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Abstract

The scope of this thesis encompasses two main subjects: fixed-structure data-driven
control design on one side, and control design in power systems on the other. The overall
goal is to identify challenging and relevant problems in power systems, to express them
as rigorous specifications from the viewpoint of control systems, and to solve them by
developing and applying advanced methods in robust control. This work aims to combine
expertise from both fields to open up a holistic perspective and bridge the gap between
control and power systems.

First, the derivation of a novel fixed-structure, data-driven frequency-domain control
design method for multivariable systems is described. A key feature of the method is that
only the frequency response of the plant is required for the design, and no parametric
model is required. The designed controllers are fully parametrized in terms of matrix
polynomial functions and can take a centralized, decentralized or distributed structure.
The controller performance is formulated as Hy and H,, constraints on any loop transfer
function. A convex formulation of the optimization problem is derived, and it is shown
that the solution converges to a locally optimal solution of the original problem. The
versatility of the design method is demonstrated in various simulation examples, as well
as in experiments on two electromechanical setups.

Next, a frequency-domain modeling approach for power grids is discussed. A model based
on dynamic phasors is developed that represents the electromagnetic and electromechanic
dynamics of lines, inverters, synchronous machines and constant power loads. It also
offers a modular structure that makes it straightforward to combine white-, grey- and
blackbox models in a single framework.

Then, the control design method and dynamic phasor model are applied in two relevant
power systems case studies. First, the design of a decentralized current controller
for parallel, grid-connected voltage source inverters in a typical distribution grid is
considered. It is shown how performance specifications can be formulated as frequency-
domain constraints in order to attenuate the resonances introduced by the output filters
and coupling effects, and to provide robustness against model uncertainties and grid
topology changes. The controllers for all VSIs are designed in a single step, and stability
and performance is guaranteed by design. Furthermore, an approach for plug-and-play
control design is presented. The results are validated in numerical simulation as well as
in power-hardware-in-the-loop experiments.

The second study concerns the design of a distributed controller that combines primary
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and secondary frequency and voltage control for an islanded, meshed low-voltage grid
with any number of voltage source inverters and synchronous generators in a single
framework. No assumption on the R/X-ratio of the lines is made, and it is shown how
advanced control specifications such as proportional active power sharing, zero frequency
steady-state error and decoupling can be formulated as constraints on the norm of
weighted sensitivity functions. Furthermore, the communication delays of the distributed
controller are considered exactly during the design. The controller is implemented in
numerical simulation, and results show significantly improved performance as compared
to the classical hierarchical structure.

This thesis was supported by the SCCER-FURIES competence center.

Keywords: Data-driven control, robust control, convex optimization, Ho/Hy,, power
system transients, power system stability, primary control, secondary control, distributed
control
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Zusammenfassung

Diese Doktorarbeit umfasst zwei Hauptthemen: einerseits datenbasiertes Reglerdesign fiir
Regler mit fixer Struktur, und andererseits Reglerdesign in Stromnetzen. Das Hauptziel
der Arbeit ist, herausfordernde und relevante Probleme im Stromnetz zu identifizieren,
sie also rigorose Spezifikationen im Sinne der Regelungstechnik zu formulieren, und
mittels neu entwickelten und fortschrittlichen robusten Reglerdesignmethoden zu 16sen.
Die Arbeit zielt darauf ab, Kompetenzen aus beiden Fachgebieten zu kombinieren, um
eine gesamtheitliche Perspektive des Problems zu erhalten, und die Liicke zwischen
Regelungstechnik und Elektrotechnik zu schliessen.

In einem ersten Teil wird die Herleitung einer datenbasierten Reglerdesignmethode fiir
Regler mit fixer Struktur auf der Frequenzebene beschrieben. Ein Hauptmerkmal der
Methode ist, dass nur die Frequenzantwort des Systems fiir das Design bendtigt wird,
und dass kein parametrisches Modell vonnéten ist. Die entworfenen Regler sind komplett
parametrisiert im Sinne von polynomiellen Matrixtransferfunktionen, und kénnen eine
zentralisierte, verteilte oder dezentrale Struktur annehmen. Die Reglerperformance kann
als Hy oder H,, Zwangsbedingung fiir jegliche Ubertragungsfunktion im Regelkreis formu-
liert werden. Eine konvexe Formulierung des Optimierungsproblems wird hergeleitet, und
es wird gezeigt dass die Losung zu einer lokal optimalen Losung des originalen Problems
konvergiert. Die Vielseitigkeit der Designmethode wird in verschiedenen Beispielen und
anhand zweier elektromechanischer Experimente demonstriert.

Im néchsten Schritt wird ein Modellierungsansatz fiir Stromnetze im Frequenzbereich
behandelt. Basierend auf dynamischen Phasoren wird ein Modell entwickelt, welches die
elektromagnetischen und elektromechanischen Dynamiken der Kabel, Wechselrichter,
Synchronen Maschinen und Lasten mit konstanter Leistung abbildet. Es bietet ausserdem
eine modulare Struktur, welche es einfach ermoglicht, White-, Grey- und Blackbox-
Modelle in einer Gesamtstruktur zu vereinen.

Schlussendlich werden die Reglerdesignmethode und das Modell in zwei relevanten
Fallstudien im Stromnetz angewandt. Im ersten Beispiel wird das Design eines dezentralen
Stromreglers fiir parallel verbundene Wechselrichter in einem typischen Verteilnetz
behandelt. Es wird aufgezeigt, wie Performancespezifikationen als Zwangsbedingungen
im Frequenzbereich formuliert werden kénnen, um die Resonanzen der Ausgangsfilter und
Kopplungseffekte zu ddmpfen, und um Robustheit gegeniiber Modellunsicherheiten und
verschiedenen Netztopologien zu gewéahrleisten. Die Regler aller Wechselrichter werden
in einem Schritt berechnet, und Stabilitdt und Performance sind garantiert. Weiterhin
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wird ein Vorgehen fiir Plug-and-Play Reglerdesign préasentiert. Die Ergebnisse werden
sowohl in numerischer Simulation, als auch in Power-Hardware-in-the-Loop-Experimenten
validiert.

Die zweite Studie behandelt das Design eines verteilten Reglers, welcher primére und
sekundére Frequenz- und Spannungsregelung eines geinselten, maschigen Niederspan-
nungsnetzes mit einer beliebigen Anzahl an Wechselrichtern und Synchrongeneratoren
in einer Gesamtstruktur verbindet. Es werden keine Annahmen beziiglich des R/X-
Verhéltnisses der Kabel gemacht, und es wird gezeigt wie komplexe Reglerspezifikationen,
so wie proportionales Teilen der aktiven Ausgangsleistung, kein stationarer Fehler der
Frequenz und Entkopplung als Zwangsbedingungen auf der Norm von gewichteten Sensi-
tivitdten formuliert werden konnen. Ausserdem wird die Kommunikationszeitverzogerung
beim Reglerdesign berticksichtigt. Der Regler wird in numerischer Simulation getestet,
und die Resultate demonstrieren eine signifikant bessere Leistung als die klassische,
hierarchische Struktur.

Diese Arbeit wurde mit Unterstiitzung des SCCER-FURIES Kompetenzzentrums ge-
schrieben.

Stichworte: Datenbasierte Regelung, robuste Regelung, konvexe Optimierung, Ha/Hoo,
Stromnetztransienten, Stromnetzstabilitdt, primdre Regelung, sekunddre Regelung, verteilte
Regelung

viii



Contents

Acknowledgements

Abstract (English/Deutsch)

List of Figures

List of Tables

1 Introduction
1.1 Motivation . .. ... ..
1.2 Thesis Organization . . .

2 Fixed-Structure Control Design using Frequency-Domain Data

2.1 Introduction . . . . . . . . .. L
2.2 Stateof the Art . . . . . . . . . ..
2.2.1 State-Space Methods . . . . . . . .. ... oo
2.2.2  Methods using Frequency-Domain Data . . . . . .. ... ... ..
2.3 Frequency response data . . . . . ... ...
2.4 Controller Structure . . . . . . . . . . . ...
2.5 Control Performance . . . . . . . . . .. .. .. ... ...
2.5.1 Hy Performance . . . . . ... .. ... ... ... ... .. ....
2.5.2  Hsy Performance . . . . . ... .. . ... ... ... ...
2.5.3 Loopshaping . . . . . . . . .. ...
2.6 Stability Analysis . . . . . ...
2.6.1 A detailed look at the Nyquist Criterion . . . . . . ... ... ...
2.6.2 Stability Proof - Discrete-Time . . . . . . . . ... ... ... ...
2.6.3 Multimodel uncertainty . . . . . .. ...
2.6.4 Frequency-domain uncertainty . . . . ... ... .. ...
2.7 Implementation . . . . . . . ... Lo
2.7.1 Frequency Gridding . . . . . .. .. ...
2.7.2 Controller Order . . . . . . . . . .. ... ... ... ... ...
2.7.3 Inmitial controller . . . . . . .. . ... ... .. o
2.7.4 Numerical Issues . . . . . . .. .. ... 0oL
2.7.5 Tterative algorithm . . . . . . ... ...

iii

xiii

xvii

10
10
11
12
13
14
15
17
18
19
20
22
24
25
25
26
27
27
28
29

ix



Contents

2.8 Simulation Examples . . . . . . ... oo
2.8.1 Compleib Examples . . . . . ... ... ... .
2.8.2 Hard-disk Drive. . . . . . . . .. .. ... ...
2.8.3 Multivariable System . . . . . . ... oL

2.9 Conclusion . . . . . . . . e e

2.A Stability Proof - Continuous-Time . . . . . ... ... ... ... .....

3 Frequency-Domain Modeling of Power Grids

3.1 Introduction . . . . . . . . . ... e
3.1.1 Stateofthe Art . . . . . .. .. ...

3.2 Phasor Notation . . . . . ... . .. ... ...

3.3  Frequency-Domain Model of Voltage and Current Dynamics . . . . . . . .
3.3.1 Line Current Dynamics . . . . ... .. ... ... ... ......
3.3.2 LCL Filter Dynamics . . . . .. .. .. .. ... ... .......
3.3.3 Complete Transfer Function Model . . . . . . .. ... ... ... ..

3.4 Frequency-Domain Power Flow Model (Dynamic Phasor Model) . . . . .
3.4.1 Dynamic Power Flow Equations . . . .. ... ... ... .....
3.4.2 Line Power Flows Model . . . . . .. .. .. ... ... .......
3.4.3 Voltage Source Inverter Model . . . . . ... ... ... ......
3.4.4 Synchronous Generator Model . . . .. ... ... ... ......
3.4.5 Complete Dynamic Phasor Model . . . . ... ... ... .....
3.4.6 Validation of Dynamic Phasor Model . . . . . . . . ... ... ...

3.5 Conclusion . . . . . . . . . e

4 Current Control Design for Parallel Grid-Connected Inverters

4.1 Introduction . . . . . . . . Lo
4.1.1 Stateof the Art . . . . . . . ... ... .

4.2 Control Design . . . . . . . ... L
4.2.1 Grid Model . . . . . . . ..
4.2.2  Control Specifications . . . . . . .. ... oL
4.2.3 Controller Structure . . . . . . . ... ...
4.24 Convex Formulation . . . .. .. .. ... ... ... .. ...
4.2.,5 Simulation Results . . . . . . . .. ... oo

4.3 Plug-and-Play Design . . . . . . . . .. .. o o

4.4 Experimental Results. . . . . . . . . ... L
4.4.1 PHIL Setup . . . . . . . . o
442 PHIL Results . . . . ... . . .. ... e

4.5 Conclusion . . . . . ..

5 Distributed Primary and Secondary Control in Islanded Grids

5.1 Imtroduction . . . . . . . . ..
5.1.1 Stateofthe Art . . . . . . .. ... ... ... ...

5.2 Grid Model . . . . ..

41
41
41
42
43
43
45
46
47
47
49
50
o1
52
o4
55

57
57
58
60
61
61
63
64
66
68
69
70
70
72



Contents

5.2.1 VSI Dynamics . . . . . . . . . e 78

5.2.2  Synchronous Generator Dynamics . . . . . ... .. .. ... ... 79

5.2.3 Complete Transfer Function Model . . . . . . . ... ... .. ... 80

53 Control Design . . . . . . ... L 81
5.3.1 Control Specifications . . . . . . ... ... ... .. ... ... . ]2

5.3.2 Controller Structure . . . . . .. ... ... .. ... ... ... 84

5.3.3 Convex Formulation . . . .. .. ... ... ... ... ....... 85

5.4 Simulation Results . . . . . . . . . ... .. 87
5.5 Conclusion . . . . . . . . . 91
5.A Primary and Secondary Control Design: Additional Results . . . . . . .. 92

5. A1 Example Grid . . . . . . .. ... 92

5.A.2 Improved Primary Control Performance . . . . . .. .. ... ... 92

5.A.3 Robustness Towards Topology Change . . . . . . .. .. ... ... 96

5.A.4 Distributed Secondary Control . . . . . .. ... ... ... .... 98

6 Conclusion 103
6.1 Summary . . . ... 103
6.2 Future Research . . . . . . ... ... ... . ... ... 104

A Data-Driven Control Design for Atomic-Force Microscopy 107
A.1 System Description . . . . . . . ... 107
A2 Stateofthe Art . . . . . . . . . .. 108
A3 Control Design . . . . . . . . .. 110
A.3.1 Plant Identification . . . . . . . . . .. ... .. ... .. 110

A.3.2 Control Performance . . . . . . ... ... ... ... ........ 111

A.3.3 Controller Structure . . . . . . . . . . ... ... 111

A.3.4 Convex Formulation . . . .. .. .. ... ... .. ......... 112

A4 Experimental Results . . . . . . . . . ... o 113
A5 Conclusion . . . . . . . e 115

B Data-driven Multivariable Control of a 2-DOF Gyroscope 117
B.1 Experimental Setup . . . . . . . . ... 117
B.2 Frequency Response . . . . . . . . . . . . . 117
B.3 Control Design Formulation . . . . . . ... ... ... ... .. ...... 118
B.4 Experimental Results. . . . . . . .. ... o oo 121
B.5 Conclusion . . . .. . .. . . ... e 122
Bibliography 123

xi






List of Figures

1.1

2.1
2.2
2.3
24
2.5

2.6

3.1
3.2
3.3
3.4
3.5
3.6

3.7

4.1

4.2

4.3

General layout of modern power grids. Electricity is generated both on
the high- and low-voltage level, and many distributed power plants are

involved. . . . . . . . e 2
Nyquist contours. . . . . . . . . . . . 21
Simplified discrete-time Nyquist contour. . . . . . . . . . ... ... .... 22
The main steps of the control design method. . . . . . . ... .. ... .. 30
Bode magnitude plot of the plant used in the hard-disk drive example. . . 33

Comparison of the open-loop transfer functions. In blue is the desired
open-loop function Ly, in red the obtained open-loop function L with the
proposed method, and in dashed yellow the obtained L with the hinfstruct
controller. . . . . . . .. L 34
Plot of the achieved mixed sensitivity norm for different controller orders
p. The dashed red line shows the globally optimal value obtained by mizsyn. 36

One-line diagram of a distribution grid with multiple VSIs and constant

current loads. . . . . . .. Lo 43
Block diagram of the complete closed-loop model. . . . . . . . .. .. ... 47
Small example grid with one load, one VSI and one SG. . . . .. ... .. 49
Block diagram of the full dynamic phasor model. . . . . . ... ... ... 52
One-line diagram of a 50 Hz/230 V islanded grid with 3 SGs and one VSL

The arrows denote constant power loads. . . . . . . . .. .. ... ..... 54
Comparison of frequency and voltage between nonlinear simulation (in

blue) and linear dynamic phasor model (inred). . .. ... ... .. ... 55
Comparison of power flows between nonlinear simulation (in blue) and

linear dynamic phasor model (inred). . . ... ... ... ... .. .... 56

Electrical one-line diagrams: a) a rural distribution grid with 4 VSIs and
a Line Voltage Regulator (LVR), b) the output filter configuration and

controller block diagram of the VSIs. . . . . . . .. .. .. ... ... ... 58
Measurements of three-phase current and voltage at the LVR after it is
switched on [78]. . . . . . ... 59
Maximum singular value plots of the grid model. The model without the
LVR is in blue, and with the LVR inred. . . . . .. . .. ... ... ... 62



List of Figures

Xiv

4.4 Maximum singular values plots: a) the controller (in green) and the plant
without and with the LVR (in blue and red), b) the closed-loop sensitivities
and ¢) the input sensitivities without and with the LVR. The dashed lines
indicate the constraints. . . . . . . .. ... o oo

4.5 Inverter current step response of VSI 1 without and with the LVR. The
dashed line shows the current reference. . . . . . . . ... ... ... ...

4.6 Block diagram of plant for plug-and-play design. . . . .. ... ... ...

4.7 Inverter current step response of the plug-and-play controller of VSI 5
without the LVR. The dashed line shows the current reference. . . . . . .

4.8 One-line diagram of the PHIL setup. The output filter impedances are
identical for all VSIs. . . . . . . . . . ...

4.9 Photo of a custom-designed inverter used for the PHIL experiments.

4.10 The PHIL results are in red, simulation results are in blue, the dashed
line shows the current reference. . . . . . . .. .. .. ... L.

4.11 Three-phase voltage and current of VSI 1 without and with the LVR
during the step of I;d. .............................

5.1 One-line diagram of a 50 Hz/230 V islanded grid. The bus numbers are
indicated in red and the arrows denote constant power loads. . . . . . ..
5.2 Block diagram of speed-controlled synchronous generator. . . . .. .. ..
5.3 Block diagram of complete dynamic phasor model of the grid from Fig. 5.1.
The block K is the controller. . . . . . . . . .. ... .. ... ... ....
5.4 Frequency of the DG units after an active power load step. The new
controller is in red, droop in blue and DAPI in yellow. . . . . .. ... ..
5.5 Active output power of the DG units after an active power load step. The
new controller is in red, droop in blue and DAPI in yellow. . . . ... ..
5.6 Voltage magnitude of the DG units after an active power load step. The
new controller is in red, droop in blue and DAPI in yellow. . .. .. ...
5.7 Reactive output power of the DG units after an active power load step.
The new controller is in red, droop in blue and DAPI in yellow. . . . . . .
5.8 Model adapted from [137] with 11 buses, 2 inverter-interfaced batteries, 1
synchronous generator and 6 loads. The sign | denotes the loads.
5.9 Maximum singular value plots of the SG sensitivity W1S. Blue is the
droop controller, red is the new controller. . . . . . . .. ... ... ....
5.10 Comparison of simulation results. Blue is the droop controller, red is the
new primary controller . . . . . . . . ... ...
5.11 Generator reactive output power after an active power load step. Blue is
the droop controller, red is the new primary controller. . . . . . . . . . ..
5.12 Generator frequency after line 9-10 is closed. Blue is the droop controller,
red is the new primary controller. . . . . . . .. .. ... oL

5.13 Block diagram of the distributed secondary controller. . . . . . .. .. ..

73

89



List of Figures

5.14 Comparison of simulation results for secondary control. Blue is the droop
controller, red is the improved primary controller, yellow is with the
distributed controller. . . . . . .. ..o

A.1 a) Block diagram of the functionality of an AFM. b) Exploded view of
the head used for the experiments. . . . . . . ... ... ... .......
A.2 Comparison of control design steps in AFM for conventional approaches
and using a data-driven approach. . . . . . .. ..o
A.3 Evolution of the frequency response of a J-scanner in liquid over 3 hours.
The envelope shows the range of the variations. Three example responses
are shown, where blue is at the start, red is after 1 hour and yellow is
after 2 hours. . . . . . ..
A.4 Comparison of the nominal closed-loop sensitivities. a) Measured plant
frequency response in green, designed 10th-order controller in blue. b)-d)
Sensitivity S, closed-loop sensitivity 7" and input sensitivity U for the
10th-order controller in blue and the Pl-controller in yellow. Black dashed
lines indicate the constraints Wo, Wi3. . . . . . . . . . . . . ... ... ...
A.5 Frequency responses and designed controllers for different systems. The
upper plots show the plant in green and the controller in blue. The lower
plots show the nominal and measured closed-loop sensitivity in blue and
red respectively, with the Ho, constraint in dashed black. a) J-scanner in
air, b) E-scanner in air, ¢) J-scanner in liquid, d) triple-S scanner in air. .
A.6 Imaging of DNA at increasing line rates. . . . . . . . ... .. ... ....
A.7 Time-lapse of the self-assembly of a DNA lattice. . . . . . . ... ... ..

B.1 The gyroscope experimental setup by Quanser. . . . . . . ... ... ...

B.2 Block diagram of the cascaded controller structure of the gyroscope.

B.3 The measured frequency response of the blackbox model G at different
disk speeds. The blue line is the response at a disk speed of 300 rpm, red
at 400 rpm and yellow at 500 rpm. . . . . . .. ..o oo

B.4 Bode magnitude plots of the desired open-loop transfer function L; and
the achieved L2 3 for the three different plant models. The blue line is
the achieved response at a disk speed of 300 rpm, red at 400 rpm and
yellow at 500 rpm. The desired L4 is shown in dashed purple. . . . . . . .

B.5 Closed-loop sensitivities and measured step response. . . . . . . . . .. ..

119

XV






List of Tables

2.1

5.1
5.2
5.3

Comparison of optimal mixed sensitivity norms for 10 plants from Compleib 32

Line Parameters . . . . . . . . . . .. 77
DG Units Parameters . . . . . . . . . . . 81
CIGRE Grid Parameters . . . . . . . . . . . . . e 93

xvii






I} Introduction

1.1 Motivation

The advent of the 21st century poses some very challenging problems for the incredibly
complex, distributed and nonlinear system that is our power grid. From a very personal
perspective, in a recent vote in Switzerland a new energy strategy act for 2050 was
enacted, which identifies an increase in the use of renewable energy and a withdrawal
from nuclear power as key strategic energy objectives for this country. Far from pursuing
an isolated course, Switzerland is part of a global trend to replace fossil and nuclear
energy with renewable resources such as wind and solar.

From a power systems perspective, these developments imply a drastic shift away from a
centralized architecture, where power is produced by few large power plants, to distributed
and renewable generation, where a large portion of the electricity is produced by myriads
of small generation units (see Fig. 1.1). Design rules and guidelines established by
power companies after decades of experience no longer hold true, and new paradigms are
required. Due to the intermittent nature of renewable resources such as wind and solar,
the generation will be highly dynamic in comparison to conventional power systems,
and storage of energy is required to damp the fluctuations of generation. On the other
hand, CO2 reduction strategies are pushing the industry towards electric vehicles. This
increases the overall demand for electric power, but an even bigger challenge is the
change in consumption patterns and maximum loading due to fast charging technologies,
which will have a considerable effect on grid planning and operation. The integration
of renewable and intelligent distributed generation units, energy storage systems and
electric vehicles will completely change the structure of the grid as we know it today.

On a large scale, a key problem is the increasing loss of inertia [1]. A fundamental
characteristic of the power grid is that almost no energy can be stored inside the lines,
and production always has to perfectly match consumption in order to maintain stability.
Since it is impossible to exactly predict the consumption, some form of fast-acting
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Figure 1.1 — General layout of modern power grids. Electricity is generated both on the high- and
low-voltage level, and many distributed power plants are involved®.

energy storage is required to balance the production and consumption and maintain
the equilibrium. Today, this role is taken on by the inertia of the large synchronous
generators, which acts as an energy reservoir. Since the grid frequency is directly tied
to the rotational frequency of the generators, large inertia renders frequency dynamics
more benign by slowing down transients and dampening oscillations, which guarantees a
sufficiently large response time to events.

The task to maintain the grid frequency and voltage close to their nominal values is
called primary and secondary control. Primary control is traditionally provided by droop
control, which is a decentralized proportional controller that relates the output power of a
generator to the grid frequency. If the frequency drops power generation is increased, and
vice versa. However, being a proportional controller, droop control exhibits a steady-state
error after a disturbance. The task to restore the frequency to its nominal value is taken
on by secondary control, which is in essence a centralized integral controller that adjusts

'"MBizon (https://commons.wikimedia.org/wiki/File:Electricity Grid_Schematic_ English.svg),
,Electricity Grid Schematic English“, modified, https://creativecommons.org/licenses/by/3.0/legalcode
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1.1. Motivation

the production of all generators in the grid.

A fundamental difference of renewable generation units such as solar and wind is that they
do not provide any rotational inertia (or more precisely, in the case of wind it is difficult
to leverage). As more and more power is supplied by these units, the total inertia in the
grid decreases, and frequency dynamics become much faster and less well damped. If a
certain threshold is crossed and the inertia falls too low, this situation unavoidably results
in cascaded failures and a complete blackout of the grid. While nowadays most renewable
sources simply inject as much power into the grid as they can produce, it is clear that
distributed generation units will have to start participating in primary and secondary
control to maintain the stability of the grid in the future. However, these sources
are generally connected to the grid through power electronic devices such as inverters,
and their dynamics are fundamentally different from synchronous generators. New
approaches and methodologies for primary and secondary control have to be developed
to guarantee stable and robust operation of grids with both synchronous machines and
inverter-interfaced sources.

Concerning secondary control, the traditional approach where a centralized integral
controller has to communicate with all generation units is not feasible if high numbers of
distributed generation units are involved. The large number of required communication
channels would be expensive, and decreases the reliability of the grid. Also, on a physical
level, grids with low inertia and stochastic generation exhibit fast dynamics with large
changes, and the separation of timescales required by a hierarchical structure may render
it infeasible. Therefore, significant research efforts are being made towards distributed
control approaches that combine primary and secondary control in a single framework.

Another challenge is that, unlike traditional power plants, many renewable generation
units are not connected to the high-voltage transmission grid, but are instead embedded
on the medium- and low-voltage distribution grid level. Introducing and operating
distributed generation on the distribution grid level on a large scale is still new territory,
and many challenges exist. An example of a more and more frequent issue in modern
distribution grids are overvoltage situations due to increasing penetration of photovoltaics.
The stochastic nature of solar power leads to rapid and unpredictable changes in power
generation, which leads to situations that have not been encountered before. New control
strategies involving distributed storage and controllable transformers are promising
solutions to this problem. When considering primary control on the low-voltage level,
another important aspect is that the dynamics of power lines in distribution grids
are fundamentally different from the transmission grid. Since droop control has been
developed for the latter, it does not perform well in the former, and new solutions have
to be found. Furthermore, most inverters have to be equipped with an output filter
in order to remove the harmonic content of the switching PWM output and obtain a
sinusoidal voltage. Connecting large numbers of inverters in parallel creates a complex
and heavily coupled system with complicated dynamics.
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The evolution of the electrical grid requires new control methodologies to ensure stability
and power quality in the future. A significant challenge for control design in distribution
grids is that the electrical parameters such as line resistance and inductance, or even
the exact grid topology, are very uncertain, or even unknown. Therefore, a method is
required that is able to consider robustness against these uncertainties as part of the
design specifications. The method also needs to be able to accommodate very particular
performance specifications such as proportional power sharing, decoupling or topology
changes, which are often difficult to represent in classical approaches.

Furthermore, as advanced measurement devices (e.g. phasor measurement units) become
more and more commonplace, the availability of real-time measurement data is increased
significantly. This makes a data-driven paradigm very attractive, which allows the design
of a controller purely based on measured data without requiring a parametric model of
the system.

In light of the distributed nature of renewable generation units, a centralized controller is
generally not practical. Therefore, a key requirement is the ability to design controllers
with a distributed or decentralized structure. When considering distributed control, an
important aspect are communication time delays, which should be considered in the
design. Another important aspect is plug-and-play design, which allows the addition or
withdrawal of individual generation units to or from a running grid.

Finally, the designed controllers should be practical and easy to implement. Notable
features are low computational complexity (e.g. low controller order), and designing
directly in discrete-time, which significantly reduces the number of intermediary steps
from calculation to implementation. Since the majority of controllers used in practice
are proportional-integral controllers with additional filters, the method should be able to
design controllers of an equivalent form, which makes it relatable to practitioners.

1.2 Thesis Organization

As the thesis covers a wide and diverse range of topics, the corresponding state of the
art is discussed at the start of each chapter. The chapters are organized as follows:

Chapter 2: Fixed-Structure Control Design using Frequency-Domain Data

In this chapter, a novel frequency-domain control design method for fixed-structure
controllers is developed. The control specifications are formulated as Hy and Hs
constraints on any loop sensitivity transfer function. The constraints can be presented as
convex-concave matrix inequality constraints, and a novel way to construct and solve the
corresponding optimization problem is proposed. The main contributions are as follows:
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e It is shown how the convex-concave problem can be linearized to obtain a convex
optimization problem. An iterative approach is used, and it is shown that the
solution converges to a locally optimal solution of the original problem.

e A proof for closed-loop stability based on the generalized Nyquist criterion is
constructed.

e Only the frequency response of the plant is required for the design, which can be
obtained either from a parametric model, or calculated from measurement data.
This makes the method well-suited for high-order plants, and enables a purely
data-driven approach.

e The controller is fully parametrized and covers a large range of representations (e.g.
MIMO-PID with filters). The design can be either in continuous- or directly in
discrete-time.

e Robustness against frequency-domain and multimodel uncertainty is straightforward
to consider.

The method has also been published in Automatica [2].

Chapter 3: Frequency-Domain Modeling of Power Grids

A frequency-domain approach towards the modeling of voltage and current dynamics as
well as power flow dynamics in low- and medium-voltage power grids is developed. The
model is based on dynamic phasors and represents well the transient dynamics of the
power flows, as well as the electromagnetic and electromechanic dynamics of inverters,
synchronous generators and constant power loads. It also offers a straightforward way to
combine white-box models from first-principle modeling with gray- and black-box models
obtained from measurement data in the same framework. The model has been part of
various publications [3-7].

Chapter 4: Current Control Design for Parallel Grid-Connected Inverters

In this chapter, the control design for multiple parallel, grid-connected inverters in a
rural distribution grid is considered. It is shown how common performance specifications
can be formulated as frequency-domain constraints, and using the method developed in
Chapter 2 a decentralized controller is computed that guarantees stability and robust
performance. Key contributions are:

e Whereas most approaches in the literature evaluate stability a posteriori, the
proposed approach guarantees closed-loop stability and performance by design.
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e The controller is robust against modeling uncertainties. It is also shown how
robustness against changes in the grid topology can be considered as a multimodel
uncertainty.

e An approach for plug-and-play control design is presented. The approach can
be used to connect new distributed generation units to an existing grid while
guaranteeing stability and performance.

The results are validated in numerical simulation as well as in power-hardware-in-the-loop
experiments. This work has also been submitted for publication in [4].

Chapter 5: Distributed Primary and Secondary Control in Islanded Grids

This chapter treats the problem of robust control design for distributed primary and
secondary frequency and voltage control of an islanded, meshed, low-voltage grid with
multiple distributed generation units. The grid consists of several inverters, a synchronous
machine and constant power loads, resulting in a general and realistic example. The
method developed in Chapter 2 is then used to design a distributed controller that
provides primary and secondary frequency and voltage control. The contributions are as
follows:

A distributed controller structure is proposed which provides primary and secondary
frequency and voltage control in a unified framework.

e It is shown how non-standard performance specifications such as proportional
power sharing, no frequency steady-state error and decoupling can be formulated
as frequency-domain constraints on closed-loop sensitivity functions.

e The presented formulation is generic and makes no assumption on the resistance
and inductance of the lines.

e Communication time delays are considered during the design.
e It is shown how robustness towards different grid layouts can be considered as

multimodel uncertainty.

Extensive numerical simulation results demonstrate the potential of the approach. The
results from this chapter have been published in [3, 5-7].

Chapter 6: Conclusion

This chapter states the concluding remarks and discusses possible future extensions of
the research presented in this thesis.

6
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Appendix A: Data-Driven Control Design for Atomic-Force Microscopy

This appendix presents an application of the developed control design method for data-
driven control design for atomic force microscopes (AFMs). An AFM is a mechanical
microscope with a resolution on the order of nanometers, and a wide range of applications
in various fields such as solid-state physics, semiconductor science, molecular biology
and cell biology. The data-driven method developed in Chapter 2 forms the core of an
automated tool that allows a user to measure the plant response and design a controller
within a few minutes, and without requiring any knowledge of control systems. This
makes it possible to significantly reduce the time required to capture an image, while
also improving the image quality. The initial results have been published in [8], and a

more extensive dissemination is in progress.

Appendix B: Data-driven Multivariable Control of a 2-DOF Gyroscope

This appendix treats an experimental example where the design of a data-driven, robust
multivariable controller with multimodel uncertainty is presented to control the gimbal
angles of a gyroscope. The results show that the method is well suited for multivariable
control design of strongly coupled systems under multimodel uncertainty, which is a
challenging and relevant problem in many practical applications. The results are published
in [9].






A Fixed-Structure Control Design
using Frequency-Domain Data

2.1 Introduction

Having been introduced in the early 1980s [10-12], the idea of applying H, methods for
robust control design has been an important area of research for a long time. Later, Ho
optimal design, which is a generalization of the well-known linear quadratic regulator
design, was combined with H., methods in a versatile framework [13, 14].

While these initially proposed methods are based on convex optimization and can be
solved efficiently, they can only be used to compute full-order controllers (i.e. the
controller is of the same order as the plant with the weighting filters). Furthermore, it is
not possible to specificy the controller structure, which makes the design of decentralized
or distributed controllers impossible. This led to the concept of fixed-structure control,
where the order and structure is fixed as part of the design specifications. Being able to
fix a low-order controller as part of the specifications is a necessary feature for a method
to be useful in practice. Similarly, enabling a fixed structure is especially important when
considering networked systems, where a centralized controller is generally not practical,
and a decentralized or distributed structure is required. As opposed to full-order design
however, the resulting optimization problem for fixed-structure design is non-convex and
nonsmooth, which presents a significant challenge. Current methods still suffer from
various issues regarding complexity and implementability, which will be addressed in this
chapter.

An additional obstacle is that in an industrial setting, since typical controller synthesis
methods generally struggle with complex high-order models, the plant is often approxi-
mated by low-order models. This approximation can be difficult to find and limits the
achievable performance, as the low-order models are subject to large uncertainty. A very
attractive alternative is offered by methods that are able to synthesize a controller based
only on the frequency response of the plant. This also enables a data-driven approach,
where the frequency response is calculated from measured time- or frequency-domain data,
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which eliminates the additional issues introduced by the system identification process.
Data-driven methods do not suffer from any issues regarding unmodeled dynamics or
parametric uncertainties, as the only source of uncertainty comes from the measurement
noise and nonlinearity.

The recent developments in the fields of numerical optimization as well as computer
and sensor technology have led to a significant reduction of the computational time of
optimization algorithms, and have increased the availability of large amounts of measured
data during a system’s operation. These progresses make computationally demanding
data-driven control design approaches a viable alternative to the classical model-based
control problems. A survey on the differences between data-driven and model-based
approaches has been made in [15], which asserts the advantages of this approach.

2.2 State of the Art

In this section, a review of the current literature on fixed-structure H,, and Hs control
design methods is presented.

2.2.1 State-Space Methods

A large part of fixed-structure methods in the literature relies on a parametric state-space
model of the plant to design a fixed-structure state-space controller [16]. The methods can
be separated into non-convex and convex approaches, depending on whether the robust
control design problem is solved directly, or transformed into a convex approximation.
The designed controllers are formulated as continuous-time state-space models, and
generally need to be transformed to discrete-time to be implemented.

An early suggestion was to reformulate the non-convex problem using bilinear matrix
inequalities (BMIs), but even moderately-sized problems proved numerically difficult
[17, 18]. Non-smooth methods are used in [19-21] to directly solve the non-convex
H design problem. This approach is also implemented in the Robust Control toolbox
of Matlab under the hinfstruct command. A similar approach is used in the code
package HIF0O0, which is able to also consider Hs synthesis [22]. A downside of these
implementations is that the performance specifications have to be expressed in a linear
fractional transformation (LFT) form, which can make the choice of design parameters
difficult and limits the design problems that can be expressed. Also, the use of non-
smooth methods means that in practice every design step yields different results, which
can be cumbersome.

To avoid the use of non-smooth methods, another approach is to convexify the problem
and present sufficient conditions in terms of linear matrix inequalities (LMIs) [23-29].

The main drawback of these approaches is that they all rely on certain types of auxiliary
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Lyapunov matrices, the size of which grows quadratically with the number of states of
the plant. The resulting optimization problem can be hard to solve and the computation
times are very high for high-order systems.

2.2.2 Methods using Frequency-Domain Data

Another direction is robust control design based only on frequency-domain data instead
of a parametric plant model. This approach has two significant advantages compared
to state-space methods: first, only the frequency response is required for the design,
so the order of the plant has no effect on the computational complexity of the design
algorithm. This means that accurate, high-order models can be used, which improves
the robustness and achievable performance. Second, it is straightforward to measure
the frequency response of a plant directly (e.g. using sweeps), or to compute it from
time-domain measurement data. This is very attractive in practice, as it allows for a
data-driven approach and makes it unnecessary to identify a parametric model, which is
often a complicated process.

In [30, 31] a method for SISO systems based on Q-parametrization is proposed, where the
H, problem is linearized around an initial stabilizing controller to obtain a convex opti-
mization problem. Other approaches are based on linearly parametrized (LP) controllers
for SISO systems, where the controller is expressed as a linear combination of some basis
functions in transfer-function form. Convex methods to design LP controllers with a
desired gain and phase margin have been proposed in [32, 33]. Further, a method to
design LP controllers with loop shaping or H, performance has been developed in [34-36],
and is extended to MIMO systems in [37] with the use of Gershgorin bands. These
methods are based on the linearization of the constraints around a desired open-loop
transfer function and have already been applied to industrial systems [36, 38-40] using a
public domain toolbox [41].

A loop-shaping method has been proposed in [42], where the H, problem for MIMO
systems is considered by imposing multiple line constraints in the Nyquist diagram to
achieve stability and performance. However, the proposed constraints become convex
only for special cases of LP controllers.

Another approach for the robust design of LP-MIMO state-space controllers is presented
in [43]. A method to design MIMO-PID controllers was developed in [44, 45], where a
convex-concave optimization problem is linearized around an initial controller to obtain a
convex optimization problem with LMI constraints. However, the controller structure is
limited to PID, and no proof of stability is given in these papers. The method is further
extended in [46] and applied in [47]. In [48] a non-smooth method is used to directly solve
the convex-concave optimization problem to compute fixed-structure controllers, where
stability is achieved through the iterative tuning of barrier functions. It is important

11
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to note that a limitation of the approaches discussed in this paragraph is that the
performance can only be specified in the H, and not in the Hs sense.

2.3 Frequency response data

The system to be controlled is a Linear Time-Invariant Multi-Input Multi-Output (LTI-
MIMO) system, and is represented very generally by a multivariable frequency response
model G(jw) € C™™, where n is the number of outputs and m the number of inputs.
The frequency response G(jw) is assumed to be bounded in all frequencies except for
a set By including a finite number of frequencies that correspond to the poles of G on
the stability boundary (the imaginary axis for continuous-time, or the unit circle for
discrete-time systems).

The frequency response can be obtained from a parametric model by evaluating:

Gjw) =G(s = jw), w€ Qg ={w|—00<w < oo}\By (2.1)

Gljw) = Gz = ), wen, = {w ’—” <cw< T } \B, (2.2)
T Ts
for continuous-time and discrete-time models respectively, where T} is the sampling time.
A notable advantage of frequency response models as compared to state-space models is
that time-delays can be considered exactly, and no approximation is required.

Following a data-driven approach, the frequency response model can also be identified
directly from time-domain measurement data using the Fourier analysis method from m
sets of input/output sampled data as [49]:

-1

N—1 ) N—-1 )
G(jw) = [Z y(k)ef“”] [Z u(k)ews’f] (2.3)
k=0

k=0

wEQg:{w'— Swg}\Bg (2.4)

T
T, T,
where N is the number of data points for each experiment, u(k) € R™*™ includes the
inputs at instant k, y(k) € R™™ the outputs at instant k and Ty is the sampling period.
Note that at least m different experiments are needed to extract G from the data (each
column of u(k) and y(k) represents respectively the input and the output data from one
experiment). In order to obtain an accurate model, the input data should have a rich
frequency spectrum such as e.g. a PRBS signal, a sum of sinusoids or a frequency sweep.
The main advantage of directly using frequency-domain data is that a parametric model
of the plant is not required, and there are no unmodeled dynamics. The only source of
uncertainty for an LTI system is the measurement noise, whose influence can be reduced
significantly if the amount of measurement data is large.

12
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2.4 Controller Structure

A fixed-structure matrix transfer function controller is designed. The controller is fully
parametrized, which greatly simplifies the choice of controller structure and order as
opposed to linearly parametrized approaches. The controller is defined as K = XY 1,
where X and Y are polynomial matrices in s for continuous-time or in z for discrete-time
controller design. This controller structure, therefore, can be used for both continuous-
time or discrete-time controllers. The matrix X has the following structure:

X1 ... X
X = Lo o F, (2.5)
Xm1i oo Xom

where X and F, are m x n polynomial matrices and o denotes the element by element
multiplication of matrices. The matrix F, represents the fixed known terms in the
controller that are designed to have specific performance, e.g. based on the internal
model principle, or communication time delays of distributed controllers. For discrete-
and continuous-time controllers we have respectively:

X(2) = (Xpl + -+ X1z + Xo) 0 Fi(2)
X(s) = (Xps? + -+ Xys+ Xo) o Fy(s)

where X; € R™*" for i = 0,...,p contain the controller parameters. In the same way
the matrix polynomial Y can be defined as:

Yiu ... Y,
Y = oo o F), (2.8)
Yor .. Yun

where Y and Fy are n x n polynomial matrices. The matrix I, represents the fixed terms
of the controller, e.g. integrators or the denominator of other disturbance models. The
set of frequencies of all roots of the elements of Fy, on the stability boundary (imaginary
axis for continuous-time controllers or the unit circle for the discrete-time case) is denoted
by B,. For discrete- and continuous-time controllers we have respectively:

Y(2) = (I2F + Y, 12P -+ Y1z + Y)) 0 Fy(2) (2.9)
Y(s) = (Is? +Yp_18P 7 + -+ Yis + Yp) o Fy(s) (2.10)
where Y; € R™ "™ for i = 0,...,p — 1 contain the controller parameters. In order to

obtain low-order controllers, a diagonal structure can be considered for Y, which also
simplifies its inversion and implementation. Note that Y (jw) should be invertible for all
w e N =Q4\B,y.

13
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This controller structure is very general and covers centralized, decentralized and dis-

tributed control structures, as will be shown in the following examples.

Example - PI controller with Lead /Lag compensators: A very well-known struc-
ture that can be represented is a SISO-PI controller with filters. For example, a PI with
two lead/lag compensators can be expressed as a third-order transfer function with fixed

integrator:
1 z—biz—by X122+ X022+X124+20 X(2)
k k; = = 2.11
(kp + Zz—l)z—alz—ag (224+Yiz4Yy)-(z—1)  Y(2) (2.11)
PI lead/lag lead/lag

Example - Decentralized PI controller: Assume a multivariable system with 3
devices (e.g. 3 motors), where each device has a single input and a single output. To
design a decentralized PI controller, the following structure can be chosen:

[ Xz + X3! 0 0
X(2) = 0 X222+ X2? 0
i 0 0 X3z + X33
1 0 0 z—1 0 0
Y(z)=|{0 1 0|lo| 0 2z—1 0 (2.12)
|0 0 1 0 0 z-1

Example - Distributed second-order controller: Assume a multivariable system
with 3 devices, where each device has a single input and a single output. The first and
the third device are able to communicate with each other, whereas the second device
only uses its local measurements. Then, a distributed second-order controller can be
defined as:

[ X322+ Xt + X 0 X322+ X2+ X33
X(z) = 0 X322 4+ X224+ X2 0
| X322+ X+ X! 0 X322+ X2+ X532
[ 122+ Y + Y 0 0
Y(z) = 0 IZ2 4+ Y22+ Y 0 (2.13)
0 0 122 + Y232+ Y38

2.5 Control Performance

In this section it is shown how classical Hy and H, control performance constraints
can be transformed to constraints on the spectral norm of the system, which take the
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following quadratic matrix inequality form:
F*y'F - P*P <0 (2.14)

where ' € C"*"™ and P € C™" are linear in the optimization variables, v € R is
an auxiliary variable and (-)* denotes the complex conjugate transpose. This type of
constraint is called a convex-concave constraint and can be convexified using the Taylor
expansion of P*P around P, € C"*" which is an arbitrary known matrix [50]:

P*P ~ P:P.+ (P — P.)*P.+ PX(P — P.) (2.15)

It is easy to show that under the following linear matrix inequality (LMI) the left hand
side term is always greater than or equal to the right hand side term:

0<(P-P)(P-P) - P*P>PP.+P'P-PP, (2.16)

Then, using the Schur complement the LMI from (2.14) can be written as a convex
constraint:

P*P.+ P*P — P*P, F*

>0 2.17
- v (2.17)

The following sections will derive the convex formulation of several performance specifica-
tions commonly used in robust control. However, it should be noted that the method is
not restricted only to the presented specifications. Essentially, any H,, or Hy objective
on any weighted transfer function can be realized in the presented framework, which
results in a very flexible and powerful tool that is suitable for a wide range of applications.

Furthermore, the performance objectives are generally specified through weighting filters
W (jw). These weighting filters can be defined e.g. as transfer functions, scalar values,
or even arbitrary non-smooth functions such as piece-wise continuous functions, which
greatly simplifies the problem formulation.

2.5.1 H, Performance

Constraints on the infinity-norm of any weighted sensitivity function can be considered.
For example, consider the following design objective:

mI}nH W1S Hoo (2.18)
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where S = (I +GK)~! is the sensitivity function and W7 is a performance weight. Using
the fact that the infinity norm of a system is equal to:

1H o = max oo (H(je0) (2.19)

where oy 18 the maximum singular value of a matrix, this problem can be converted to
an optimization problem on the spectral norm as:

min vy
K
subject to: (2.20)
(Wls)*(Wls) < ’)/I, Yw € Q)

where v € R is an auxiliary scalar variable. Note that the argument jw has been omitted
for Wi (jw), S(jw) and K (jw) in order to simplify the notation. The above constraint
can be rewritten as:

(Wi(I + GK) Wi (I +GK)™' <~I (2.21)
and converted to a convex-concave constraint as follows:
YWy WYy — (Y +GX)*(Y +GX) <0 (2.22)

We denote P =Y + G X, and define an initial controller K. = X.Y,~!. Then, using (2.16)
a convex approximation of the constraint can be obtained around P. =Y, + GX, as:

Y*Wiy WY — P*P. — PP+ P'P. <0 (2.23)

Now, using the Schur complement lemma, the H,, problem can be represented as the
following convex optimization problem with linear matrix inequalities (LMIs):

4
subject to: (2.24)
P*P.+ P*P — P*P, Y)*
et e cle (MY) >0, YVwe
whYy ~I

This convex constraint is a sufficient condition for the spectral constraint in (2.20) for
any choice of initial controller K. = XCYC_I.

Analogously, the following H, constraints on the weighted closed-loop sensitivity func-
tions:

IWaTlloo <1, |[W3Ulleo <1 (2.25)
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where T = GK(I + GK)™', U = K(I + GK)~! can be expressed as:

P*P.+ P:P— PiP. (WoGX)*
e 0, VuweQ 2.26
[ WG X |7 s (2.26)
P*P.+ PP — PiP, (W3X)*
e >0, Ve 2.27
[ WX I T (2.27)

Another classical example is the mixed sensitivity problem:

Whs
i 2.28
K weks H (2.28)
o0
which can be written as:
e
subject to:
) . . . \ (2.29)
P*P.+ PP — PP, (W1Y)* (W3X)
why ~I 0 >0, VweQ
Ws X 0 ~vI

2.5.2 H, Performance

The method can also accommodate Ho control performance objectives. As an example,
consider the following Hs control performance for a stable, discrete-time system:

m}%n”WlSWQHg :mén/ﬁ trace[(Wi(I +GK)'Wo)* Wi (I 4+ GK) ™' Wa]dw (2.30)
T Ts

where the weighting filter Wy is invertible for all frequencies w € €). This is equivalent
to:

mlén/ﬁ trace[I"(w)]dw
T Ts

subject to: (2.31)
(Wi + GK)™'Wa) " (Wil + GK)™'Wa) < T(w) , Yw € Q

where I'(w) > 0 is an unknown matrix function € R™*". Replacing K with XY !, we
obtain:

WY (W (v + GX) (W (Y + GX)) (W1Y)* < T(w) (2.32)
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which, using the Schur complement lemma, is equivalent to the following quadratic matrix
inequality:

(jw) =0 (2.33)

r WhY
(WY)* (Wi (Y + GX))*(Wy ' (Y + GX))

We denote Py, = Wy (Y + GX), and define an initial controller K. = XY, '. Then,
the quadratic part can be linearized around Py, = W5 (Y. + GX.) using (2.16) to
obtain a linear matrix inequality, which leads to the following convex problem:

n}én/ﬁ trace[I'(w)]dw
T Ts

subject to: (2.34)
r w1y
. . - . (jw) >0, Yw € Q
(WlY) PWQ P07W2 + PC,WQ PW2 - PC,WZ PC,WQ

Remark: The unknown function I'(w) can be approximated by a polynomial function
of finite order as:

F(w) =TIo+Tw+---+ Fhwh (2‘35)
In case the constraints are evaluated for a finite set of frequencies Qn = {w1,...,wn},
I'(w) can also be replaced with a matrix variable I'y, at each frequency wy.
2.5.3 Loop shaping

Assume that a desired loop transfer function Ly is available and that the objective is to
design a controller K such that the loop transfer function L = GK is close to Ly in the
2- or oo-norm sense. The objective function for the oco-norm case is to minimize:

min || L — Lo (2.36)
and can be expressed as follows:
miny

subject to: (2.37)
(GK — Lg)"(GK — Lg) <~I , Yw € Q

Replacing K with XY ~! in the constraint, we obtain:

(GX — LgY)*"v 1 (GX — LgY) - Y*Y <0 (2.38)
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Again Y'Y can be linearized around Y, using the linear approximation in (2.16). Thus,
the following convex formulation is obtained:

min
XYV

)

subject to: (2.39)
VYot YOV VY. (GX = LgY)*

0, Vwen
GX — LyY ~T >0, Wwe

In a similar way, minimizing:
min || L — Lal3 (2.40)
can be written as:

min/ﬁ trace[I"(w)]dw
XY _TLS

) (2.41)
subject to:
(GK — Ly)"(GK — Lg) < I'w) , Yw € O
The constraint can be written as:

(GX — LyY) (YY) HGX — LyY)* < T(w) (2.42)

and using (2.16) to linearize Y*Y around Y, the following convex optimization problem
can be solved:

min/TT trace[I'(w)]dw
XY ,TLS

subject to: (2.43)
F _ *
) (GX — LaY) >0, VweN
GX — LY Y*Y,+ Y)Y — Y)Y,

2.6 Stability Analysis

The stability of the closed-loop system is not necessarily guaranteed even if the spectral
norm of a weighted sensitivity function is bounded. In fact, an unstable system with no
pole on the stability boundary has a bounded spectral norm. In this section, we show
that the closed-loop stability can be guaranteed if some conditions in the linearization
of the constraints are met. More precisely, the initial controller K. = X.Y, ! plays an
important role in guaranteeing the stability of the closed-loop system with the resulting
controller K.
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2.6.1 A detailed look at the Nyquist Criterion

Our stability analysis is based on the generalized Nyquist stability criterion for MIMO
systems that is recalled here [51].

Theorem 1 (Nyquist stability theorem) The closed-loop system with the plant model
G and the controller K is stable if and only if GK has no unstable hidden modes', and
the Nyquist plot of det(I + GK)

1. makes Ng + Ng clockwise encirclements of the origin, where Ng and Ng are the
number of unstable poles of G and K, and

2. does not pass through the origin.

The Nyquist plot is the image of det(/ + GK) as s or z traverses the Nyquist contour
counterclockwise. We assume that the Nyquist contour has some small detours around
the poles of G and K on the stability boundary.

Definition 1 Let F(s) or F(z) be a continuous- or discrete-time transfer function. Let
wno{F'} be the winding number, in the counterclockwise sense, of the image of F around
the origin when s or z traverses the Nyquist contour in the counterclockwise direction
with some small detours around the poles of F' on the stability boundary.

Since the winding number is related to the phase of the complex function, we have the
following properties:

wno{ F1 F»} = wno{F1} + wno{F»} (2.44)
wno{F'} = —wno{F"*} (2.45)
wno{F} = —wno{F ™'} (2.46)

The Nyquist contours for the continuous- and discrete-time case are shown in Figs. 2.1a
and 2.1b. It can be seen that since the discrete-time contour must encircle the exterior of
the unit circle, it contains not only the unit circle, but also an additional circle of infinite
radius. It is also assumed the contour makes a small detour around any poles on the
stability boundary.

' A hidden unstable mode is an unstable pole of GK that does not appear in det(GK). An example
are pole-zero cancellations, or the following transfer function:

I
GK = l: 561 Sfl :|
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(a) Continuous-time Nyquist contour. (b) Discrete-time Nyquist contour.

Figure 2.1 — Nyquist contours.

If GK has no unstable hidden modes, the unstable poles and zeros of det(I + GK) are
equal to the unstable poles and zeros of G and K. Furthermore, the unstable zeros of
det(] + GK) are also the unstable poles of the closed-loop system. Then, according to
Cauchy’s argument principle, the Nyquist plot satisfies:

wno(det(I + GK)) = Nz — (Ng + Ng) (2.47)

where Ng, Ni are the number of unstable poles of G and K, and Nz is the number of
unstable zeros of det(] + GK).

Therefore, stability is guaranteed if Nz is zero (i.e. if the closed-loop system does not
contain any unstable poles):

Nz = (Ng + Nk )+ wno(det(I + GK)) =0
— —wno(det(I + GK)) = Ng + Nk (2.48)

which leads to the Nyquist criterion formulated above.

For the discrete-time case, it is also possible to simplify the Nyquist contour by encircling
the stable poles and zeros instead. Then, the contour reduces to only the unit circle in
the counterclockwise direction (see Fig. 2.2). Note that this is opposed to the contour in
Fig. 2.1b, where the unit circle is traversed clockwise. Cauchy’s argument principle now
leads to:

wno(det(I + GK)) = N52P — (N2tab 4 stab) (2.49)
where N%tab, Ngtab, NIS(tab are the number of stable zeros and poles. Now, let p be the
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Im

Figure 2.2 — Simplified discrete-time Nyquist contour.

order of the numerator and denominator of det(I + GK)). Then, closed-loop stability is
guaranteed if and only if:
Nz =p— N§*> = p— (Ng* + Nj#*P) — wno(det(I + GK)) =0
— wno(det(I + GK)) = p — (N&*P 4+ N58by = Ng 4+ Ny (2.50)

It should be noted that in this case the direction of the encirclements in the Nyquist
theorem changes to counterclockwise.

2.6.2 Stability Proof - Discrete-Time

Using the generalized Nyquist criterion, we can now show under which conditions closed-
loop stability is guaranteed in the discrete-time case. The continuous-time proof is almost
analogous to the discrete-time case, and is given in Appendix 2.A.

Theorem 2 Given a plant model G, an initial stabilizing controller K. = X Y.~ ! with
det(Y,) # 0,Vw € Q, and feasible solutions X and Y to the following LMI,

Y +GX)"(Ye+GXo)+ (Yo +GX)"(Y+GX) >0 (2.51)
P P.

for all w € Q, then the controller K = XY ! stabilizes the closed-loop system if and only
if

1. det(Y) # 0,Vw € Q.

2. The initial controller K. and the final controller K share the same poles on the
stability boundary, i.e. det(Y) = det(Y.) = 0,Vw € B,,.
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3. The order of det(Y) is equal to the order of det(Ye).

Remark: Note that the condition in (2.51) is always met when a convexified H,, or
Hj control problem has a feasible solution because P*P. 4+ PP > 0 is included in the
constraints.

Proof: The proof is based on the discrete-time Nyquist stability criterion using only
the unit circle as the contour (see Fig. 2.2), and the properties of the winding number.
Then, the winding number of the determinant of P*(z)P.(z) is given by:

wno{det(P*P.)} =wno{det(P*)} + wno{det(P.)}
= — wno{det(/ + GK) det(Y)} + wno{det(I + GK.)det(Y.)}
= — wno{det(I + GK)}
— wno{det(Y')} + wno{det(Y;)} + wno{det(/ + GK.)} (2.52)

Note that the phase variation of det(P*P.) for the small detour in the Nyquist contour is
zero, if Condition 2 of the theorem is satisfied. In fact, for each small detour, the Nyquist
plot of det(/ + GK) and det(I + GK.) will have the same phase variation because K
and K. share the same poles on the unit circle. As a result, the winding number of
det(P*P.) can be evaluated on € instead of the complete Nyquist contour. Furthermore,
the condition in (2.51) implies that P*(e/*)P.(e/*) is a non-Hermitian positive definite
matrix in the sense that :

R{z*P*(/*)P.(e’)x} >0 VYo #0€C" (2.53)

and Yw € Q. This, in turn, means that all eigenvalues of P*(e/“)P.(e/*), denoted \;(w)
for i = 1,...,n, have positive real parts at all frequencies [52]:

R{Ni(w)} >0 YVweQi=1,...,n (2.54)

Therefore, A\;(w) will not pass through the origin and not encircle it (i.e. its winding
number is zero). As a result, since the determinant of a matrix is the product of its
eigenvalues, we have:

wno{det(P*P.)} = wno {H )\z} = ano{/\i} =0
=1 =1

Since K. is a stabilizing controller, from (2.49) we have wno{det( + GK.)} = Ng + Nk, .
Furthermore, wno{det(Y)} = N5*® = § — N and wno{det(Y,)} = Nj* = 6 — N,
where 0 is the order of det(Y') and det(Y.) according to Condition 3. Now using (2.52),
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we obtain:

wno{det(I + GK)} = wno{det(I + GK.)} — wno{det(Y")} + wno{det(Y.)}
= N¢g + Nk (2.55)

which shows that Condition 1 of the Nyquist theorem is met.

We can also see from (2.54) that

det(P*P,) = ﬁ Ai(w) #0 Vw € Q (2.56)
i=1

Therefore, det(P) = det(I + GK)det(Y') # 0 and the Nyquist plot of det(I + GK) does
not pass through the origin and Condition 2 of the Nyquist theorem is also satisfied. l

Remark 1: A necessary and sufficient condition for det(Y') # 0 is Y*Y > 0. Since this
constraint is concave, it can be linearized to obtain the following sufficient LMI:

Y'Y+ VY =Y Ye >0 (2.57)

Remark 2: In practice, condition 3 of Theorem 2 is not restrictive. Any initial controller
of lower order than the final controller can be augmented e.g. by adding an appropriate
number of zeros and poles at the origin in X, and Y, thus satisfying the condition
without affecting the initial controller.

2.6.3 Multimodel uncertainty

The case of robust control design with multimodel uncertainty is very easy to incorporate
in the given framework. Systems that have different frequency responses in ¢ different
operating points can be represented by a multimodel uncertainty set:

G(jw) = {G1(w), Ga(w), ..., Gg(jw)} (2.58)

Note that the models may have different orders and may contain pure input/output time
delays.

This can be implemented by formulating a different set of constraints for each of the
models. Let P, =Y + G;X and P, = X.; + G;Y.;, where K, is a stabilizing controller
for model G;. Again taking the mixed sensitivity problem from (2.29) as an example,
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the formulation of this problem including the stability constraint would be:

i
subject to:
PP, + PP, — PIP., (WiY)* (WX)*
Wiy ~I 0 >0
We X 0 ot
Y'Y, + Y'Y -Y'Y.>0 (2.59)

fori=1,...,q ; YweQ

2.6.4 Frequency-domain uncertainty

The frequency function may be affected by the measurement noise. In this case, the
model uncertainty can be represented as :

G(w) = G(jw) + W1 (jw) AW (jw) (2.60)

where A is the unit ball of matrices of appropriate dimension and W (jw) and Ws(jw)
are known complex matrices that specify the magnitude of and directional information
about the measurement noise. A convex optimization approach is proposed in [53] to
compute the optimal uncertainty filters from the frequency-domain data. The system
identification toolbox of Matlab provides the variance of G;(jw) (the frequency function
between the i-th output and the j-th input) from the estimates of the noise variance that
can be used for computing Wi and Wa.

The robust stability condition for this type of uncertainty is [54]: [|[WoKSW1|le < 1. If
W1 (jw) is in parametric transfer function form, it must be invertible for all w € Q. If
it is computed as frequency-domain data from measurements, it should be invertible at
each calculated frequency point. Then a set of robustly stabilizing controllers can be
given by the following spectral constraints:

P*P.+ P*P — P*P, (W)X)*
Wy X I
Y'Y, +YY-YY.>0 ; YweQ

>0 (2.61)

where P = W, H(Y + GX) and P. = W (Y. + GX.).

2.7 Implementation

Using the methods described above, we are now able to pose various control design
problems as convex optimization problems with linear matrix inequality (LMI) constraints.
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In this section, various practical aspects concerning the implementation of the algorithm
will be discussed.

2.7.1 Frequency Gridding

The optimization problems formulated in this paper contain an infinite number of
constraints (i.e. Yw € Q) and are called semi-infinite problems. A common approach to
handle this type of constraints is to choose a reasonably large set of frequency samples
Qn = {w1,...,wn} and replace the constraints with a finite set of constraints at each
of the given frequencies. For discrete-time plants and/or controllers, the maximum
frequency should be chosen as wy = 7/Ts. As the complexity of the problem scales
linearly with the number of constraints, N can be chosen relatively large without severely
impacting the solver time. The frequency range is usually gridded logarithmically-spaced.
Since all constraints are applied to Hermitian matrices, any constraint at a frequency
w; is automatically imposed at —w; as well, meaning the grid does not need to cover
negative frequencies.

In some applications with low-damped resonance frequencies, the density of the frequency
points can be increased around the resonant frequencies to prevent constraint violations.
An alternative is to use a randomized approach for the choice of the frequencies at
which the constraints are evaluated [55]. In this case, the probability of the violation of
the constraints can be computed, and decreased by increasing the number of frequency
points.

Two examples of the formulation of the gridded optimization problem are given below.

Mixed Sensitivity: The sampled mixed sensitivity problem from (2.29) with the
additional stability constraint would be:

o
subject to:
P*P.+ PP —P:P. (WY)* (WyX)* (2.62)
WY vI 0 (jWk) >0
WoX 0 o

| VYot VY =YY | (k) > 0, wp € O

H; Performance: The Hs performance objective from (2.34) can be formulated by
approximating I'(w) by a matrix variable I'y € {I'1,..., 'y} at each frequency wy € Qp.
Then, the integral in the objective function can be replaced by the sum of the matrix
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variables as follows:

N
i t r
1)1211}1;1];::1 race(I'y)

subject to:

Ty (W1Y)*
Wiy Py, Pew, + Ply, Pw, — Py, Pews,

[Y*Ye 4+ VY — YV (jwr) > 0, Yy € Qy

(jwr) >0

2.7.2 Controller Order

The choice of the order of the controller is sometimes not obvious. Often, a good initial
guess of the order can be made from observing the dynamics of the plant (e.g. the
number of resonance modes and couplings). Otherwise, a relatively low order of 4 to
6 is a good starting guess for most systems. After a controller has been designed, the
order can be adjusted by evaluating the performance of the controller. If the desired
specifications have been achieved, the order can often be lowered while retaining the
result. On the other hand, if the final controller lies far from the desired specifications,
sometimes increasing the order can improve the performance.

It has also been observed that for plants with complex dynamics, sometimes significantly
better performance is achieved by using high controller orders (40 or higher). The order
of the final controller can then often be reduced significantly through classical reduction
techniques for easier implementation.

2.7.3 Initial controller

The stability conditions presented in Theorems 2 and 3 require a stabilizing initial
controller K. with a condition on the order of det(Y.), and the same poles on the stability
boundary as the desired final controller. For a stable plant, a stabilizing initial controller
that satisfies condition on the order of det(Y,) can always be found by choosing:

K.=XY ', X.=ePl, Y.=2"I (2.63)

with € being a sufficiently small number. If the final controller contains fixed terms F,
with poles on the stability boundary, they must also be included in the initial controller.
For example, to design a controller with integral action in all outputs, Y. = 2P(z — 1)1
can be considered.

When choosing an initial controller whose performance is far from the desired specifi-
cations, it may occur that either the optimization problem has no feasible solution, or
that the solver runs into numerical problems which lead to an infeasible solution. These
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problems can often be resolved by two approaches:

Re-initialization: A possibility to find an initial with a systematic approach for sta-
ble plants is by solving the following optimization problem using a nonlinear

optimization solver with random initialization:

max a
XY

)

subject to: (2.64)
R{det(I+GXY ™)} >a  VweQy

Any solution to the above optimization problem will be a stabilizing controller
if the optimal value of a is greater than -1. The problem can be solved multiple
times with different random initialization to generate a set of initial stabilizing
controllers, which can be used to initialize the algorithm. It should be noted that
this formulation can be overly conservative and may not always be feasible (e.g. if
the plant has a double integrator).

Relaxation: We can relax or even remove some of the constraints. The relaxed opti-
mization problem is then solved and the optimal controller is used to initialize the
non-relaxed problem. As this new controller is comparatively close to the final
solution, the issue is often solved with this approach.

It should be mentioned that the design of fixed-structure controllers in a model-based
setting also requires an initialization with a stabilizing controller, which is usually
integrated in the workflow. The methods based on non-smooth optimization like hinfstruct
in Matlab [19] or the public-domain toolbox HIFOO [22] use a set of randomly chosen
stabilizing controllers for initialization and take the best result. This set is constructed
by solving a non-convex optimization problem that minimizes the maximum eigenvalue of
a closed-loop transfer function. Other model-based approaches use an initial stabilizing
controller to convert the bilinear matrix inequalities to LMIs and solve it with convex
optimization algorithms. Therefore, from this point of view, this approach is subject
to the same restrictions as the state-of-the-art approaches for fixed-structure controller
design in a model-based setting.

2.7.4 Numerical Issues

All LMI constraints formulated so far are strict positive definiteness constraints. This
is important especially for the stability constraints, where strict positive definiteness is
crucial. However, numerical optimization generally does not support strict inequalities,
meaning the stability constraints may be violated due to numerical precision. This issue

28



2.7. Implementation

can be mitigated by defining a non-strict constraint with a sufficient margin:

P*P.+ PP — P*P, (W.Y)*

> el 2.65
WY I =€ (2.65)

where ¢ € R is a small number. Practical experience has shown that often values
around 10710 can serve to improve numerical robustness without affecting the achieved
performance.

To improve the numerical robustness of the optimization it is also crucial that the
constraints are scaled properly. Especially for MIMO systems, all in- and outputs of
the plant should be normalized properly in order to obtain good results. If necessary,
individual LMI constraints can be be scaled to increase the precision. Assume the
following general convex-concave inequality:

1
—(F*y'F - P*P) <0 (2.66)
1

where 1 € R is a scaling factor. This can be transformed to either of the following
convexified constraints:

LP*P.+P:P-P/P) LF*

L ﬁ[ >0 (2.67)
NG i
Lep*p.+ PP — P*P.) F*
"( e e Fe) >0 (2.68)
F nyl

2.7.5 Iterative algorithm

Once a stabilizing initial controller is found, it is used to formulate the optimization
problem. Any LMI solver can be used to solve the optimization problem and calculate a
suboptimal controller K around the initial controller K.. As we are only solving an inner
convex approximation of the original optimization problem, K depends heavily on the
initial controller K. and the performance criterion can be quite far from the optimal value.
The solution is to use an iterative approach that solves the optimization problem multiple
times, using the final controller K of the previous step as the new initial controller
K. This choice always guarantees closed-loop stability (assuming the initial choice of
K. is stabilizing). Since the objective function is non-negative and non-increasing, the
iteration converges to a local optimal solution of the original non-convex problem [56].
The iterative process can be stopped once the change in the performance criterion is
sufficiently small.
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Figure 2.3 — The main steps of the control design method.
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2.8 Simulation Examples

In this section, several simulation examples demonstrate the applicability of the method to
general problems, and the obtained performance is compared with several state-of-the-art
methods.

2.8.1 Compleib Examples

As an example, the mixed sensitivity problem for low-order continuous-time controllers
is considered. 10 plants are drawn from the Compleib library [57]. For comparison, the
achieved performance is compared with the results obtained using hinfstruct and HIFOO.

The objective is to solve the mixed sensitivity problem by minimizing the infinity-norm
of (2.20), where Wy = I and Wy = (ags + 10)/(axs + 1) with ax being chosen based
on the bandwidth of the plant. Then, the optimization problem in (2.62) is formed
with NV = 100 logarithmically spaced frequency points in the interval [0.01,500] rad/s,
where 500 is much larger than the bandwidth of all plants. A second-order controller
K(s) = X(s)Y(s)~! is chosen as follows:

X(s)=Xos’+ X184+ Xy , Y(s)=Is>+Yis+ Yy

where Y; is a diagonal matrix in order to obtain a low-order controller. To have a fair
comparison, the same method as in HIFOO is used to find a stabilizing initial controller.
The method uses a non-convex approach to minimize the maximum of the spectral
abscissa of the closed-loop plant, and yields a stabilizing static output feedback controller
Kgor. In order to satisfy Condition 3 of Theorem 2, the order of Y, is increased without
changing the initial controller :

X.(s) = (s +1)?Ksor , Ye(s) = (s +1)*I (2.69)

The names of the chosen plants in Compleib, the design parameters and the obtained
norms are shown in Table 2.1. For comparison, the mixed sensitivity problems are also
solved for a second-order state-space controller using HIFOO and hinfstruct with 10
random starts. It can be seen that the data-driven method generally achieves about
the same or a lower norm. The superior results can be attributed to the fact that the
controller structure is of matrix polynomial form, which has more parameters than a
state-space controller of the same order due to the denominator not being equal for all
entries.

The solver time of one iteration step depends almost linearly on the number of points
used for the frequency gridding. It is also interesting to note that the controller order
has a minimal impact on the solver time, making the algorithm well-suited for the design
of higher-order controllers. The number of iterations until convergence mostly depends
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Table 2.1 — Comparison of optimal mixed sensitivity norms for 10 plants from Compleib

Plant Name | ay | data-driven | hinfstruct | HIFOO
AC1 10 1.90 2.30 2.38
HE1 1 1.37 1.36 1.36
HE2 10 3.08 3.36 3.55

REA2 1 3.00 2.96 2.96
DIS1 1 7.27 7.31 7.34
TG1 0.1 9.54 8.89 9.75
AGS 1 2.14 2.16 2.16
BDT2 1 9.93 9.93 9.94
MFP 1 6.08 7.23 717

IH 1 4.83 10.01 28.73

on the choice of the initial controller and a solution is generally reached in less than 25

iterations.

2.8.2 Hard-disk Drive

This example is drawn from Matlab’s Robust Control Toolbox and treats the control
design for a 9th-order model of a head-disk assembly in a hard-disk drive. In the Matlab
example, hinfstruct is used to design a robust controller such that a desired open-loop
response is achieved while satisfying a certain performance measure. We will show that
an equivalent controller of the same order can be designed using the method presented
in this paper.

The bode magnitude plot of the plant is shown in Fig. 2.4. The desired open-loop transfer
function is given by:

s+ 109

= 2.70
1000s + 1000 ( )

La(s)
Additionally, a constraint on the closed-loop transfer function is introduced to increase
the robustness and performance: ||[W1T||, <1 and W; = 1. To stay in line with the
data-driven aspect, we choose to design a discrete-time controller with the same order as

the continuous-time controller given in the Matlab example:

K(2) X922 + X1z + Xo
Z) =
(z —1)(z + Yp)

(2.71)

Since the plant is stable, an initial controller is easily found by setting X, X2, Yy to zero
and choosing a small enough value for X;. This results in the following initial controller:

B 10762

K.(2) 5

(2.72)

e =z
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Figure 2.4 — Bode magnitude plot of the plant used in the hard-disk drive example.

Note how the pole on the unit circle introduced by the integrator is also included in the
initial controller.

While with hinfstruct the loop-shaping can only be formulated in the H, sense, the
Hs-norm would arguably be better suited for this type of objective. We therefore choose
to formulate the loop-shaping problem in the Hs sense by minimizing ||L — Lgl|2, which
will lead to a better performance as shown below.

The semi-infinite formulation is sampled using 1000 logarithmically spaced frequency
points in the interval Qy = [10,5 x 10%7] (the upper limit being equal to the Nyquist
frequency). The semi-definite problem is as follows:

N
min Z trace[I'y]
k=1
subject to:
VY. + VY - YY, (GX —LgY) |,
C (& > 0
l GX — LyY I, (jeow)
P*P.+ P*P - P'P. (W1GX)* )
c c > 0 2.73
k=1,...,N

The algorithm converges within 10 iterations to a final, stabilizing controller that satisfies
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Figure 2.5 — Comparison of the open-loop transfer functions. In blue is the desired open-loop function L4,
in red the obtained open-loop function L with the proposed method, and in dashed yellow the obtained
L with the hinfstruct controller.

the closed-loop constraint and has the following parameters:

12.2872% — 3.152 + 0.8631

(z—1)(z — 0.8598) (2.74)

K(z) =10~

Fig. 2.5 shows a comparison of the desired open-loop transfer function and the results
produced by our method as well as the controller calculated in the Matlab example
using hinfstruct. It can be seen that the result is very similar to the result generated
by hinfstruct, with our result being closer to the desired transfer function at lower
frequencies. This is especially noticeable when comparing the obtained 2-norm of the
objective function, with our solution achieving a value that is around 30 times smaller.
The controller obtained by our method is also already formulated in discrete-time, and
no additional controller discretization step is necessary.

2.8.3 Multivariable System

This example demonstrates that the method is able to obtain near-optimal performance
for low-order controllers, and shows that the convex approximation of the problem is not
restrictive in practice. The mixed sensitivity problem of a 3x3 MIMO continuous-time
plant model is considered. The globally optimal solution to this problem with a full-order
controller can be obtained via Matlab using mizsyn. The plant is taken from the first
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example in [43] and has the following transfer function:

1 0.2 0.3
50+11 34{3 s+10.5
G(S) = S-‘;—Q s+1 s+1 (275)
0.1 0.5 1
s+0.5  s+2 s+1

The objective is to solve the mixed sensitivity problem by minimizing the following norm:

WS
i 2.
W] wakcs H (270
o0
where the weighting transfer functions are also taken from [43]:
5+ 3 10s + 2
P35 4+037 7 7T s+40 2.77)

In this example we design a continuous-time controller to show that the developed
frequency-domain LMIs in this paper can be used in the same way to design continuous-
time controllers. The controller transfer function matrix is defined as K (s) = X (s)Y ~!(s):

X(s) =Xps" + ...+ Xis+ Xp (2.78)
Y(s)=Is"+...+Yis+ Yy (2.79)

where p is the controller order and X;,Y; € R3*3 are full matrices. The optimization
problem is sampled using N = 1000 logarithmically spaced frequency points in the
interval Qn = [10_2, 102}, resulting in the following optimization problem :

i
subject to:
P*P.+ PP — PP, (W1Y)* (WyX)*
wy yI 0 (jwr) >0
WoX 0 ~vI
VYo + VY = Y2V () > 0 (2.80)
k=1,...,N

Since the plant is stable, an initial controller can be found by setting the poles of the
controller to —1 and choosing a low enough gain: Y. = (s + 1)P1 , X, = 1.

The problem is formulated for controller orders p from 1 to 5, implemented in Matlab
using Yalmip [58], and solved with Mosek [59]. The algorithm converges quickly within
3 to 6 iterations. The value of the obtained norm is shown in Fig. 2.6. The number of
design parameters is equal to (2p + 1) x 9. The figure also shows the globally optimal
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—
w

1.25

1.2

Controller Order p

Figure 2.6 — Plot of the achieved mixed sensitivity norm for different controller orders p. The dashed red

line shows the globally optimal value obtained by mizsyn.

norm for a full-order state-space controller with 289 design parameters obtained through

mizsyn. It can be seen that already for p = 3 a good value is achieved with the following

controller parameters:

[ 0.0794 0.0041 —0.0032 4.5304 —0.6974
X(s) = 0.0091 0.1076 —0.0421 | s>+ | —0.5345 3.2929
| 0.0131  0.031  0.0986 —0.3737 —0.1412
9.0896 —3.4091 —2.6272 2.0218 —1.0874
+| 22293  4.0883 —3.1235 | s+ | 2.4056  1.7292
| —3.0827 —0.3391  3.4927 —1.0974 —0.1376
1.0 0 5.1556  —1.1562 —0.5595
Y(s)=|0 1 0|s3+| —0.5993 1.9965 —0.6899 | s>
0 0 1 —0.9489 —0.6155 2.2864
2.444  —1.2479 —0.7046 0.1514 —0.1487
+1 0.729 1427 0.0589 | s+ | 0.2084  0.1941
| —0.9949 —0.5552 1.1323 —0.0116 —0.0029

—0.8464
—2.3889 | 52
3.421

—1.6883
—0.6611
1.8895

—0.1067
0.1491
0.1791

(2.81)

For p = 5, with only 99 design parameters the global optimum is achieved. This example

shows that the proposed method is able to reach the global optimum value of the mixed
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sensitivity norm for a general MIMO transfer function while having a significantly lower

number of design parameters than classical state-space methods.

2.9 Conclusion

In this chapter, a frequency-domain control design method for fixed-structure controllers
was presented that exhibits several key advantages as compared to traditional fixed-
structure approaches. By only requiring the frequency response of the plant for the
design, the complexity of the algorithm is independent of the order of the model, and
is well suited for data-driven design. Not being limited to the LFT form, the method
enables a broad range of H,, and Hs performance constraints on any open- and closed-
loop sensitivity. The full parametrization of the designed controllers greatly simplifies
the choice of an appropriate controller structure, and being able to directly design in
discrete-time allows to skip the intricate controller discretization step.

The rest of this thesis presents various applications of the control design methods on
interesting and relevant examples. In Chapters 4 and 5 the method is applied to tackle
complex challenges in the field of power systems. Further, in Appendices A and B the
data-driven aspect is put into focus as the control design method is applied to two
electromechanical setups that greatly benefit from data-driven design.

2.A Stability Proof - Continuous-Time

The continuous-time proof is almost analogous to the discrete-time case, with a subtle
difference in Eq. 2.52 due to the different contours, which results in a slight change in
the 3rd condition between Theorems 2 and 3.

Theorem 3 Given a strictly proper plant model G, an initial stabilizing controller
K. = XY, ! with det(Ye) # 0,Vw € Q, and feasible solutions X and Y to the following
LMI,

Y +GEX)"(Ye+GXo)+ (Yo +GX)" (Y +GX) >0 (2.82)
P P,

for all w € Q, then the controller K = XY ! stabilizes the closed-loop system if

1. det(Y) # 0,Vw € Q.

2. The initial controller K. and the final controller K share the same poles on the
stability boundary, i.e. det(Y) = det(Y.) = 0,Vw € B,,.

3. limg o0 det(YY,71) = constant, i.e. the order of det(Y) is less than or equal to the
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order of det(Ye).

Remark: Note that the condition in (2.82) is always met when a convexified Hn, or
Hs control problem has a feasible solution because P*P. + PP > 0 is included in the
constraints.

Proof: The proof is based on the Nyquist stability criterion and the properties of the
winding number. The winding number of the determinant of P*(z)P.(z) is given by:

wno{det(P*P.)} = wno{det(P*)} + wno{det(P.)}
= — wno{det( + GK) det(Y)} + wno{det(I + GK.) det(Y;)}

= — wno{det(] + GK)} — wno{det(YY, 1)} + wno{det(I + GK.)}
(2.83)

Note that the phase variation of det(P*P.) for the small detour in the Nyquist contour is
zero, if Condition 2 of the theorem is satisfied. In fact, for each small detour, the Nyquist
plot of det(I + GK) and det(I + GK.) will have the same phase variation because K and
K, share the same poles on the imaginary axis. Because of the strictly properness of G
and Condition 3 of the theorem, the winding number of det(P*P,) needs to be evaluated
only on 2 instead of the complete Nyquist contour (and is constant on the infinite radius
semi-circle).

Furthermore, the condition in (2.82) implies that P*(e/*)P.(e’“) is a non-Hermitian
positive definite matrix in the sense that :

R{z*P*(e/*)P.(e’)z} > 0 Ve #0eC" (2.84)
and Yw € Q. This, in turn, means that all eigenvalues of P*(e/*)P.(e/*), denoted \;(w)
for i = 1,...,n, have positive real parts at all frequencies [52]:

R{i(w)} >0 VYweQi=1,....,n (2.85)

Therefore, A\;(w) will not pass through the origin and not encircle it (i.e. its winding
number is zero). As a result, since the determinant of a matrix is the product of its
eigenvalues, we have:

wno{det(P*P,)} = wno {H )\Z} = ano{)\i} =0
i=1 i=1

Since K. is a stabilizing controller, based on the Nyquist theorem wno{det(/ + GK.)} =
N¢ + Ng,. Furthermore, obviously wno{det(Y)} = Ng and wno{det(Y,)} = Ng,.. Now
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using (2.83), we obtain:

wno{det(I + GK)} = wno{det(/ + GK.)} — wno{det(Y)} + wno{det(Y.)}
— Ng + Nk (2.86)

which shows that Condition 1 of the Nyquist theorem is met.

We can also see from (2.85) that
det(P*P.) = [[Ai(w) #0  VweQ (2.87)

Therefore, det(P) = det(I + GK) det(Y') # 0 and the Nyquist plot of det(I + GK) does
not pass through the origin and Condition 2 of the Nyquist theorem is also satisfied. B

Remark 1: A necessary and sufficient condition for det(Y') # 0 is Y*Y > 0. Since this
constraint is concave, it can be linearized to obtain the following sufficient LMI:

Y'Y + Y'Y =Y Ye >0 (2.88)

This constraint can be added to the optimization problem in (2.29) in order to guarantee
the closed-loop stability for the mixed sensitivity problem. For the loop-shaping problems
in (2.39) and in (2.43), this condition is already included in the formulation.
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Frequency—Domain Modeling of

Power Grids

3.1 Introduction

In this chapter, a comprehensive frequency-domain approach towards the modeling of
voltage and current dynamics as well as power flow dynamics is presented. The models
also offer a straightforward way to combine white-, grey- and black-box models in a single
framework, which enables a (partially) data-driven approach that is very appealing in
power systems, where the grid parameters are often unknown.

3.1.1 State of the Art

The classical approach towards the modeling of electromagnetic and electromechanic
transients in a power grid is through so-called small-signal models [60]. A small-signal
model is typically a linear state-space model that describes the dynamics of the lines and
generation units under small disturbances. While historically only applied to high-voltage
transmission grids, the significant increase in distributed generation on the medium- and
low-voltage level makes it necessary to develop suitable models for these types of grids
as well. Furthermore, distributed generation units such as photovoltaics are interfaced to
the grid through voltage source inverters, which introduce their own distinct dynamics
that did not have to be considered before.

Various state-space modeling approaches for low-voltage grids with multiple VSI-interfaced
generation units have been proposed in the literature [61-64]. However, the resulting
state-space models are of very high order even for moderately-sized grids, which makes
control design challenging. Model order reduction techniques have been applied to
obtain simpler formulations [65-67], but choosing appropriate reduction techniques while
guaranteeing that the reduced model represents the important dynamics is not obvious.

Several issues related to state-space models can be avoided by using frequency-domain
models instead. In [68] a frequency-domain modeling approach for current and voltage
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dynamics of a single VSIs with time delays is proposed. Similar approaches are used for
stability analysis in a grid with multiple VSIs in [69, 70]. The frequency-domain approach
has also been applied towards the modeling of power flow transient dynamics [71] using
the concept of dynamic phasors. The model is only slightly more complex than a static
power flow model, but offers the same accuracy as a small-signal model while also
incorporating the generator dynamics. However, while having been used to model line
dynamics and for stability analysis [72-74], this type of model has never been presented
in a complete form that allows for any number of inverters, synchronous generators and
loads.

3.2 Phasor Notation

Consider a balanced, three-phase quantity e(t):

cos(wt + 0(t))
e(t) = V2e(t) | cos(wt + 0(t) — 27/3) (3.1)
cos(wt + 0(t) + 2m/3)

with e(t) being the signal amplitude, 6(¢) being the phase angle in rad, and @ being the
nominal grid frequency in rad/s.

The dynamic or time-varying phasor representation of e(t) in the rotating dq-frame
is [71]:

e(t) = eqlt) + jeg(t) = e(t) cos(8(t)) + je(t) sin(8(t))

= [17 0]B(t)e(t) = P(e(t)) (3.2)

where B(t) is the power-invariant Park transformation matrix:

cos(wt)  cos(wt— ) cos(wt+ 2

B(t) = \/z —sin(wt) —sin(wt — &) —sin(ot + ZF (3.3)
1 1 1
V2 V2 V2

P(Sre(t) = jae(t) + el) (3.4)
d? L . d d?
P(Ge(t) = ~@Pe(t) + 245 re(t) + et 35

The models derived in the following sections rely on this phasor notation.
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Line

|

|
H—

|

|

J

Figure 3.1 — One-line diagram of a distribution grid with multiple VSIs and constant current loads.

3.3 Frequency-Domain Model of Voltage and Current Dy-
namics

In this section, a transfer function model is constructed that accurately describes the
voltage and current dynamics in a grid with any number of inverters with LCL output
filters, including the electromagnetic dynamics of the lines, output filters and coupling
effects. The model is formulated directly in the dg-frame, which is also where the
control laws are typically formulated. The presented frequency-domain formulation offers
the same modeling accuracy as a state-space small-signal model, but does not contain
internal state variables, which greatly reduces the model complexity. For this model, all
three-phase signals are assumed to be balanced.

3.3.1 Line Current Dynamics

Figure 3.1 shows the single-line diagram of a typical three-phase distribution grid with
multiple power electronic devices. For low- and medium-voltage grids, lines can be
modeled as simple R-L elements, and the shunt capacitance can be neglected. Furthermore,
the line resistance and inductance matrices are assumed to be positive definite and
circulant [75], which means symmetrical components can be used to study the system.

Then, we can write the current flowing from bus ¢ to bus j in the following representation:

(Rij + JLig)isg (1) + Lis iy () = ,(8) — 151 (3.5
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where w,(t),i;;(t) are the complex bus voltage and line current, w is the nominal grid
frequency and R;;, L;; are scalars describing the positive sequence line resistance and
inductance. This can be written in the following Laplace transfer function form:

SLij + Rz‘j — j(I)LZ‘j

Lij(s) = (sLij + Rij)? + (wLi;)? (Wi(s) = Us(s)) (3.7)

The arguments (t) and (s) are generally omitted for the rest of this section. Now, we can
formulate the matrix transfer function of the line current in the dg-frame:

Iz’j,d _ i SLZ‘]‘ + Rij (I)L,‘j U@d — Uj}d
D —(DLij SLij + Rij Ui7q — Uj,q

D= (SLZ']‘ + Rij)z + ((I)Lij)Q (3.8)

Lijq

Now assume each bus in the grid is either connected to a VSI with LCL output filter, or
to a constant current load. Furthermore, assume the grid-side impedances Z, of the LCL
filters are lumped with the lines, and define the voltage at a VSI bus to be the capacitor
voltage U.. We then define the following vectors:

T
Tz _[r1 g1
Idq = [Ig,d’lgﬂ’ T ;d’lgd} (3.9)
T
7
Uc,dq = [Ucl,dv Ucl,qa R gd, gd} (310)

where n is the number of VSIs in the grid, I, is a vector with all VSI grid currents

9,dgq
(named /I, in Fig. 3.1) and U, gdq is a vector with all capacitor voltages of the LCL output

filters (named U, in Fig. 3.1).

Using Kirchhoff’s Current Law and the transfer function from Equation 3.8, we can then
formulate the current-balance equations for every bus:

Yi(s) Ya(s) Ugdq B Igidq
[Ys(é‘) Yi(s) ] [ Uy ] - [ 15 ] (3.11)

Y (s)

where Uqu/ is a vector with the voltages at the load buses, and I dﬁq is a vector with the
load currents. Y7 . 4 are transfer function matrices according to Eq. 3.8. It is interesting
to note that the frequency response evaluated at w of the matrix transfer function Y (jw)
is equal to the nodal admittance matrix of the grid. However, to study stability it is
necessary to consider the dynamic transfer function formulation Y'(s).

The load bus voltages can then be eliminated to achieve the following formulation of the
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VSI grid currents, with the load currents entering as a disturbance:

[ 12, | = (vi-vayty) [ U2, |+ vyt | 15 ] (3.12)
Yr Ya

This transfer function models the complete dynamics of the output currents of all VSIs
in the grid depending on the capacitor voltages, with the load currents entering as a
disturbance. In [76], it is shown that Yj is always invertible as long as all buses are

connected and all lines have non-zero resistance.

3.3.2 LCL Filter Dynamics

To create a complete model, the dynamics of the LCL output filters need to be taken into
account. Based on Fig. 3.1, we can formulate the following equations for each individual
LCL filter:

. d .
1y = Cfauc + 1g (313)
d
ug — ue = Ry + Ltait (314)

where Z; = R; + jwL;. ug, ue are the terminal voltage and capacitor voltage, and i, ic
are the inverter-side and grid-side current of the VSI. By inserting Eq. 3.13 in Eq. 3.14
we get:
d . d? d.
U — Ue = Rt(Cfauc +1ig) + Lt(CfWuc + alg) (3.15)

Translating this equation to the dg-frame and writing it in the Laplace transfer function
form yields:

(LiCy(—a? + 2jws + 5%) + RiCy(jw + 5) +1) U,
= Uy — (R + joLi + $)I, (3.16)

from which we arrive at the following transfer function matrix:

-1
Y51 Y52 Ut,dg
U, = ’ ’ Y. ’ 3.17
| Uey | lm Ym] G[Ig,dq (3.17)

Y51 = s°LiCy + sRiCy + (1 — L,Cio?)
Y572 = S2Lth(I) + Rth(I)

[1 0 —(sL;+ Ry) Lo ]

Y =
6 0 1 —Lt(z) —(SLt + Rt)
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Furthermore, from Eq. 3.8 we can straightforwardly write:

— Ut,dg
[ Iag | = [ v7 -77 ] [ o ] (3.18)
Yo — 1 SLt + Rt OTJLt
T (sLy + Rt)2 + ((;)Lt)2 —wly sLy + Ry

The transfer functions Y7 to Y7 describe the output filter dynamics for a single inverter.
From this, the output filter dynamics for all VSIs in the grid can be written in the
following compact matrix form:

[ UL, ] — UV [ UL, } 4 Gla—Ue [ 24 } (3.19)
[ 7, ] — QU= [ UL, ] 1 QU [ UZ,, } (3.20)

where GUt=Ve Gla=Ue are matrix transfer functions constructed using Eq. 3.17, and
GUi=l GUe=Tt are matrix transfer functions based on Eq. 3.18.

3.3.3 Complete Transfer Function Model

With all the building blocks in place, a transfer function model of the complete system
can now be constructed. A block diagram of the model with the individual subsystems
is shown in Fig. 3.2, where K in this example would be a current controller that is to be
designed. From this block diagram, it is straightforward to compute the matrix transfer
function from the modulation voltages and load currents to the inverter currents:

| 4y | = Geompiete | Uy | +Ga| 15, | (3.21)

Geomplote = G710 4 QU (I — Glo = Vey) "GP e
Gq= GV ltGlm e (1— Gl eyy)~ly,

This frequency-domain model describes well the electromagnetic dynamics of the complete
grid, including the dynamics of the LCL output filters and coupling effects. It is also
straightforward to extend in order to include different types of output filters, to consider
the inverter dynamics in more details, or to reshape in order to design a voltage controller.
Another possible extension would be the inclusion of more complex load models.
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o Plant [Iffq:l ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

[Ugdq} i GUt—)Uc ——i_g

‘_‘ GUC—>It i [

Figure 3.2 — Block diagram of the complete closed-loop model.

3.4 Frequency-Domain Power Flow Model (Dynamic Pha-
sor Model)

In this section a linear power flow model based on dynamic phasors is presented. The
dynamic phasor model is a frequency-domain model that is able to accurately represent
the electromagnetic and electromechanic transient dynamics of the lines as well as various
generation units, loads and other grid components. It has only a slightly increased
complexity as compared to a static model, but provides the same accuracy as a small-
signal model. The main advantage of this modeling approach is that the active and
reactive power flow dynamics in the grid can be fully described by the voltage phase
angle (or frequency) and the voltage magnitude at the generator buses. As the dynamic
phasor model is a frequency-domain model, there are no internal state variables, which
allows the use of detailed and high-order generator and load models without increasing
its complexity.

3.4.1 Dynamic Power Flow Equations

As derived in (3.7), the current flowing from bus ¢ to bus j can be written as:

SL,‘]‘ Rij - '(I}Lij
Ly(s) = (L ++Rij)2 +J@Lij)2 (Us(s) = U;(s)) (3.22)

The power flowing out of bus ¢ into the line ij is defined as:

SLij + Rij + jLI)Lij

Sij = Pij +jQij = 3L;U; = -
J J +'7Q] (SLZ‘]’ +Rij)2 + (wLij)

ij

5 (U — Uj)U; (3.23)
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where Pj,

denotes the complex conjugate. The dynamic phasor of the voltage can be written as:

Qi; are the active and reactive power flowing from bus i to bus j, and (-)*

U,(s) = Ui(s)e?®(® (3.24)
where Uj; is the voltage magnitude and 6; is the phase angle at bus i. Then, the dynamic

power flow becomes:

sLij + Rij + jwLij
(sLij + Rij)? + (@Lij)?

P +jQij =3 (U2 — UU;/0=03)) (3.25)

which can be expanded to:

3
(sLij + Rij)? + (@Lij)?
[(SLZ'j + Rij)UZ-Q — (SLZ‘]' + Rij)Ul‘Uj COS(ei — QJ) -+ (I)LijUZ'Uj sin(@i — HJ)

(3.26)

Pij +jQij =

+j (@LUUE — (SLZ']' + Rij)Uin sin(@i — Gj) — @Li]‘UZ’Uj COS(@Z' — 9]))}

Now, these equations can be linearized around ¢; = 6; = 0 and U; = U; = U where U is
the nominal phase-to-ground RMS voltage. This leads to the linear dynamic power flow
equations:
wL;j —51
(LijS + Rz‘j)Q + (@Li]‘)z S
G;?_’P(s)
(Lijs fzz; fm(wLij)Q U (Ui(s) — U; (s)) (3.27)
GU=P(s)
LijS + Rij
(Lijs + Rij)* + (wLij)?

w—Q
Gi]' (5)

Fij(s) = 3

+3

21

02 (wi(s) — wj(9))

Qij(s) = =3

(Lijs + Ri‘gar (WLij)? U (Uils) = Uj(s)) (3.28)

G s)

+3

where the phase angle at a bus has been substituted with the frequency: 6; = %wi. With
the traditional assumption of lines being mostly inductive, and therefore R/X being
small, it is interesting to note that the steady-state formulation of the dynamic power
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| | 2 |3

Figure 3.3 — Small example grid with one load, one VSI and one SG.

flow reduces to the well-known static power flow equations:

Xij o1
Pj=3—— 2 U?~(w; — wj 3.29
! R? + (@Lz‘j)Q s (wi = wy) ( )

U(U; — Uj) (3.30)

Of course, this simplification usually does not hold in low- and medium-voltage grids,
where the R/X-ratio of the lines is generally close to or larger than 1.

3.4.2 Line Power Flows Model

Now, the transfer function from the generator bus frequencies and voltages to the active
and reactive line power flows can be developed. We assume that every bus in the grid is
connected to either a VSI, an SG or a load. Without loss of generality, any zero-injection
buses are assumed to be connected to virtual loads that do not draw any power, and are
lumped with the load buses. Then, dividing the buses into VSI buses, SG buses and load
buses, we can write:

Pr wz
% Gi Gy G i
=[G G5 G || (3.31)
Qs G Gs Go S
Pr wr
| Qc | | U |

Let p be the number of VSI buses, ¢ the number of SG buses and [ the number of load
buses in the grid. Pr,@Qr € RP*! Ps,Qs € R¥*! | Py, Qp € R™! are vectors with
the active and reactive power injected by the VSIs, sync. generators and loads (load
powers usually have a negative sign). The matrix transfer functions G;(i = 1,...,9) are
constructed using the power flow transfer functions in equation (3.27), where G; is of
dimension 2p x 2p, G of 2p x 2q, G'3 of 2p x 21, with the dimensions of G4, g accordingly.

As example, consider a radial grid with 3 buses shown in Fig. 3.3, with a load connected

49



Chapter 3. Frequency-Domain Modeling of Power Grids

at bus 1, a VSI at bus 2 and an SG at bus 3. Then, G123 would be:

i Gw—P L quoP QU—=P 4 qU—=P

Gi=| oo | gibe gl gl (3.32)
| G "+ Gaz 7 Gy 7+ Gog
[ _qw—P _qU-—P

Gy = _Gz%g _GiﬁQ (3.33)
[ _qw—P _qU—P

The frequency and voltage at the load buses is generally unknown. Assuming constant
power loads, the dynamics are reformulated such that the power drawn by the loads
enters the system as a disturbance. Thus, the power injected by the generators can
be written as a function of the generator bus phasors, with the load power acting as a

disturbance:
PZ W
Q1 Uz Pr
= Gori G 3.35
Ps grid ws G Q¢ (3:35)
Qs Us
with
G1— G3Gy'Gr Gy — G3Gy'Gy
Ggrid = 7 Y 3.36
gdl@—%%w7%—%%@g (3:36)
GGt
Gy = 9 3.37
d [G6G§1 ] ( )

This formulation assumes Gg to be invertible, which is always the case if all buses in the
grid are connected.

It is important to note that Gy describes the dynamics of the lines, but does not
contain the dynamics of the generation units and sensors. The next sections will show
how these dynamics can be incorporated in the model.

3.4.3 Voltage Source Inverter Model

A specific advantage of the presented formulation is that grey- and black-box models of
VSIs can directly be incorporated, and no knowledge of the internal control loops and
dynamics is required. Assuming a VSI operating in Frequency-Voltage mode, a simple
way to model the closed-loop dynamics is as an ideal voltage source with the following
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first-order dynamics:

wr wT
—a | Y
-l

G = diag(

(3.38)

1
Tos+ 1 mys+1

) (3.39)

where @z, Uz are the desired VSI bus frequency and voltage magnitude, and 7, 77 are
the closed-loop time constants of the frequency and voltage control loop. If the VSI is
outfitted with an L-type output filter, a simple way to model it is to lump it with the
parameters of the lines connected to the VSI.

The dynamics of the VSI transfer function can easily be extended to include more
complicated output filters, resonance modes and time delays. If the internal control
loops and parameters are known, the model can also be augmented to include an exact
formulation of the complete VSI dynamics. Furthermore, if experimental data is available
it is also possible to directly use the measured frequency-response.

3.4.4 Synchronous Generator Model

The main frequency dynamics of a synchronous generator are well represented through
the swing equation:
2H | 1 _
—ws = 5 (GpmPsm — Ps) (3.40)
w Ss
where Pg’m, Ps are the desired mechanical input power and the electrical output power of
the generator, Sg is the rated apparent power of the generator, H is the inertia constant
and Gpy contains the dynamics of the prime mover. The resulting transfer function is:

Psum
ws = G&m G‘g,e } [ ]i:g ] (3.41)
w w
Com = O ges ©9¢ T T aMSes

The voltage at an SG bus is commonly tightly regulated by the internal AVR (Automatic
Voltage Regulator) of the machine. The closed-loop response of the AVR can again be
formulated as a transfer function:

Us = GsuUs (3.42)

where Us is the desired SG bus voltage magnitude. A simple way to model the prime
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qp : U. Qz Q1
wdiag(Kz, Ksu) - diag(Gz, Gs,v) Uz Ps Os
| \—, ty | Qs

i ' i > Ggrid >

i[ PS:"” ]3 Gsens

Ksm =" Gsn st} [ ws ]
********************* Cs. [ Ps ]

Figure 3.4 — Block diagram of the full dynamic phasor model.

mover and AVR dynamics is through the following first-order dynamics:

1 1

- Geyp= — 3.43
Tms + 17 SU s+ 1 ( )

Gpm
where 7,,, 7y are the time constants of the prime mover and AVR. While this generator
model is relatively simple, the transfer functions in (3.40) and (3.42) can easily be
extended to include more complex dynamics and coupling effects thanks to the modular
structure of the dynamic phasor model.

3.4.5 Complete Dynamic Phasor Model

Combining the transfer function models established in the previous sections, it is now
possible to construct the complete dynamic phasor model of a grid with any number of
VSIs, SGs and constant power loads. The closed-loop block diagram of the complete
model is shown in Fig. 3.4. In a classical formulation, the controller transfer function
matrices K7, Ks y, Ks , would be the droop controllers. Ggens is a (2p + 2q) x (2p + 2q)
diagonal transfer function matrix containing the sensor dynamics.

In order to achieve a form suitable for control design, the plant is rewritten as single
transfer function matrix Geomp (as indicated in Fig. 3.4), with the inputs and outputs
corresponding to the classical droop control scheme. The inputs of Gcomp are the setpoints
of the VSI frequency, the VSI and SG voltage magnitude and the SG mechanical input
power. The outputs are the VSI active power, the VSI and SG reactive power and the
SG frequency. To achieve this, first Ggriq from (3.35) is partitioned and reordered such
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that the following transfer functions are obtained:

GU%PI GLUS *)PI

Pr gridQ grid Q
U—r ws—>
Ps gggp s Gggjp s ws
Qs Guals Gespos
T
u=|wr Ur Us]
Now, the single block transfer function of the plant can be obtained as follows:
Pr
Q1 u _ T
G = , u= Ur U
Os comp PS,m U { w1 T S
ws
G G
Gu G12 Gy 0
Gcomp = Gsens 2 2 0 GS,U 0 (3.45)
G311 G2 0 0 I
Gu Ga

where I is the identity matrix, and:

Gll — (Gu—)PI o Gws—)PIGS7eG51)

grid grid
Gia = G5 (G m — Gis,cGs2)
Gt = G = Gs7 Y Gis Gy
Gz = G579 (Gsm — Gs.eGs2)
G31 = G;‘r?dQS - Ggﬁ:QSGs,eGm
Gz = G251 (Gsm — Gs,.Gsn)
Gy = —Gs,Gx1

G42 - GS,m - G3,6G52
Gy = (I + Gw3—>P5GS7€)71Gu—>P5

grid grid
Gso = (I + G537 5Gs ) GU37 5 G
52 — grid Sie grid Sm

Written in this form, the matrix transfer function Gomp can readily be used for small-
signal stability analysis and control design.
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Figure 3.5 — One-line diagram of a 50 Hz/230 V islanded grid with 3 SGs and one VSI. The arrows
denote constant power loads.

3.4.6 Validation of Dynamic Phasor Model

To validate the dynamic phasor model, the transient behaviour of a low-voltage islanded
grid with 3 SGs, 1 VSI and 2 active power loads is evaluated (see Fig. 3.5). The VSI
operates in grid-forming mode [77], where its frequency and voltage magnitude are
controlled. A standard droop controller is used to provide primary frequency and voltage
control, meaning the controllers K7, K5y, Ks, in 3.4 are decentralized proportional
controllers. The grid is implemented in Simulink using the Simpower toolbox, and the
transient response of the generators to a change in the active power load at bus 3 is
considered. For the nonlinear simulation, the VSI is modeled as an ideal voltage source
with an L-type output filter. The SGs are modeled using the ‘Simplified Synchronous
Machine” model from the Simpower toolbox, which on the mechanical side models the
swing equation, and on the electrical side consists of a voltage source behind a synchronous
reactance and resistance. For the linear simulation, the model is implemented in Simulink

as shown in Fig. 3.4.

In Figs. 3.6a and 3.6b the transients of the frequency and voltage magnitude of one of
the SGs is shown after the active power load at bus 3 is stepped up. It can be seen
that the dynamic phasor model represents the transient dynamics very well, with the
frequency and magnitude of the oscillations being very similar to the nonlinear model. A
steady-state error can be observed in both results, which is due to the linearization of
the power flows. Similarly, in Figs. 3.7a and 3.7b the active and reactive output power
of the SG is shown after a step in the active power load. Again it can be seen that the
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Figure 3.6 — Comparison of frequency and voltage between nonlinear simulation (in blue) and linear
dynamic phasor model (in red).

transient dynamics are modeled well by the dynamic phasor model !.

These results reinforce that the dynamic phasor model provides accurate results and
is well suited for transient stability analysis and primary as well as secondary control
design.

3.5 Conclusion

A frequency-domain modeling approach for low- and medium-voltage grids with VSI-
interfaced devices as well as synchronous machines has been developed. In the first part
it was shown how the voltage and current dg-frame dynamics can be formulated as a
matrix transfer function model. An essential part of the model is that it also represents
the dynamics of the VSI output filters and coupling effects, which play a crucial role for
stability analysis and control design.

In the second part, a linear dynamic phasor model is derived that describes the dynamics
of the grid frequencies and voltage magnitudes as well as active and reactive power flows.
The model also includes the dynamics of VSl-interfaced generation units, synchronous
machines and active power loads, which is of paramount importance when studying
transient stability as well as primary and secondary control design. Simulation results
show that the model is very well suited for the modeling of transient dynamics and to

!Thanks a lot to Daniel Ryan from Monash University for providing these results!
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Figure 3.7 — Comparison of power flows between nonlinear simulation (in blue) and linear dynamic phasor
model (in red).

assess transient stability.

The model also forms a solid basis for the validation of data-driven models derived
from measurement data, which is a very interesting and relevant approach especially in
distribution grids, where the grid parameters are often unknown.
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4.1 Introduction

The scenario discussed in this chapter is motivated by a real case study [78], which was
conducted to identify the source of instability problems in a rural Swiss distribution
grid very similar to the one shown in Fig. 4.1. The figure depicts a typical 50 Hz/400 V
distribution grid with resistive lines (R/X-ratio greater than 6), four inverter-interfaced
PV generation units with LCL output filters situated close together, and a relatively
long line connecting to the main grid. As is often the case in this type of grid, if power
generation is high the VSI buses suffer overvoltage problems. Also, since the lines are
mostly resistive, reactive power injection has almost no effect on the voltage level. To
resolve the overvoltage situation, the local DSO decided to add a Line Voltage Regulator
(LVR) to the grid, which is tap-changing transformer that becomes active whenever an
over- or undervoltage situation is detected.

However, the LVR also significantly increases the inductance of the line and brings the
R/X-ratio close to 1, which has a significant impact on the electromagnetic dynamics of
the grid. In the case study, the commercial VSIs were current-controlled by a standard
combination of PI controllers on the current and a feedback loop on the capacitor voltage
to improve the performance. However, as can be see in Fig. 4.2, the standard controllers
were clearly not able to deal with the new grid dynamics: turning on the LVR leads to
large oscillations in the current and voltage, followed by a shutdown of all PV units.

As will be discussed in this chapter, this example nicely exhibits the challenges of control
design for multiple parallel VSIs in weak grids. It will be shown that the addition of the
LVR strongly affects the coupling resonances introduced by the parallel configuration of
the VSI output filters, which are not at all considered in classical single-inverter control
design. The control design method from Chapter 2 and the frequency-domain model
from Chapter 3 are then combined to propose a new paradigm for inverter control design,
where the controllers for any number of VSIs can be designed in a single step while
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Figure 4.1 — Electrical one-line diagrams: a) a rural distribution grid with 4 VSIs and a Line Voltage
Regulator (LVR), b) the output filter configuration and controller block diagram of the VSIs.

guaranteeing robust stability and performance. An additional challenge is that new VSIs
are added to existing grids at a rapid pace. Controllers have to be designed for this
plug-and-play installation without affecting the operation of the already installed VSIs.
This plug-and-play design will also be explored in this chapter, and it will be shown that
the control design method is very well suited for this task.

4.1.1 State of the Art

In recent years, the increase in distributed generation, distributed storage and drive
loads has significantly increased the proportion of power electronic devices in distribution
grids. These devices are commonly connected to the grid through voltage source inverters
(VSIs) with passive output filters. A desirable filter structure is the LCL filter, which
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Figure 4.2 — Measurements of three-phase current and voltage at the LVR after it is switched on [78].

exhibits many advantageous features. However, the parallel operation of VSIs with LCL
filters also introduces new resonance frequencies and coupling effects to the grid, which
present a challenge for stability analysis and control design [69, 79-82].

For single VSIs, many active damping methods have been proposed in the literature. A
common approach is to introduce active filter elements to the feedback loop, and tune the
parameters based on the model of a single-inverter infinite bus system. A comprehensive
review of the state-of-the-art methods is given in [83]. However, using a single-inverter
model neglects all coupling dynamics in the grid, and there is no guarantee for stability

or performance in a system with multiple VSIs.

In [62, 84, 85] a state-space model of the complete system is constructed, and the resonance
modes are classified based on modal participation factors. A drawback of this approach
is that accurate representations with multiple generation units lead to very high-order
models which become difficult to analyze. Another avenue is to use impedance-based
transfer function models and frequency-domain analysis methods [69, 86, 87]. These
approaches break the system into interconnected component models that are easier to
handle than a complete model. Various approaches for tuning the current controllers
of any number of parallel PV inverters are presented in [88, 89], however the stability
analysis assumes that all inverters are identical. In [90] a multivariable transfer function
model for grids with multiple VSIs is developed, and it is shown that the model can be
used for stability analysis through Nyquist diagrams. The modeling approach is further
used in [91, 92] to derive various design rules for proportional controllers based on root
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locus curves.

Common features of the methods discussed above are that controller and filter parameters
are adjusted using iterative procedures, and that stability is evaluated a posteriori. A
drawback of this approach is that for systems with large numbers of generation units
the plant order and the number of design parameters becomes very high, which makes
it difficult to tune all variables in an efficient manner. Furthermore, reaching explicit
performance specifications is challenging when using manual tuning methods.

Attempts have been made to apply classical robust control design methods to the
problem [93-95]. This allows to guarantee robust stability and performance, and makes
it possible to design higher-order controllers that would be very challenging to tune
manually. Furthermore, in [96, 97] methods are proposed to design controllers that are
robust towards parametric uncertainties in the plant model. A major drawback is that
these methods require a state-space model of the system, but don’t scale well with the
number of states. This means that even moderately sized problems become very hard to
solve efficiently. This limits the applicability of the methods in practice.

A way to avoid the issues of high-order state-space models in control design is to use
frequency-domain methods. In [39, 98] a multivariable PI current controller for a single
grid-tied VSI is tuned using an optimization-based method and a nonparametric model.
The same approach is also used in [99] to tune a higher order current controller for a VSI
with an LCL output filter. However, the method only allows for linearly parametrized
controllers and generally yields very conservative results for multivariable systems.

Another important aspect is plug-and-play capability, which describes the procedure to
add a new VSI to an existing grid while maintaining stability and performance. Iterative
tuning approaches are presented in [100-102], where the stability is evaluated a posteriori,
which is impractical for controllers with multiple tuning parameters. In [103] a method is
presented where the controllers of neighbouring VSIs have to be retuned as well. In [97]
the addition of a new VSI is treated as an uncertainty, however the method is generally
too conservative.

4.2 Control Design

In this section, it will be shown how a decentralized current controller for all four VSIs
in Fig. 4.1 can be designed in a single step while guaranteeing stability and various
performance specifications.
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4.2.1 Grid Model

Using the method described in Section 3.3, two transfer function models for the grid
shown in Fig. 4.1 without and with the LVR are constructed. For the modeling, the LVR
is modeled as an R-L element using the simplified equivalent circuit transformer model,
and the grid-side impedances of the filters and the impedance of the LVR are lumped
with the lines. According to Eq. 3.21 this leads to the following models:

[ Iiaq ] =G [ Ulag }
where
T
T 71 71 72 52 3 13 74 14
Igdq - [Ig,d’ Ig,q7 Ig,d> Ig,q> Ig,d’ Ig7q’ vad’ Igﬂ] (4.2)
T
UtI,dq = [Utl,dv Utl,qv UtQ,dv Ut%qa Utg,dv qu’ Ut4,d7 Utél,q} (43)

and where G1, Gy are 10 x 10 matrix transfer functions from the VSI modulation voltages
to the inverter currents without and with the LVR.

To visualize the effect of the LVR on the frequency response of the system, the maximum
singular value plots of G, G2 for both grid configurations are shown in Fig. 4.3. The
singular value plot is an extension of the Bode magnitude plot for multivariable systems,
and is a very useful tool for robustness analysis [104].

The expected resonance peaks of the LCL output filters can be seen around 1400 Hz.
However, the model without LVR also exhibits additional resonance peaks at 1200 Hz
that stem from the coupling of the LCL filters, and would not be represented in a classical
single-inverter model. Furthermore, with the inclusion of the LVR the frequency of the
coupling resonance decreases to 1000 Hz and now dominates the dynamic response, which
further accentuates the importance of using a complete grid model.

4.2.2 Control Specifications
The controller should satisfy the following performance specifications for both grid
configurations (without and with the LVR):

1. Closed-loop bandwidth of at least 500 Hz

2. Small overshoot

3. Robustness towards modeling errors

4. Good decoupling of currents in d and q axis
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Figure 4.3 — Maximum singular value plots of the grid model. The model without the LVR is in blue,
and with the LVR in red.

A good way to limit the impact of strong resonance modes on the closed-loop performance
is to limit the closed-loop sensitivity transfer functions. In order to achieve a desired
closed-loop bandwidth and to limit the impact of an output disturbance on the tracking
error, the following norm is minimized:

-1
' S Whw

W1S1llso, [W1Salloo)) , Wi = I e
min(max([|WiS1 floo, [W1S2lle0)) » W2 (s+wbw) .

S) =T +GK)™, Sy=U+GK)™!

where wp,, = 27 - 500 is the desired bandwidth and Si, S5 are the sensitivity transfer
functions of the two plants (without and with the LVR).

Similarly, the second and third specifications are satisfied by placing constraints on the
two closed-loop sensitivity functions 17,75 that enforces a roll-off at frequencies above
the desired bandwidth:

-1
IWaTilleo <1, [WoThlleo <1, Wa = <1.1 “hw ) I (4.5)
S + Wpw

Ty =G K(I+GK)™', Ty=GyK(I+GyK)™!
The chosen gain of 1.1 for W5 guarantees low overshoot and little ringing in the closed-loop
response by keeping the maximum of 7" small.

Finally, a constraint is placed on the input sensitivities U, Uz to prevent saturation and
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fast oscillations in the input:

[W3Ullleo < 1, [[W3la|leo <1, W3 =(5.5B)"'T (4.6)
Uy =K(I+GK)™, Uy=K(I+GyK)™!

where B is a second-order discrete-time Butterworth low-pass filter with a cutoff frequency
of 2500 Hz. The gain of 5.5 for W3 was tuned to guarantee that the input does not reach
saturation for the maximum expected disturbance.

These constraints are combined to formulate the following robust control design problem,
where v € R is an auxiliary scalar variable:

min
XY "

subject to:

[WiSilleo <75 [[WiS2leo <7

[WoTlleo <1, [WaThllec <1

[W3lUilleo <1, [W3lz]leo <1 (4.7)

4.2.3 Controller Structure

A decentralized, multivariable 4th-order controller with a sampling frequency of 10 kHz
is designed, where every VSI has access only to its local current measurements. The
input to the controller is the current error, and the output is the modulation voltage
(see Fig. 3.2). The controllers of the 4 VSIs in Fig. 4.1 can be compounded as a single
block-diagonal transfer function matrix according to the multivariable plant model from
Eq. 4.1:
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where X has a block-diagonal and Y has a diagonal structure. The final 2 x 2 controller
of each individual VSI contains 28 tunable parameters, which allows for many degrees
of freedom during the design, but would be very difficult to tune manually. This
demonstrates well the benefits of using an optimization-based approach.

4.2.4 Convex Formulation

To solve the optimization problem formulated in Equation 4.7, a frequency grid with 300
logarithmically-spaced frequency points in the interval Qn = {1, 1047T} rad/s is chosen,
where the upper limit is the Nyquist frequency of the controller. Furthermore, the 6
main resonance frequencies of the plant are explicitly added to the frequency grid. As
stabilizing initial controller, a decentralized integral controller with a low gain is chosen:

X, =0.012T, Y. = 2*(z — 1)I (4.9)

Then, as described in Chapter 2, the control design problem with multimodel uncertainty
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Figure 4.4 — Maximum singular values plots: a) the controller (in green) and the plant without and with
the LVR (in blue and red), b) the closed-loop sensitivities and ¢) the input sensitivities without and with
the LVR. The dashed lines indicate the constraints.
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is reformulated as a convex optimization problem:

o
subject to:
| P*P. +P*P,— P*P,, (WY)* ]
(2 T Cq Cj 7 > 0
[ P*P,, + P*P,— P*P.. (WoG;X)* |,
(2 03 Cy C; 7 > O
_ WaGi X I Ueor)
| P*P,, + P*Pi— P*P.. (W3X)* |, .
1 T C; (&7 7 > 0
_ WeX 7 (jwr)
(Y'Ye + Y'Y = YYe) (jwg) > 0
fori=1,2 ; w, €Oy (4.10)

where GG1, G are the plant models without and with the LVR. The optimization problem
is formulated in Matlab using Yalmip [58], and solved with Mosek [59]. The algorithm
converges within 7 iterations, which takes around 30 minutes on a standard laptop

computer in our simple implementation.

The singular value plots of the controller as well as the achieved sensitivities are shown
in Fig. 4.4. It can be seen that the frequency response of the controller cancels the
resonance peaks of the plant as expected, and is also robust towards plant uncertainties.
Specifically, even if the resonance frequencies in the real grid are different from the
model, they are still sufficiently attenuated. The controller also successfully dampens
the resonance peaks in the closed-loop response. Furthermore, the constraints on the
closed-loop and input sensitivity are satisfied.

4.2.5 Simulation Results

To verify the controller performance, the example grid from Fig. 4.1 is implemented in
Simulink using the Simpower toolbox. An averaged model is used for the VSIs, and
the switching and DC-side dynamics are neglected. The step response of the inverter
current of VSI 1 without and with the LVR is shown in Fig. 4.5. It can be seen that the
transients are smooth and there is no ringing. The top of the figure shows a zoomed-in
view of the step responses of It{ 4 and It{q without the LVR, with the 10-90 % rise-times
being 1.2 ms. With the LVR, the rise times are slower at 4.5 ms and 4.6 ms respectively.
These values correspond well with the minimum desired closed-loop bandwidth of 500 Hz.
The maximum overshoot is 6.7 %, and the decoupling of the d-q axes is excellent. The
step responses of the VSIs 2, 3 and 4 exhibit almost equal performance.
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Figure 4.6 — Block diagram of plant for plug-and-play design.

4.3 Plug-and-Play Design

The control design method can also be used for plug-and-play design, where the goal is
to design a current controller for a new VSI that is added to an existing grid, without
retuning the current controllers of the other VSIs.

Consider again the example presented in the previous section, and let Kxyeq be the current
controller designed for VSIs 1 through 4. The goal is to design a current controller for a
new VSI 5 connected to the same bus as VSIs 1 and 2 in a decentralized fashion and
without changing Kfyeq-

Again, two transfer function models of the grid without and with the LVR are constructed.
Then, the existing controller Kgyeq is used to close the feedback loops for VSIs 1 through
4. Then, a new plant with only 2 inputs and 2 outputs can be formed, where the inputs
are the modulation voltage and the outputs are the inverter current of VSI 5 (see Fig. 4.6),
which leads to the following controller structure:

VP2 r
[ bd ] =Xy! l b ] (4.11)
Vt,q Itvq
xll o yxl2 yilt
X = [ X52,1 X52,2 , Y = % y2:2 o(z—1I
5 5 5
X7 = X2+ X028 4+ X0 4+ Xz + XU
Yol = 2 4 Y+ Vg2 + Yl 2 + Vi (4.12)

The same perfor