128 research outputs found

    Preliminary Evaluation of a Novel Thoracoscopic Infant Lobectomy Simulator

    Full text link
    Purpose: Thoracoscopic lobectomy in infants requires advanced minimally invasive skills. Simulation-based education has the potential to improve complex procedural skills without exposing the patient to undue risks. The study purposes were (1) to create a size-appropriate infant lobectomy simulator and (2) to evaluate validity evidence to support or refute its use in surgical education. Materials and Methods: In this Institutional Review Board-exempt study, a size-appropriate rib cage for a 3-month-old infant was created. Fetal bovine tissue completed the simulator. Thirty-three participants performed the simulated thoracoscopic lobectomy. Participants completed a self-report, 26-item instrument consisting of 25 4-point rating scales (from 1=not realistic to 4=highly realistic) and a one 4-point Global Rating Scale. Validity evidence relevant to test content and response processes was evaluated using the many-facet Rasch model, and evidence of internal structure (inter-item consistency) was estimated using Cronbach's alpha. Results: Experienced surgeons (observed average=3.6) had slightly higher overall rating than novice surgeons (observed average=3.4, P=.001). The highest combined observed averages were for the domain Physical Attributes (3.7), whereas the lowest ratings were for the domains Realism of Experience and Ability to Perform Tasks (3.4). The global rating was 2.9, consistent with ?this simulator can be considered for use in infant lobectomy training, but could be improved slightly.? Inter-item consistency for items used to evaluate the simulator's quality was high (α=0.90). Conclusions: With ratings consistent with high physical attributes and realism, we successfully created an infant lobectomy simulator, and preliminary evidence relevant to test content, response processes, and internal structure was supported. Participants rated the model as realistic, relevant to clinical practice, and valuable as a learning tool. Minor improvements were suggested prior to its full implementation as an educational and testing tool.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140149/1/lap.2014.0364.pd

    Evaluation of Three Sources of Validity Evidence for a Laparoscopic Duodenal Atresia Repair Simulator

    Full text link
    Purpose: Laparoscopic duodenal atresia (DA) repair is a relatively uncommon pediatric operation requiring advanced minimally invasive skills. Currently, there are no commercial simulators available that address surgeons' needs for refining skills associated with this procedure. The purposes of this study were (1) to create an anatomically correct, size-relevant model and (2) to evaluate the content validity of the simulator. Materials and Methods: Radiologic images were used to create an abdominal domain consistent with a full-term infant. Fetal bovine tissue was used to complete the simulator. Following Institutional Review Board exempt determination, 18 participants performed the simulated laparoscopic DA repair. Participants completed a self-report, six-domain, 24-item instrument consisting of 4-point rating scales (from 1=not realistic to 4=highly realistic). Validity evidence relevant to test content and response processes was evaluated using the many-facet Rasch model, and evidence of internal structure (inter-item consistency) was estimated using Cronbach's alpha. Results: The highest observed averages were for ?Value as a training and testing tool? (both observed averages=3.9), whereas the lowest ratings were ?Palpation of liver? (observed average=3.3) and ?Realism of skin? (observed average=3.2). The Global opinion rating was 3.2, indicating the simulator can be considered for use as is, but could be improved slightly. Inter-item consistency was high (α=0.89). Conclusions: We have successfully created a size-appropriate laparoscopic DA simulator. Participants agreed that the simulator was relevant and valuable as a learning/testing tool. Prior to implementing this simulator as a training tool, minor improvements should be made, with subsequent evaluation of additional validation evidence.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140148/1/lap.2014.0358.pd

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios

    Get PDF
    Este número da revista Cadernos de Estudos Sociais estava em organização quando fomos colhidos pela morte do sociólogo Ernesto Laclau. Seu falecimento em 13 de abril de 2014 surpreendeu a todos, e particularmente ao editor Joanildo Burity, que foi seu orientando de doutorado na University of Essex, Inglaterra, e que recentemente o trouxe à Fundação Joaquim Nabuco para uma palestra, permitindo que muitos pudessem dialogar com um dos grandes intelectuais latinoamericanos contemporâneos. Assim, buscamos fazer uma homenagem ao sociólogo argentino publicando uma entrevista inédita concedida durante a sua passagem pelo Recife, em 2013, encerrando essa revista com uma sessão especial sobre a sua trajetória

    Three-Dimensional Printing and Its Applications in Otorhinolaryngology–Head and Neck Surgery

    Get PDF
    Objective Three-dimensional (3D)-printing technology is being employed in a variety of medical and surgical specialties to improve patient care and advance resident physician training. As the costs of implementing 3D printing have declined, the use of this technology has expanded, especially within surgical specialties. This article explores the types of 3D printing available, highlights the benefits and drawbacks of each methodology, provides examples of how 3D printing has been applied within the field of otolaryngology–head and neck surgery, discusses future innovations, and explores the financial impact of these advances. Data Sources Articles were identified from PubMed and Ovid MEDLINE. Review Methods PubMed and Ovid Medline were queried for English articles published between 2011 and 2016, including a few articles prior to this time as relevant examples. Search terms included 3-dimensional printing, 3D printing, otolaryngology, additive manufacturing, craniofacial, reconstruction, temporal bone, airway, sinus, cost, and anatomic models. Conclusions Three-dimensional printing has been used in recent years in otolaryngology for preoperative planning, education, prostheses, grafting, and reconstruction. Emerging technologies include the printing of tissue scaffolds for the auricle and nose, more realistic training models, and personalized implantable medical devices. Implications for Practice After the up-front costs of 3D printing are accounted for, its utilization in surgical models, patient-specific implants, and custom instruments can reduce operating room time and thus decrease costs. Educational and training models provide an opportunity to better visualize anomalies, practice surgical technique, predict problems that might arise, and improve quality by reducing mistakes

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios

    Get PDF
    Abstract Medical three-dimensional (3D) printing has expanded dramatically over the past three decades with growth in both facility adoption and the variety of medical applications. Consideration for each step required to create accurate 3D printed models from medical imaging data impacts patient care and management. In this paper, a writing group representing the Radiological Society of North America Special Interest Group on 3D Printing (SIG) provides recommendations that have been vetted and voted on by the SIG active membership. This body of work includes appropriate clinical use of anatomic models 3D printed for diagnostic use in the care of patients with specific medical conditions. The recommendations provide guidance for approaches and tools in medical 3D printing, from image acquisition, segmentation of the desired anatomy intended for 3D printing, creation of a 3D-printable model, and post-processing of 3D printed anatomic models for patient care.https://deepblue.lib.umich.edu/bitstream/2027.42/146524/1/41205_2018_Article_30.pd

    Advances in Medical Applications of Additive Manufacturing

    Get PDF
    In the past few decades, additive manufacturing (AM) has been developed and applied as a cost-effective and versatile technique for the fabrication of geometrically complex objects in the medical industry. In this review, we discuss current advances of AM in medical applications for the generation of pharmaceuticals, medical implants, and medical devices. Oral and transdermal drugs can be fabricated by a variety of AM technologies. Different types of hard and soft clinical implants have also been realized by AM, with the goal of producing tissue-engineered constructs. In addition, medical devices used for diagnostics and treatment of various pathological conditions have been developed. The growing body of research on AM reveals its great potential in medical applications. The goal of this review is to highlight the usefulness and elucidate the current limitations of AM applications in the medical field

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    PRELIMINARY FINDINGS OF A POTENZIATED PIEZOSURGERGICAL DEVICE AT THE RABBIT SKULL

    Get PDF
    The number of available ultrasonic osteotomes has remarkably increased. In vitro and in vivo studies have revealed differences between conventional osteotomes, such as rotating or sawing devices, and ultrasound-supported osteotomes (Piezosurgery®) regarding the micromorphology and roughness values of osteotomized bone surfaces. Objective: the present study compares the micro-morphologies and roughness values of osteotomized bone surfaces after the application of rotating and sawing devices, Piezosurgery Medical® and Piezosurgery Medical New Generation Powerful Handpiece. Methods: Fresh, standard-sized bony samples were taken from a rabbit skull using the following osteotomes: rotating and sawing devices, Piezosurgery Medical® and a Piezosurgery Medical New Generation Powerful Handpiece. The required duration of time for each osteotomy was recorded. Micromorphologies and roughness values to characterize the bone surfaces following the different osteotomy methods were described. The prepared surfaces were examined via light microscopy, environmental surface electron microscopy (ESEM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM) and atomic force microscopy. The selective cutting of mineralized tissues while preserving adjacent soft tissue (dura mater and nervous tissue) was studied. Bone necrosis of the osteotomy sites and the vitality of the osteocytes near the sectional plane were investigated, as well as the proportion of apoptosis or cell degeneration. Results and Conclusions: The potential positive effects on bone healing and reossification associated with different devices were evaluated and the comparative analysis among the different devices used was performed, in order to determine the best osteotomes to be employed during cranio-facial surgery

    Repurposing ciclopirox as a pharmacological chaperone active against congenital erythropoietic porphyria.

    Get PDF
    138 p.La porfiria eritropoyética congénita es una enfermedad rara autosómica recesiva producida por una actividad deficiente en la uroporfirinógeno III sintasa, la cuarta enzima de la ruta biosintética del grupo hemo. La enfermedad afecta a diversos órganos, llegando a ser potencialmente peligroso para la vida, careciendo actualmente de tratamientos curativos. Bioquímicamente, las mutaciones hereditarias de mayor frecuencia reducen la estabilidad del enzima, alterando su homeostasis, que, en última instancia, reducen la producción de grupo hemo intracelular. Esto da como resultado la acumulación de subproductos de uroporfirina que se distribuyen y depositan por todos los tejidos, agravando la patología con síntomas tales como fotosensibilidad de la piel y lesiones cutáneas fototóxicas desfigurantes. En el presente trabajo, demostramos como el sintético antifúngico y microbiano fármaco comercial denominado ciclopirox, se asocia al enzima estabilizándolo. Ciclopirox asiste al enzima mediante unión alostética, distante del centro activo, sin afectar, por tanto, a su función catalítica. El fármaco es capaz de reestablecer la actividad in vitro, in cellula e in vivo, llegando incluso a aliviar la mayoría de los síntomas clínicos en un modelo de ratón bona fide de la enfermedad, actuando a concentraciones sub-tóxicas, estableciendo una nueva línea de intervención terapéutica contra la porfiria eritropoyética congénita. Aplicable a la mayoría de las mutaciones sin sentido perjudiciales que causan esta devastadora enfermedad.CICbioGUNE. Excelencia Severo Ocho
    • …
    corecore