276 research outputs found

    Integrated Distributed Authentication Protocol for Smart Grid Communications

    Get PDF
    In the smart grid, an integrated distributed authen- tication protocol is needed to not only securely manage the system but also efficiently authenticate many different entities for the communications. In addition, a lightweight authentication protocol is required to handle frequent authentications among billions of devices. Unfortunately, in the literature, there is no such integrated protocol that provides mutual authentication among the home environment, energy provider, gateways, and advanced metering infrastructure network. Therefore, in this paper, we propose a lightweight cloud-trusted authorities-based integrated (centrally controlled) distributed authentication protocol that provides mutual authentications among communicated entities in a distributed manner. Based on certificateless cryptosystem, our protocol is lightweight and efficient even when there are invalid requests in a batch. Security and performance analysis show that the protocol provides privacy preservation, forward secrecy, semantic security,perfect key ambiguous, and protection against identity thefts while generating lower overheads in comparison with the existing protocols. Also, the protocol is secure against man-in-the-middle attacks, redirection attacks, impersonation attacks, and denial-of-service attacks. Moreover, our protocol provides a complete resistance against flood-based denial-of-service attacks

    Modelling and Analysis of Smart Grids for Critical Data Communication

    Get PDF
    Practical models for the subnetworks of smart grid are presented and analyzed. Critical packet-delay bounds for these subnetworks are determined, with the overall objective of identifying parameters that would help in the design of smart grid with least end-to-end delay. A single-server non-preemptive queueing model with prioritized critical packets is presented for Home Area Network (HAN). Closed-form expressions for critical packet delay are derived and illustrated as a function of: i) critical packet arrival rate, ii) service rate, iii) utilization factor, and iv) rate of arrival of non-critical packets. Next, wireless HANs using FDMA and TDMA are presented. Upper and lower bounds on critical packet delay are derived in closed-form as functions of: i) average of signal-to interference-plus-noise ratio, ii) random channel scale, iii) transmitted power strength, iv) received power strength, v) number of EDs, vi) critical packet size, vii) number of channels, viii) path loss component, ix) distances between electrical devices and mesh client, x) channel interference range, xi) channel capacity, xii) bandwidth of the channel, and xiii) number of time/frequency slots. Analytical and simulation results show that critical packet delay is smaller for TDMA compared to FDMA. Lastly, an Intelligent Distributed Channel-Aware Medium Access Control (IDCA-MAC) protocol for wireless HAN using Distributed Coordination Function (DCF) is presented. The protocol eliminates collision and employs Multiple Input Multiple Output (MIMO) system to enhance system performance. Simulation results show that critical packet delay can be reduced by nearly 20% using MA-Aware protocol compared to IDCA-MAC protocol. However, the latter is superior in terms throughput. A wireless mesh backbone network model for Neighbourhood Area Network (NAN) is presented for forwarding critical packets received from HAN to an identified gateway. The routing suggested is based on selected shortest path using Voronoi tessellation. CSMA/CA and CDMA protocols are considered and closed{form upper and lower bounds on critical packet delay are derived and examined as functions of i) signal-to-noise ratio, ii) signal interference, iii) critical packet size, iv) number of channels, v) channel interference range, vi) path loss components, vii) channel bandwidth, and viii) distance between MRs. The results show that critical packet delay to gateway using CDMA is lower compared to CSMA/CA protocol. A fiber optic Wide Area Network (WAN) is presented for transporting critical packets received from NAN to a control station. A Dynamic Fastest Routing Strategy (DFRS) algorithm is used for routing critical packets to control station. Closed-form expression for mean critical packet delay is derived and is examined as a function of: i) traffic intensity, ii) capacity of fiber links, iii) number of links, iv) variance of inter-arrival time, v) variance of service time, and vi) the latency of links. It is shown that delay of critical packets to control station meets acceptable standards set for smart grid

    Smart Metering Technology and Services

    Get PDF
    Global energy context has become more and more complex in the last decades; the raising prices of fuels together with economic crisis, new international environmental and energy policies that are forcing companies. Nowadays, as we approach the problem of global warming and climate changes, smart metering technology has an effective use and is crucial for reaching the 2020 energy efficiency and renewable energy targets as a future for smart grids. The environmental targets are modifying the shape of the electricity sectors in the next century. The smart technologies and demand side management are the key features of the future of the electricity sectors. The target challenges are coupling the innovative smart metering services with the smart meters technologies, and the consumers' behaviour should interact with new technologies and polices. The book looks for the future of the electricity demand and the challenges posed by climate changes by using the smart meters technologies and smart meters services. The book is written by leaders from academia and industry experts who are handling the smart meters technologies, infrastructure, protocols, economics, policies and regulations. It provides a promising aspect of the future of the electricity demand. This book is intended for academics and engineers who are working in universities, research institutes, utilities and industry sectors wishing to enhance their idea and get new information about the smart meters

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches

    A survey on smart grid communication infrastructures: Motivations, requirements and challenges

    Get PDF
    A communication infrastructure is an essential part to the success of the emerging smart grid. A scalable and pervasive communication infrastructure is crucial in both construction and operation of a smart grid. In this paper, we present the background and motivation of communication infrastructures in smart grid systems. We also summarize major requirements that smart grid communications must meet. From the experience of several industrial trials on smart grid with communication infrastructures, we expect that the traditional carbon fuel based power plants can cooperate with emerging distributed renewable energy such as wind, solar, etc, to reduce the carbon fuel consumption and consequent green house gas such as carbon dioxide emission. The consumers can minimize their expense on energy by adjusting their intelligent home appliance operations to avoid the peak hours and utilize the renewable energy instead. We further explore the challenges for a communication infrastructure as the part of a complex smart grid system. Since a smart grid system might have over millions of consumers and devices, the demand of its reliability and security is extremely critical. Through a communication infrastructure, a smart grid can improve power reliability and quality to eliminate electricity blackout. Security is a challenging issue since the on-going smart grid systems facing increasing vulnerabilities as more and more automation, remote monitoring/controlling and supervision entities are interconnected. © 1998-2012 IEEE

    Experimental study of 6LoPLC for home energy management systems

    Get PDF
    © 2016 by the authors. Ubiquitous connectivity is already transforming residential dwellings into smart homes. As citizens continue to embrace the smart home paradigm, a new generation of low-rate and low-power communication systems is required to leverage the mass market presented by energy management in homes. Although Power Line Communication (PLC) technology has evolved in the last decade, the adaptation of PLC for constrained networks is not fully charted. By adapting some features of IEEE 802.15.4 and IPv6 over Low-power Wireless Personal Area Network (6LoWPAN) into power lines, this paper demonstrates a low-rate, low-power PLC system over the IPv6 network (referred to as 6LoPLC), for Home Energy Management System (HEMS) applications. The overall idea is to provide a framework for assessing various scenarios that cannot be easily investigated with the limited number of evaluation hardware available. In this respect, a network model is developed in NS-3 (Version 21) to measure several important characteristics of the designed system and then validated with experimental results obtained using the Hanadu evaluation kits. Following the good agreement between the two, the NS-3 model is utilised to investigate more complex scenarios and various use-cases, such as the effects of impulsive noise, the number of nodes and packet size on the latency and Bit Error Rate (BER) performances. We further demonstrate that for different network and application configurations, optimal data sizes exist. For instance, the results reveal that in order to guarantee 99% system reliability, the HEMS application data must not exceed 64 bytes. Finally, it is shown that with impulsive noise in a HEMS network comprising 50 appliances, provided the size of the payload does not exceed 64 bytes, monitoring and control applications incur a maximum latency of 238.117 ms and 248.959 ms, respectively; both of which are within acceptable limits
    corecore