86,249 research outputs found

    An Immune Inspired Approach to Anomaly Detection

    Get PDF
    The immune system provides a rich metaphor for computer security: anomaly detection that works in nature should work for machines. However, early artificial immune system approaches for computer security had only limited success. Arguably, this was due to these artificial systems being based on too simplistic a view of the immune system. We present here a second generation artificial immune system for process anomaly detection. It improves on earlier systems by having different artificial cell types that process information. Following detailed information about how to build such second generation systems, we find that communication between cells types is key to performance. Through realistic testing and validation we show that second generation artificial immune systems are capable of anomaly detection beyond generic system policies. The paper concludes with a discussion and outline of the next steps in this exciting area of computer security.Comment: 19 pages, 4 tables, 2 figures, Handbook of Research on Information Security and Assuranc

    "Going back to our roots": second generation biocomputing

    Full text link
    Researchers in the field of biocomputing have, for many years, successfully "harvested and exploited" the natural world for inspiration in developing systems that are robust, adaptable and capable of generating novel and even "creative" solutions to human-defined problems. However, in this position paper we argue that the time has now come for a reassessment of how we exploit biology to generate new computational systems. Previous solutions (the "first generation" of biocomputing techniques), whilst reasonably effective, are crude analogues of actual biological systems. We believe that a new, inherently inter-disciplinary approach is needed for the development of the emerging "second generation" of bio-inspired methods. This new modus operandi will require much closer interaction between the engineering and life sciences communities, as well as a bidirectional flow of concepts, applications and expertise. We support our argument by examining, in this new light, three existing areas of biocomputing (genetic programming, artificial immune systems and evolvable hardware), as well as an emerging area (natural genetic engineering) which may provide useful pointers as to the way forward.Comment: Submitted to the International Journal of Unconventional Computin

    libtissue - implementing innate immunity

    Get PDF
    In a previous paper the authors argued the case for incorporating ideas from innate immunity into articficial immune systems (AISs) and presented an outline for a conceptual framework for such systems. A number of key general properties observed in the biological innate and adaptive immune systems were hughlighted, and how such properties might be instantiated in artificial systems was discussed in detail. The next logical step is to take these ideas and build a software system with which AISs with these properties can be implemented and experimentally evaluated. This paper reports on the results of that step - the libtissue system.Comment: 8 pages, 4 tables, 5 figures, Workshop on Artificial Immune Systems and Immune System Modelling (AISB06), Bristol, U

    Immunotronics - novel finite-state-machine architectures with built-in self-test using self-nonself differentiation

    Get PDF
    A novel approach to hardware fault tolerance is demonstrated that takes inspiration from the human immune system as a method of fault detection. The human immune system is a remarkable system of interacting cells and organs that protect the body from invasion and maintains reliable operation even in the presence of invading bacteria or viruses. This paper seeks to address the field of electronic hardware fault tolerance from an immunological perspective with the aim of showing how novel methods based upon the operation of the immune system can both complement and create new approaches to the development of fault detection mechanisms for reliable hardware systems. In particular, it is shown that by use of partial matching, as prevalent in biological systems, high fault coverage can be achieved with the added advantage of reducing memory requirements. The development of a generic finite-state-machine immunization procedure is discussed that allows any system that can be represented in such a manner to be "immunized" against the occurrence of faulty operation. This is demonstrated by the creation of an immunized decade counter that can detect the presence of faults in real tim

    Security Through Amnesia: A Software-Based Solution to the Cold Boot Attack on Disk Encryption

    Get PDF
    Disk encryption has become an important security measure for a multitude of clients, including governments, corporations, activists, security-conscious professionals, and privacy-conscious individuals. Unfortunately, recent research has discovered an effective side channel attack against any disk mounted by a running machine\cite{princetonattack}. This attack, known as the cold boot attack, is effective against any mounted volume using state-of-the-art disk encryption, is relatively simple to perform for an attacker with even rudimentary technical knowledge and training, and is applicable to exactly the scenario against which disk encryption is primarily supposed to defend: an adversary with physical access. To our knowledge, no effective software-based countermeasure to this attack supporting multiple encryption keys has yet been articulated in the literature. Moreover, since no proposed solution has been implemented in publicly available software, all general-purpose machines using disk encryption remain vulnerable. We present Loop-Amnesia, a kernel-based disk encryption mechanism implementing a novel technique to eliminate vulnerability to the cold boot attack. We offer theoretical justification of Loop-Amnesia's invulnerability to the attack, verify that our implementation is not vulnerable in practice, and present measurements showing our impact on I/O accesses to the encrypted disk is limited to a slowdown of approximately 2x. Loop-Amnesia is written for x86-64, but our technique is applicable to other register-based architectures. We base our work on loop-AES, a state-of-the-art open source disk encryption package for Linux.Comment: 13 pages, 4 figure
    • …
    corecore