3 research outputs found

    A Review of Hybrid Battery Management System (H-BMS) for EV

    Get PDF
    Significant to a major pollution contributor in passenger vehicles, electric vehicles are more acceptable to use on the road. Electric Vehicles (EVs) burn energy based on the usage of the battery. The usage of the battery in EVs is monitored and controlled by Battery Management System (BMS). A few factors monitor and control Battery Management System (BMS). This paper reviewed the battery charging technology and Remote Terminal Unit (RTU) development as a Hybrid Battery Management System (H-BMS) for Electric Vehicle (EV)

    ESMD Space Grant Faculty Report

    Get PDF
    The strength of the Exploration Systems Mission Directorate ESMD Faculty Project lies in its ability to meet National Aeronautics Space Administration NASA's Strategic Educational Outcome 1 by developing a sustainable and long-term integration of student involvement at academic institutions with all NASA Centers. This outcome is achieved by a three-fold approach: 1) by collecting Senior Design projects pertaining to Constellation work performed at each of the ten NASA Centers, 2) by engaging students at Minority Serving Institutions in the art of systems engineering and systems design of technologies required for space exploration, and 3) by identifying potential internships at each Center relative to exploration that provide students who are supported by their institutional Space Grant to engage in on-going mission-level and explorative systems designs. The objectives of the ESMD Faculty Project are to: 1. Aid the Centers (both Education Offices and associated technical organizations) in providing relevant opportunities for the ESMD Space Grant Program to support student and faculty in Senior Design projects 2. Enable better matches between the ESMD work required and what the Space Grant Consortia can do to effectively contribute to NASA programs 3. Provide the Space Grant Consortia an opportunity to strengthen relations with the NASA Centers 4. Develop better collective understanding of the U.S. Space Exploration Policy by the Center, Space Grant, faculty, Education Office, and students 5. Enable Space Grant institution faculty to better prepare their students to meet current and future NASA needs 6. Enable the Center Education Offices to strengthen their ties to their technical organizations and Space Grant Consortia 7. Aid KSC in gaining a greater and more detailed understanding of each of the Center activities Senior Design projects are intended to stimulate undergraduate students on current NASA activities related to lunar, Mars, and other planetary missions and to bring out innovative and novel ideas that can be used to complement those currently under development at respective NASA Centers. Additionally, such academic involvement would better the prospects for graduating seniors to pursue graduate studies and to seek careers in the space industry with a strong sense for systems engineering and understanding of design concepts. Internships, on the other hand, are intended to provide hands-on experience to students by engaging them in diverse state-of-the-art technology development, prototype bread-boarding, computer modeling and simulations, hardware and software testing, and other activities that provide students a strong perspective of NASA's vision and mission in enhancing the knowledge of Earth and space planetary sciences. Ten faculty members, each from a Space Grant Consortium-affiliated university, worked at ten NASA Centers for five weeks between June 2 and July 3, 2008. The project objectives listed above were achieved. In addition to collecting data on Senior Design ideas and identifying possible internships that would benefit NASA/ESMD, the faculty fellows promoted and collected data when required for other ESMD-funded programs and helped the Center's Education Office, as,needed.

    Frequency-Domain Control Design in Power Systems

    Get PDF
    The scope of this thesis encompasses two main subjects: fixed-structure data-driven control design on one side, and control design in power systems on the other. The overall goal is to identify challenging and relevant problems in power systems, to express them as rigorous specifications from the viewpoint of control systems, and to solve them by developing and applying advanced methods in robust control. This work aims to combine expertise from both fields to open up a holistic perspective and bridge the gap between control and power systems. First, the derivation of a novel fixed-structure, data-driven frequency-domain control design method for multivariable systems is described. A key feature of the method is that only the frequency response of the plant is required for the design, and no parametric model is required. The designed controllers are fully parametrized in terms of matrix polynomial functions and can take a centralized, decentralized or distributed structure. The controller performance is formulated as H_2 and H_infinity constraints on any loop transfer function. A convex formulation of the optimization problem is derived, and it is shown that the solution converges to a locally optimal solution of the original problem. The versatility of the design method is demonstrated in various simulation examples, as well as in experiments on two electromechanical setups. Next, a frequency-domain modeling approach for power grids is discussed. A model based on dynamic phasors is developed that represents the electromagnetic and electromechanic dynamics of lines, inverters, synchronous machines and constant power loads. It also offers a modular structure that makes it straightforward to combine white-, grey- and blackbox models in a single framework. Then, the control design method and dynamic phasor model are applied in two relevant power systems case studies. First, the design of a decentralized current controller for parallel, grid-connected voltage source inverters in a typical distribution grid is considered. It is shown how performance specifications can be formulated as frequency-domain constraints in order to attenuate the resonances introduced by the output filters and coupling effects, and to provide robustness against model uncertainties and grid topology changes. The controllers for all VSIs are designed in a single step, and stability and performance is guaranteed by design. Furthermore, an approach for plug-and-play control design is presented. The results are validated in numerical simulation as well as in power-hardware-in-the-loop experiments. The second study concerns the design of a distributed controller that combines primary and secondary frequency and voltage control for an islanded, meshed low-voltage grid with any number of voltage source inverters and synchronous generators in a single framework. No assumption on the R/X-ratio of the lines is made, and it is shown how advanced control specifications such as proportional active power sharing, zero frequency steady-state error and decoupling can be formulated as constraints on the norm of weighted sensitivity functions. Furthermore, the communication delays of the distributed controller are considered exactly during the design. The controller is implemented in numerical simulation, and results show significantly improved performance as compared to the classical hierarchical structure
    corecore