraging results show that chaotic syn-
chronization is stable enough to be used for syn-
chronization in the OFDM receiver. Synchronization
can be implemented by transmitting of data sym-
bol consisting of one non-zero element, which will
lead to the transmission of FD pattern correspond-
ing to the chaotic waveform of the respective row
of the OCT matrix. There is at least one row of OCT
matrix that is not changed by the Gran-Schmidt or-
thogonalization process. The received pattern can be
used to synchronize the chaotic oscillator in the re-
ceiver. After that, the receiver’s sample timing and
symbol timing clocks can be derived from the syn-
chronized chaotic signal. However, implementing such
a synchronization algorithm is worth separate publica-
tion and will not be presented here.

4. Conclusion

This paper proposes a novel, chaotic waveforms-based
linear precoding method for OFDM. Besides the re-
duction of communication system error rate and im-
provement of time domain signal PAPR, the proposed
chaotic precoding method offers new means for the syn-
chronization in OFDM receiver.

In the high SNR scenario, when SNR exceeds 10 dB,
the proposed linear precoding scheme demonstrates im-
provement of communication system throughput com-
pared to the non-precoded OFDM case. If we compare
the given precoding method with WHT-based precod-
ing, it gives us similar results in terms of BER.

It was found that precoding of training signals leads
to a remarkable increase of the BER since the LP de-
stroys a uniformity of pilot tone amplitudes. Therefore,
the pilot tones for channel estimation must be excluded
from the precoding.

Linear precoding by the selected OCT waveform
leads to an insignificant reduction of PAPR. Further
minimization of PAPR is possible by the employment
of methods that increase frequency domain signal di-
versity, presented in [3].

Stable synchronization between discrete-time chaotic
oscillators can be achieved within 50 samples, provid-
ing the possibility of timing synchronization of OFDM
receiver. The experiments have shown that chaotic se-
quences can be decimated before using them as pre-
coding and synchronization sequences. Appropriate in-
terpolation of the sequence must be performed before
sending it to the synchronization response system.

The proposed OCT-based precoder increases se-
curity aspects of the communications system and,

therefore, has potential for secure applications.
The use of chaotic synchronization significantly
increases the diversity of encryption mechanisms.
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