1,115 research outputs found

    TCG based approach for secure management of virtualized platforms: state-of-the-art

    Get PDF
    There is a strong trend shift in the favor of adopting virtualization to get business benefits. The provisioning of virtualized enterprise resources is one kind of many possible scenarios. Where virtualization promises clear advantages it also poses new security challenges which need to be addressed to gain stakeholders confidence in the dynamics of new environment. One important facet of these challenges is establishing 'Trust' which is a basic primitive for any viable business model. The Trusted computing group (TCG) offers technologies and mechanisms required to establish this trust in the target platforms. Moreover, TCG technologies enable protecting of sensitive data in rest and transit. This report explores the applicability of relevant TCG concepts to virtualize enterprise resources securely for provisioning, establish trust in the target platforms and securely manage these virtualized Trusted Platforms

    Securely Launching Virtual Machines on Trustworthy Platforms in a Public Cloud

    Get PDF
    In this paper we consider the Infrastructure-as-a-Service (IaaS) cloud model which allows cloud users to run their own virtual machines (VMs) on available cloud computing resources. IaaS gives enterprises the possibility to outsource their process workloads with minimal effort and expense. However, one major problem with existing approaches of cloud leasing, is that the users can only get contractual guarantees regarding the integrity of the offered platforms. The fact that the IaaS user himself or herself cannot verify the provider promised cloud platform integrity, is a security risk which threatens to prevent the IaaS business in general. In this paper we address this issue and propose a novel secure VM launch protocol using Trusted Computing techniques. This protocol allows the cloud IaaS users to securely bind the VM to a trusted computer configuration such that the clear text VM only will run on a platform that has been booted into a trustworthy state. This capability builds user confidence and can serve as an important enabler for creating trust in public clouds. We evaluate the feasibility of our proposed protocol via a full scale system implementation and perform a system security analysis

    Trusted Computing and Secure Virtualization in Cloud Computing

    Get PDF
    Large-scale deployment and use of cloud computing in industry is accompanied and in the same time hampered by concerns regarding protection of data handled by cloud computing providers. One of the consequences of moving data processing and storage off company premises is that organizations have less control over their infrastructure. As a result, cloud service (CS) clients must trust that the CS provider is able to protect their data and infrastructure from both external and internal attacks. Currently however, such trust can only rely on organizational processes declared by the CS provider and can not be remotely verified and validated by an external party. Enabling the CS client to verify the integrity of the host where the virtual machine instance will run, as well as to ensure that the virtual machine image has not been tampered with, are some steps towards building trust in the CS provider. Having the tools to perform such verifications prior to the launch of the VM instance allows the CS clients to decide in runtime whether certain data should be stored- or calculations should be made on the VM instance offered by the CS provider. This thesis combines three components -- trusted computing, virtualization technology and cloud computing platforms -- to address issues of trust and security in public cloud computing environments. Of the three components, virtualization technology has had the longest evolution and is a cornerstone for the realization of cloud computing. Trusted computing is a recent industry initiative that aims to implement the root of trust in a hardware component, the trusted platform module. The initiative has been formalized in a set of specifications and is currently at version 1.2. Cloud computing platforms pool virtualized computing, storage and network resources in order to serve a large number of customers customers that use a multi-tenant multiplexing model to offer on-demand self-service over broad network. Open source cloud computing platforms are, similar to trusted computing, a fairly recent technology in active development. The issue of trust in public cloud environments is addressed by examining the state of the art within cloud computing security and subsequently addressing the issues of establishing trust in the launch of a generic virtual machine in a public cloud environment. As a result, the thesis proposes a trusted launch protocol that allows CS clients to verify and ensure the integrity of the VM instance at launch time, as well as the integrity of the host where the VM instance is launched. The protocol relies on the use of Trusted Platform Module (TPM) for key generation and data protection. The TPM also plays an essential part in the integrity attestation of the VM instance host. Along with a theoretical, platform-agnostic protocol, the thesis also describes a detailed implementation design of the protocol using the OpenStack cloud computing platform. In order the verify the implementability of the proposed protocol, a prototype implementation has built using a distributed deployment of OpenStack. While the protocol covers only the trusted launch procedure using generic virtual machine images, it presents a step aimed to contribute towards the creation of a secure and trusted public cloud computing environment

    Tree-formed Verification Data for Trusted Platforms

    Full text link
    The establishment of trust relationships to a computing platform relies on validation processes. Validation allows an external entity to build trust in the expected behaviour of the platform based on provided evidence of the platform's configuration. In a process like remote attestation, the 'trusted' platform submits verification data created during a start up process. These data consist of hardware-protected values of platform configuration registers, containing nested measurement values, e.g., hash values, of loaded or started components. Commonly, the register values are created in linear order by a hardware-secured operation. Fine-grained diagnosis of components, based on the linear order of verification data and associated measurement logs, is not optimal. We propose a method to use tree-formed verification data to validate a platform. Component measurement values represent leaves, and protected registers represent roots of a hash tree. We describe the basic mechanism of validating a platform using tree-formed measurement logs and root registers and show an logarithmic speed-up for the search of faults. Secure creation of a tree is possible using a limited number of hardware-protected registers and a single protected operation. In this way, the security of tree-formed verification data is maintained.Comment: 15 pages, 11 figures, v3: Reference added, v4: Revised, accepted for publication in Computers and Securit

    Deploying Virtual Machines on Shared Platforms

    Get PDF
    In this report, we describe mechanisms for secure deployment of virtual machines on shared platforms looking into a telecommunication cloud use case, which is also presented in this report. The architecture we present focuses on the security requirements of the major stakeholders’ part of the scenario we present. This report comprehensively covers all major security aspects including different security mechanisms and protocols, leveraging existing standards and state-of-the art wherever applicable. In particular, our architecture uses TCG technologies for trust establishment in the deployment of operator virtual machines on shared resource platforms. We also propose a novel procedure for securely launching and cryptographically binding a virtual machine to a target platform thereby protecting the operator virtual machine and its related credentials

    Trusted Launch of Virtual Machine Instances in Public IaaS Environments

    Get PDF
    Cloud computing and Infrastructure-as-a-Service (IaaS) are emerging and promising technologies, however their adoption is hampered by data security concerns. At the same time, Trusted Computing (TC) is experiencing an increasing interest as a security mechanism for IaaS. In this paper we present a protocol to ensure the launch of a virtual machine (VM) instance on a trusted remote compute host. Relying on Trusted Platform Module operations such as binding and sealing to provide integrity guarantees for clients that require a trusted VM launch, we have designed a trusted launch protocol for VM instances in public IaaS environments. We also present a proof-of-concept implementation of the protocol based on OpenStack, an open-source IaaS platform. The results provide a basis for the use of TC mechanisms within IaaS platforms and pave the way for a wider applicability of TC to IaaS security

    Hardware-based Security for Virtual Trusted Platform Modules

    Full text link
    Virtual Trusted Platform modules (TPMs) were proposed as a software-based alternative to the hardware-based TPMs to allow the use of their cryptographic functionalities in scenarios where multiple TPMs are required in a single platform, such as in virtualized environments. However, virtualizing TPMs, especially virutalizing the Platform Configuration Registers (PCRs), strikes against one of the core principles of Trusted Computing, namely the need for a hardware-based root of trust. In this paper we show how strength of hardware-based security can be gained in virtual PCRs by binding them to their corresponding hardware PCRs. We propose two approaches for such a binding. For this purpose, the first variant uses binary hash trees, whereas the other variant uses incremental hashing. In addition, we present an FPGA-based implementation of both variants and evaluate their performance

    Exploring the Integration of Memory Management and Trusted Computing

    Get PDF
    This thesis addresses vulnerabilities in current Trusted Computing architecture by exploring a design for a better Trusted Platform Module (TPM); one that integrates more closely with the CPU\u27s Memory Management Unit (MMU). We establish that software-based attacks on trusted memory can be carried out undetectably by an adversary on current TCG/TPM implementations. We demonstrate that an attacker with sufficient privileges can compromise the integrity of a TPM-protected system by modifying critical loaded code and static data after measurement has taken place. More specifically, these attacks illustrate the Time Of Check vs. Time of Use (TOCTOU) class of attacks. We propose to enhance the MMU, enabling it to detect when memory containing trusted code or data is being maliciously modified at run-time. On detection, it should be able to notify the TPM of these modifications. We seek to use the concepts of selective memory immutability as a security tool to harden the MMU, which will result in a more robust TCG/TPM implementation. To substantiate our ideas for this proposed hardware feature, we designed and implemented a software prototype system, which employs the monitoring capabilities of the Xen virtual machine monitor. We performed a security evaluation of our prototype and validated that it can detect all our software-based TOCTOU attacks. We applied our prototype to verify the integrity of data associated with an application, as well as suggested and implemented ways to prevent unauthorized use of data by associating it with its owner process. Our performance evaluation reveals minimal overhead

    Trusted Launch of Virtual Machine Instances in Public IaaS Environments

    Get PDF
    Cloud computing and Infrastructure-as-a-Service (IaaS) are emerging and promising technologies, however their adoption is hampered by data security concerns. At the same time, Trusted Computing (TC) is experiencing an increasing interest as a security mechanism for IaaS. In this paper we present a protocol to ensure the launch of a virtual machine (VM) instance on a trusted remote compute host. Relying on Trusted Platform Module operations such as binding and sealing to provide integrity guarantees for clients that require a trusted VM launch, we have designed a trusted launch protocol for VM instances in public IaaS environments. We also present a proof-of-concept implementation of the protocol based on OpenStack, an open-source IaaS platform. The results provide a basis for the use of TC mechanisms within IaaS platforms and pave the way for a wider applicability of TC to IaaS security
    • …
    corecore