4,392 research outputs found

    Monitoring and Fault Location Sensor Network for Underground Distribution Lines

    Get PDF
    One of the fundamental tasks of electric distribution utilities is guaranteeing a continuous supply of electricity to their customers. The primary distribution network is a critical part of these facilities because a fault in it could affect thousands of customers. However, the complexity of this network has been increased with the irruption of distributed generation, typical in a Smart Grid and which has significantly complicated some of the analyses, making it impossible to apply traditional techniques. This problem is intensified in underground lines where access is limited. As a possible solution, this paper proposes to make a deployment of a distributed sensor network along the power lines. This network proposes taking advantage of its distributed character to support new approaches of these analyses. In this sense, this paper describes the aquiculture of the proposed network (adapted to the power grid) based on nodes that use power line communication and energy harvesting techniques. In this sense, it also describes the implementation of a real prototype that has been used in some experiments to validate this technological adaptation. Additionally, beyond a simple use for monitoring, this paper also proposes the use of this approach to solve two typical distribution system operator problems, such as: fault location and failure forecasting in power cables.Ministerio de Economía y Competitividad, Government of Spain project Sistema Inteligente Inalámbrico para Análisis y Monitorización de Líneas de Tensión Subterráneas en Smart Grids (SIIAM) TEC2013-40767-RMinisterio de Educación, Cultura y Deporte, Government of Spain, for the funding of the scholarship Formación de Profesorado Universitario 2016 (FPU 2016

    An experimental strategy for characterizing inductive electromagnetic energy harvesters

    Get PDF
    Condition monitoring of high voltage power lines through self-powered sensor systems has become a priority for utilities with the aim of detecting potential problems, enhancing reliabilityof the power transmission and distribution networks and mitigating the adverse impact of faults. Energy harvesting from the magnetic field generated by the alternating current flowing through highvoltage lines can supply the monitoring systems with the required power to operate without relying onhard-wiring or battery-based approaches. However, developing an energy harvester, which scavengesthe power from such a limited source of energy, requires detailed design considerations, which maynot result in a technically and economically optimal solution. This paper presents an innovativesimulation-based strategy to characterize an inductive electromagnetic energy harvester and the power conditioning system. Performance requirements in terms of the harvested power and output voltage range, or level of magnetic core saturation can be imposed. Different harvester configurations, whichsatisfy the requirements, have been produced by the simulation models. The accuracy and efficiency ofthis approach is verified with an experimental setup based on an energy harvester, which consists ofa Si-steel magnetic core and a power conditioning unit. For the worst-case scenario with a primary current of 5 A, the maximum power extracted by the harvester can be as close as 165 mW, resulting ina power density of 2.79 mW/cm3.Comunidad de MadridAgencia Estatal de Investigació

    Power maximised and anti-saturation power conditioning circuit for current transformer harvester on overhead lines

    Get PDF
    The current transformer (CT) harvester is an effective and efficient solution due to its higher reliability and power density compared to other techniques. However, the current of overhead conductor fluctuates from tens of to thousands of amperes, which brings two challenges for the CT harvester design. First, the startup current, above which the harvester can independently power the monitoring devices, should be as low as possible, so that the battery capacity can be reduced; secondly, the magnetic core should be ensured unsaturated in high current condition. This paper proposes a power conditioning circuit with comprehensive control to maximize the output power and prevent the core from saturation. A prototype that can deliver 22.5 W power with 200 A is designed, and a control strategy based on the finite-state machine is implemented. Experimental results show that the startup current for 2 W load is about 30 A, and the core power density at 60 A is 45.96 mW/cm3, both of which are markedly improved compared to the reported results of the same condition

    Energy harvesting methods for transmission lines: a comprehensive review

    Get PDF
    Humanity faces important challenges concerning the optimal use, security, and availability of energy systems, particularly electrical power systems and transmission lines. In this context, data-driven predictive maintenance plans make it possible to increase the safety, stability, reliability, and availability of electrical power systems. In contrast, strategies such as dynamic line rating (DLR) make it possible to optimize the use of power lines. However, these approaches require developing monitoring plans based on acquiring electrical data in real-time using different types of wireless sensors placed in strategic locations. Due to the specific conditions of the transmission lines, e.g., high electric and magnetic fields, this a challenging problem, aggravated by the harsh outdoor environments where power lines are built. Such sensors must also incorporate an energy harvesting (EH) unit that supplies the necessary electronics. Therefore, the EH unit plays a key role, so when designing such electronic systems, care must be taken to select the most suitable EH technology, which is currently evolving rapidly. This work reviews and analyzes the state-of-the-art technology for EH focused on transmission lines, as it is an area with enormous potential for expansion. In addition to recent advances, it also discusses the research needs and challenges that need to be addressed. Despite the importance of this topic, there is still much to investigate, as this area is still in its infancy. Although EH systems for transmission lines are reviewed, many other applications could potentially benefit from introducing wireless sensors with EH capabilities, such as power transformers, distribution switches, or low- and medium-voltage power lines, among others.This research was funded by Ministerio de Ciencia e Innovación de España, grant number PID2020-114240RB-I00 and by the Generalitat de Catalunya, grant number 2017 SGR 967.Peer ReviewedPostprint (author's final draft

    Smartphone-Based pH Sensor for Home Monitoring of Pulmonary Exacerbations in Cystic Fibrosis.

    Get PDF
    Currently, Cystic Fibrosis (CF) patients lack the ability to track their lung health at home, relying instead on doctor checkups leading to delayed treatment and lung damage. By leveraging the ubiquity of the smartphone to lower costs and increase portability, a smartphone-based peripheral pH measurement device was designed to attach directly to the headphone port to harvest power and communicate with a smartphone application. This platform was tested using prepared pH buffers and sputum samples from CF patients. The system matches within ~0.03 pH of a benchtop pH meter while fully powering itself and communicating with a Samsung Galaxy S3 smartphone paired with either a glass or Iridium Oxide (IrOx) electrode. The IrOx electrodes were found to have 25% higher sensitivity than the glass probes at the expense of larger drift and matrix sensitivity that can be addressed with proper calibration. The smartphone-based platform has been demonstrated as a portable replacement for laboratory pH meters, and supports both highly robust glass probes and the sensitive and miniature IrOx electrodes with calibration. This tool can enable more frequent pH sputum tracking for CF patients to help detect the onset of pulmonary exacerbation to provide timely and appropriate treatment before serious damage occurs

    Waldo: Batteryless Occupancy Monitoring with Reflected Ambient Light

    Get PDF
    Reliable and accurate room-level occupancy-tracking systems can enable many new advances in sensors and applications of modern smart buildings. This allows buildings to be more capable of adapting to the needs of their occupants in their day-to-day activities and better optimize certain resources, such as power and air conditioning, to do so. Unfortunately, existing occupancy-tracking systems are plagued by large size, high energy consumption, and, unsurprisingly, short battery lifetimes. In this paper, we present Waldo, a batteryless, room-level occupancy monitoring sensor that harvests energy from indoor ambient light reflections, and uses changes in these reflections to detect when people enter and exit a room. Waldo is mountable at the top of a doorframe, allowing for detection of a person and the direction they are traveling at the entry and exit point of a room. We evaluated the Waldo sensor in an office-style setting under mixed lighting conditions (natural and artificial) on both sides of the doorway with subjects exhibiting varying physical characteristics such as height, hair color, gait, and clothing. 651 number of controlled experiments were ran on 6 doorways with 12 individuals and achieved a total detection accuracy of 97.38%. Further, it judged the direction of movement correctly with an accuracy of 95.42%. This paper also evaluates and discusses various practical factors that can impact the performance of the current system in actual deployments. This work demonstrates that ambient light reflections provide both a promising low-cost, long-term sustainable option for monitoring how people use buildings and an exciting new research direction for batteryless computing

    DESIGN OF RELIABLE AND SUSTAINABLE WIRELESS SENSOR NETWORKS: CHALLENGES, PROTOCOLS AND CASE STUDIES

    Get PDF
    Integrated with the function of sensing, processing, and wireless communication, wireless sensors are attracting strong interest for a variety of monitoring and control applications. Wireless sensor networks (WSNs) have been deployed for industrial and remote monitoring purposes. As energy shortage is a worldwide problem, more attention has been placed on incorporating energy harvesting devices in WSNs. The main objective of this research is to systematically study the design principles and technical approaches to address three key challenges in designing reliable and sustainable WSNs; namely, communication reliability, operation with extremely low and dynamic power sources, and multi-tier network architecture. Mathematical throughput models, sustainable WSN communication strategies, and multi-tier network architecture are studied in this research to address these challenges, leading to protocols for reliable communication, energy-efficient operation, and network planning for specific application requirements. To account for realistic operating conditions, the study has implemented three distinct WSN testbeds: a WSN attached to the high-speed rotating spindle of a turning lathe, a WSN powered by a microbial fuel cell based energy harvesting system, and a WSN with a multi-tier network architecture. With each testbed, models and protocols are extracted, verified and analyzed. Extensive research has studied low power WSNs and energy harvesting capabilities. Despite these efforts, some important questions have not been well understood. This dissertation addresses the following three dimensions of the challenge. First, for reliable communication protocol design, mathematical throughput or energy efficiency estimation models are essential, yet have not been investigated accounting for specific application environment characteristics and requirements. Second, for WSNs with energy harvesting power sources, most current networking protocols do not work efficiently with the systems considered in this dissertation, such as those powered by extremely low and dynamic energy sources. Third, for multi-tier wireless network system design, routing protocols that are adaptive to real-world network conditions have not been studied. This dissertation focuses on these questions and explores experimentally derived mathematical models for designing protocols to meet specific application requirements. The main contributions of this research are 1) for industrial wireless sensor systems with fast-changing but repetitive mobile conditions, understand the performance and optimal choice of reliable wireless sensor data transmission methods, 2) for ultra-low energy harvesting wireless sensor devices, design an energy neutral communication protocol, and 3) for distributed rural wireless sensor systems, understand the efficiency of realistic routing in a multi-tier wireless network. Altogether, knowledge derived from study of the systems, models, and protocols in this work fuels the establishment of a useful framework for designing future WSNs

    A review of pzt patches applications in submerged systems

    Get PDF
    Submerged systems are found in many engineering, biological, and medicinal applications. For such systems, due to the particular environmental conditions and working medium, the research on the mechanical and structural properties at every scale (from macroscopic to nanoscopic), and the control of the system dynamics and induced effects become very difficult tasks. For such purposes in submerged systems, piezoelectric patches (PZTp), which are light, small and economic, have been proved to be a very good solution. PZTp have been recently used as sensors/actuators for applications such as modal analysis, active sound and vibration control, energy harvesting and atomic force microscopes in submerged systems. As a consequence, in these applications, newly developed transducers based on PZTp have become the most used ones, which has improved the state of the art and methods used in these fields. This review paper carefully analyzes and summarizes these applications particularized to submerged structures and shows the most relevant results and findings, which have been obtained thanks to the use of PZTp.Peer ReviewedPostprint (published version

    Vibration energy harvesting: fabrication, miniaturisation and applications

    No full text
    This paper reviews work at the University of Southampton and its spin-out company Perpetuum towards the use of vibration energy harvesting in real applications. Perpetuum have successfully demonstrated vibration-powered condition monitoring systems for rail and industrial applications. They have pursued applications were volume is not a particular constraint and therefore sufficient power can be harvested. Harvester reliability and longevity is a key requirement and this can be a challenging task in high shock environments. The University of Southampton has investigated the miniaturization of the technology. MEMS electromagnetic harvesters were found to be unsuitable although miniaturized devices fabricated using bulk components did perform well. Screen printed piezoelectric harvesters were also found to perform well and were ideally suited to a low profile application where device thickness was limited. Screen printing was not only used to deposit the active piezoelectric material but also an inertial mass ink based on tungsten. This enables the device to be printed entirely by screen printing providing a low-cost route to manufacture. Finally, details of a simulation tool that can take real world vibrations and estimate vibration energy harvester output was presented. This was used to simulate linear and nonlinear harvesters and in many applications with a characteristic resonant frequency the linear approach was found to be the optimum. Bistable nonlinear harvesters were found to work better with more random vibration source

    On-chip adaptive power management for WPT-Enabled IoT

    Get PDF
    Internet of Things (IoT), as broadband network connecting every physical objects, is becoming more widely available in various industrial, medical, home and automotive applications. In such network, the physical devices, vehicles, medical assistance, and home appliances among others are supposed to be embedded by sensors, actuators, radio frequency (RF) antennas, memory, and microprocessors, such that these devices are able to exchange data and connect with other devices in the network. Among other IoT’s pillars, wireless sensor network (WSN) is one of the main parts comprising massive clusters of spatially distributed sensor nodes dedicated for sensing and monitoring environmental conditions. The lifetime of a WSN is greatly dependent on the lifetime of the small sensor nodes, which, in turn, is primarily dependent on energy availability within every sensor node. Predominantly, the main energy source for a sensor node is supplied by a small battery attached to it. In a large WSN with massive number of deployed sensor nodes, it becomes a challenge to replace the batteries of every single sensor node especially for sensor nodes deployed in harsh environments. Consequently, powering the sensor nodes becomes a key limiting issue, which poses important challenges for their practicality and cost. Therefore, in this thesis we propose enabling WSN, as the main pillar of IoT, by means of resonant inductive coupling (RIC) wireless power transfer (WPT). In order to enable efficient energy delivery at higher range, high quality factor RIC-WPT system is required in order to boost the magnetic flux generated at the transmitting coil. However, an adaptive front-end is essential for self-tuning the resonant tank against any mismatch in the components values, distance variation, and interference from close metallic objects. Consequently, the purpose of the thesis is to develop and design an adaptive efficient switch-mode front-end for self-tuning in WPT receivers in multiple receiver system. The thesis start by giving background about the IoT system and the technical bottleneck followed by the problem statement and thesis scope. Then, Chapter 2 provides detailed backgrounds about the RIC-WPT system. Specifically, Chapter 2 analyzes the characteristics of different compensation topologies in RIC-WPT followed by the implications of mistuning on efficiency and power transfer capability. Chapter 3 discusses the concept of switch-mode gyrators as a potential candidate for generic variable reactive element synthesis while different potential applications and design cases are provided. Chapter 4 proposes two different self-tuning control for WPT receivers that utilize switch-mode gyrators as variable reactive element synthesis. The performance aspects of control approaches are discussed and evaluated as well in Chapter 4. The development and exploration of more compact front-end for self-tuned WPT receiver is investigated in Chapter 5 by proposing a phase-controlled switched inductor converter. The operation and design details of different switch-mode phase-controlled topologies are given and evaluated in the same chapter. Finally, Chapter 6 provides the conclusions and highlight the contribution of the thesis, in addition to suggesting the related future research topics.Internet de las cosas (IoT), como red de banda ancha que interconecta cualquier cosa, se está estableciendo como una tecnología valiosa en varias aplicaciones industriales, médicas, domóticas y en el sector del automóvil. En dicha red, los dispositivos físicos, los vehículos, los sistemas de asistencia médica y los electrodomésticos, entre otros, incluyen sensores, actuadores, subsistemas de comunicación, memoria y microprocesadores, de modo que son capaces de intercambiar datos e interconectarse con otros elementos de la red. Entre otros pilares que posibilitan IoT, la red de sensores inalámbricos (WSN), que es una de las partes cruciales del sistema, está formada por un conjunto masivo de nodos de sensado distribuidos espacialmente, y dedicados a sensar y monitorizar las condiciones del contexto de las cosas interconectadas. El tiempo de vida útil de una red WSN depende estrechamente del tiempo de vida de los pequeños nodos sensores, los cuales, a su vez, dependen primordialmente de la disponibilidad de energía en cada nodo sensor. La fuente principal de energía para un nodo sensor suele ser una pequeña batería integrada en él. En una red WSN con muchos nodos y con una alta densidad, es un desafío el reemplazar las baterías de cada nodo sensor, especialmente en entornos hostiles, como puedan ser en escenarios de Industria 4.0. En consecuencia, la alimentación de los nodos sensores constituye uno de los cuellos de botella que limitan un despliegue masivo práctico y de bajo coste. A tenor de estas circunstancias, en esta tesis doctoral se propone habilitar las redes WSN, como pilar principal de sistemas IoT, mediante sistemas de transferencia inalámbrica de energía (WPT) basados en acoplamiento inductivo resonante (RIC). Con objeto de posibilitar el suministro eficiente de energía a mayores distancias, deben aumentarse los factores de calidad de los elementos inductivos resonantes del sistema RIC-WPT, especialmente con el propósito de aumentar el flujo magnético generado por el inductor transmisor de energía y su acoplamiento resonante en recepción. Sin embargo, dotar al cabezal electrónico que gestiona y condicionada el flujo de energía de capacidad adaptativa es esencial para conseguir la autosintonía automática del sistema acoplado y resonante RIC-WPT, que es muy propenso a la desintonía ante desajustes en los parámetros nominales de los componentes, variaciones de distancia entre transmisor y receptores, así como debido a la interferencia de objetos metálicos. Es por tanto el objetivo central de esta tesis doctoral el concebir, proponer, diseñar y validar un sistema de WPT para múltiples receptores que incluya funciones adaptativas de autosintonía mediante circuitos conmutados de alto rendimiento energético, y susceptible de ser integrado en un chip para el condicionamiento de energía en cada receptor de forma miniaturizada y desplegable de forma masiva. La tesis empieza proporcionando una revisión del estado del arte en sistemas de IoT destacando el reto tecnológico de la alimentación energética de los nodos sensores distribuidos y planteando así el foco de la tesis doctoral. El capítulo 2 sigue con una revisión crítica del statu quo de los sistemas de transferencia inalámbrica de energía RIC-WPT. Específicamente, el capítulo 2 analiza las características de diferentes estructuras circuitales de compensación en RIC-WPT seguido de una descripción crítica de las implicaciones de la desintonía en la eficiencia y la capacidad de transferencia energética del sistema. El capítulo 3 propone y explora el concepto de utilizar circuitos conmutados con función de girador como potenciales candidatos para la síntesis de propósito general de elementos reactivos variables sintonizables electrónicamente, incluyendo varias aplicaciones y casos de uso. El capítulo 4 propone dos alternativas para métodos y circuitos de control para la autosintonía de receptores de energíaPostprint (published version
    corecore