284 research outputs found

    Mobile Health in Remote Patient Monitoring for Chronic Diseases: Principles, Trends, and Challenges

    Get PDF
    Chronic diseases are becoming more widespread. Treatment and monitoring of these diseases require going to hospitals frequently, which increases the burdens of hospitals and patients. Presently, advancements in wearable sensors and communication protocol contribute to enriching the healthcare system in a way that will reshape healthcare services shortly. Remote patient monitoring (RPM) is the foremost of these advancements. RPM systems are based on the collection of patient vital signs extracted using invasive and noninvasive techniques, then sending them in real-time to physicians. These data may help physicians in taking the right decision at the right time. The main objective of this paper is to outline research directions on remote patient monitoring, explain the role of AI in building RPM systems, make an overview of the state of the art of RPM, its advantages, its challenges, and its probable future directions. For studying the literature, five databases have been chosen (i.e., science direct, IEEE-Explore, Springer, PubMed, and science.gov). We followed the (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) PRISMA, which is a standard methodology for systematic reviews and meta-analyses. A total of 56 articles are reviewed based on the combination of a set of selected search terms including RPM, data mining, clinical decision support system, electronic health record, cloud computing, internet of things, and wireless body area network. The result of this study approved the effectiveness of RPM in improving healthcare delivery, increase diagnosis speed, and reduce costs. To this end, we also present the chronic disease monitoring system as a case study to provide enhanced solutions for RPMsThis research work was partially supported by the Sejong University Research Faculty Program (20212023)S

    HL7-SAIF in motion A pragmatic perspective

    Get PDF
    Health Level 7 (HL7) is the most popular global health care standard in operation today. It provides an Enterprise Architecture (EA) for the exchange, integration, sharing, and retrieval of electronic health information. Closely allied is the Services–Aware Interoperability Framework (SAIF) which is the Interoperability Framework that operates on HL7. Using the Messaging, Document Exchange, and Services paradigms, SAIF represents the careful blend of the best practices and concepts of many architectural frameworks. Utilizing SAIF to churn out HL7-based EA specifications, ensure inter-enterprise and intraenterprise, component-wise, cross-referenced, consistency, conformity, and compliance. This is true irrespective of the interoperability paradigm used ,ie., Messages, Documents, or Services. However, these technologies are not without their problems, and cynics. They have documented design and implementation issues, both empirical and practical. The thrust of this paper is to present the “case technology” of HL7- SAIF, both conceptual and engineered, highlighting the shortcomings, design issues, and practical difficulties encountered during specifications design and development. Further, pertinent solutions devised inthis research to overcome these pressing issues are also articulated.KEYWORDS: Enterprise Architecture, Semantic Interoperability, HE

    A SOA-Based Platform to Support Clinical Data Sharing

    Get PDF
    The eSource Data Interchange Group, part of the Clinical Data Interchange Standards Consortium, proposed five scenarios to guide stakeholders in the development of solutions for the capture of eSource data. The fifth scenario was subdivided into four tiers to adapt the functionality of electronic health records to support clinical research. In order to develop a system belonging to the \u201cInteroperable\u201d Tier, the authors decided to adopt the service-oriented architecture paradigm to support technical interoperability, Health Level Seven Version 3 messages combined with LOINC (Logical Observation Identifiers Names and Codes) vocabulary to ensure semantic interoperability, and Healthcare Services Specification Project standards to provide process interoperability. The developed architecture enhances the integration between patient-care practice and medical research, allowing clinical data sharing between two hospital information systems and four clinical data management systems/clinical registries. The core is formed by a set of standardized cloud services connected through standardized interfaces, involving client applications. The system was approved by a medical staff, since it reduces the workload for the management of clinical trials. Although this architecture can realize the \u201cInteroperable\u201d Tier, the current solution actually covers the \u201cConnected\u201d Tier, due to local hospital policy restrictions

    Using the dual-level modeling approach to develop applications for pervasive healthcare

    Get PDF
    Health information technology is the area of IT involving the design, development, creation, use and maintenance of information systems for the healthcare industry. Automated and interoperable healthcare information systems are expected to lower costs, improve efficiency and reduce error, while also providing better consumer care and service. Pervasive Healthcare focuses on the use of new technologies, tools, and services, to help patients play a more active role in the treatment of their conditions. Pervasive Healthcare environments demand a huge amount of information exchange, and specific technologies have been proposed to provide interoperability between the systems that comprise such environments. However, the complexity of these technologies makes it difficult to fully adopt them and to migrate Centered Healthcare Environments to Pervasive Healthcare Environments. Therefore, this paper proposes an approach to develop applications in the Pervasive Healthcare environment, through the use of dual-level modeling based on Archetypes. This approach was demonstrated and evaluated in a controlled experiment that we conducted in the cardiology department of a hospital located in the city of Marilia (São Paulo, Brazil). An application was developed to evaluate this approach, and the results showed that the approach is suitable for facilitating the development of healthcare systems by offering generic and powerful capabilities

    A Cloud Telemedicine Platform Based on Workflow Management System: A Review of an Italian Case Study

    Get PDF
    The paper aims to describe a new technological and organizational approach in order to manage teleconsultation and telemonitoring processes involving a Physician, who remotely interacts with one or more Specialists, in order to evaluate and discuss the specific clinical conditions of a patient, based primarily on the sharing of digital clinical data, reports and diagnostic images. In the HINT project (Healthcare INtegration in Telemedicine), a teleconsultation and telemonitoring cloud platform has been developed using a Hub and Spoke architecture, based on a Business Process Management System (BPMS). The specialized clinical centres (Hubs) operate in connection with the territorial hospital centres (Spokes), which receive specific diagnostic consultations and telemonitoring data from the appropriate Specialist, supported by advanced AI systems. The developed platform overcomes the concepts of a traditional and fragmented teleconsultation and consequently the static organization of Hubs and Spokes, evolving towards an integrated clinical workflow management. The project platform adopts international healthcare standards, such as HL7 FHIR, IHE (XDS and XDW) and DICOM for the acquisition and management of healthcare data and diagnostic images. A Workflow Management System implemented in the platform allows to manage multiple and contemporaneous processes through a single platform, correctly associating the tasks to the Physicians responsible for their execution, monitoring the status of the health activities and managing possible clinical issues

    Authorization schema for electronic health-care records: for Uganda

    Get PDF
    This thesis discusses how to design an authorization schema focused on ensuring each patient's data privacy within a hospital information system
    corecore