1,010 research outputs found

    Sensor Development for Physiological and Environmental Monitoring

    Get PDF
    abstract: The sensor industry is a growing industry that has been predicted by Allied Market Research to be a multi-billion industry by 2022. One of the many key drives behind this rapid growth in the sensor industry is the increase incorporation of sensors into portable electrical devices. The value for sensor technologies are increased when the sensors are developed into innovative measuring system for application uses in the Aerospace, Defense, and Healthcare industries. While sensors are not new, their increased performance, size reduction, and decrease in cost has opened the door for innovative sensor combination for portable devices that could be worn or easily moved around. With this opportunity for further development of sensor use through concept engineering development, three concept projects for possible innovative portable devices was undertaken in this research. One project was the development of a pulse oximeter devise with fingerprint recognition. The second project was prototyping a portable Bluetooth strain gage monitoring system. The third project involved sensors being incorporated onto flexible printed circuit board (PCB) for improved comfort of wearable devices. All these systems were successfully tested in lab.Dissertation/ThesisMasters Thesis Engineering 201

    Evaluation of the Wi-Fi technique for use in a navigated orthopedic surgery

    Get PDF
    Following text focuses on use of wireless technologies in OrthoPilot navigation system developed by B.Braun company. Description of OrthoPilot software is followed by overview of available wireless technologies highlighting their both advantages and disadvantages. Practical part consists of two main parts, mostly dealing with electronic circuits. First part describes development process of camera-wireless printed circuit board which substitutes currently used RS-422 cable connection between PC and stereo camera. Part of this chapter covers programming in C++ in order to make interface compatible with the rest of current OrthoPilot software. Second bigger part deals with remote controller development using prototyping board mikroMedia for XMEGA. Besides electrical circuits design, chapter describes also software part - microcontroller programming in C language. Thesis is concluded by discussing system limitations and ideas for future development.Following text focuses on use of wireless technologies in OrthoPilot navigation system developed by B.Braun company. Description of OrthoPilot software is followed by overview of available wireless technologies highlighting their both advantages and disadvantages. Practical part consists of two main parts, mostly dealing with electronic circuits. First part describes development process of camera-wireless printed circuit board which substitutes currently used RS-422 cable connection between PC and stereo camera. Part of this chapter covers programming in C++ in order to make interface compatible with the rest of current OrthoPilot software. Second bigger part deals with remote controller development using prototyping board mikroMedia for XMEGA. Besides electrical circuits design, chapter describes also software part - microcontroller programming in C language. Thesis is concluded by discussing system limitations and ideas for future development.

    Wireless temperature sensing in hostile environments using a microcontroller powered by optical fiber

    Get PDF
    Uno de los mayores riegos del mundo industrial es el fallo de las maquinarias y aparatos que los forman. Un error, provocado por la causa que sea, puede tener consecuencias fatales, no solo para la empresa sino también para todo su entorno. Estas máquinas trabajan con altas cantidades de energía, por lo que su control y monitoreo disminuye los riesgos y asegura una mayor seguridad a la hora de trabajar con ellos. Un ejemplo de este tipo de máquinas son los transformadores. Estos dispositivos trabajan con circuitos eléctricos que intercambian altas cantidades de potencia para el funcionamiento y distribución eléctrica. Existen distintos parámetros a medir para poder monitorear el estado en que se encuentran estas máquinas, pero uno de los principales es la temperatura, y en ese se va a basar este proyecto. Controlar la temperatura de un transformador supone controlar el interior del mismo, y con ello asegurarse de que funciona correctamente, y que sigue en el periodo de su vida útil, ya que el envejecimiento y desgaste de esta puede llegar a generar graves consecuencias. La temperatura se va a medir utilizando un sensor de instrumentación. Para su diseño, la principal característica a tener en cuenta es la necesidad de que se adapte al entorno hostil que rodea a los transformadores. Es por ello que se va a utilizar un sensor de fibra óptica, inmune a las interferencias electromagnéticas y de radiofrecuencia, y garantizando un bajo coste. La información del sensor se va a obtener con un microprocesador, conectado en el punto de salida de señal del sensor. Este dispositivo va a obtener la data correspondiente y la va a transmitir al módulo de comunicación, encargado de emitir los resultados a la unidad de control. Como sistema de comunicación, se va a utilizar un protocolo inalámbrico. El protocolo ZigBee asegura una robustez y rápido start-up, así como un diseño simple y sencillo. Finalmente, la interfaz de ordenador se va a diseñar con el programa LabView. Va a tener la funcionalidad de punto de control, con la capacidad de activar el funcionamiento de la red sensorial, y su casi inmediato monitoreo. Eso es, que la interfaz estará diseñada para obtener la data emitida por el sensor, y analizarla, dándole al usuario la información correspondiente, casi en tiempo inmediato. Por lo que es posible conocer, casi al momento, la temperatura a la que se encuentra el sensor, por ende la temperatura en el transformador. En caso de requerir un sistema totalmente inmune a las interferencias electromagnéticas, la alimentación del sensor se podría hacer a través de la tecnología PoF (Power over Fiber). Utilizando un sistema ya diseñado e implementado de la universidad, se van a adaptar sus parámetros a los requerimientos del sistema para observar sus resultados, tanto teórica como experimentalmente. Este proyecto consiste en el diseño e implementación de todos los distintos componentes del sensor de temperatura, es decir, la fibra óptica y sus circuitos de adaptación, la programación del microprocesador, el establecimiento de la comunicación inalámbrica, y el diseño de la interfaz. Una vez implementado todo el sistema, se van a realizar distintas pruebas, donde se va a someter al sensor a bruscas variaciones de temperaturas para estudiar su respuesta. Y una vez comprobado que todo el sistema funciona correctamente, se va a sustituir la fuente de tensión, por la tecnología PoF, observando los resultados y su posible futura inclusión en el desarrollo de sensores.One of the greatest risks of the industrial area is the failure of the machines and devices composing in. Any mistake may have fatal consequences, not only for the industry but also for its environment. These machines work with high quantities of energy, so its control and monitoring decreases the risks and guarantees a greater security when working with them The transformers are an example of these machines. These devices work with electrical circuits exchanging great amounts of energy for the electrical distribution. There are different parameters that will enable the monitoring of the machine´s state, but one of the main ones is the temperature, and it is what this project will focus on. In order to control the temperature of the transformer, the sensor must be placed inside of it. This means one of the main characteristics of the designed sensor has to be its immunity to electromagnetic and radiofrequency interferences, this is why it the selected sensor uses optical fiber. The data acquisition is going to be done with a microprocessor, which will be connected to the sensor and programed to obtain the results and transmit them to communication module, which is set to emit them to the control unit. The communication is going to use a wireless protocol. The ZigBee protocol is going to provide roughness and fast commissioning, as well as a simple and nice design. The control unit is going to be designed with the LabView program. Its programming include the acquisition of the data received from the sensor and its analysis. This means it will take the results and give the user its equivalent temperature value, almost immediately to the response of the sensor. This way it is possible to know the temperature the sensor is at, hence the temperature of the transformer. In case of requiring a system totally immune to interferences, the system will have to be powered with a PoF technology. A PoF system already designed and implemented is going to be adapted to the system, and tested to read its response. The project consists on the design and implementation of the sensor temperature, and all its components, this is the optical fiber and its adaptation circuits, the microprocessor´s programming, the communication and the interface design. Once the whole system is implemented, different tests are going to be done where the sensor is going to be submitted to abrupt temperature variations and its response studied. Once checked the system is working correctly the power source will be replaced with the PoF, analyzing its results and future inclusion on the sensors development.Ingeniería Electrónica Industrial y Automátic

    Honey Bee Colonies Remote Monitoring System

    Get PDF
    Bees are very important for terrestrial ecosystems and, above all, for the subsistence of many crops, due to their ability to pollinate flowers. Currently, the honey bee populations are decreasing due to colony collapse disorder (CCD). The reasons for CCD are not fully known, and as a result, it is essential to obtain all possible information on the environmental conditions surrounding the beehives. On the other hand, it is important to carry out such information gathering as non-intrusively as possible to avoid modifying the bees’ work conditions and to obtain more reliable data. We designed a wireless-sensor networks meet these requirements. We designed a remote monitoring system (called WBee) based on a hierarchical three-level model formed by the wireless node, a local data server, and a cloud data server. WBee is a low-cost, fully scalable, easily deployable system with regard to the number and types of sensors and the number of hives and their geographical distribution. WBee saves the data in each of the levels if there are failures in communication. In addition, the nodes include a backup battery, which allows for further data acquisition and storage in the event of a power outage. Unlike other systems that monitor a single point of a hive, the system we present monitors and stores the temperature and relative humidity of the beehive in three different spots. Additionally, the hive is continuously weighed on a weighing scale. Real-time weight measurement is an innovation in wireless beehive—monitoring systems. We designed an adaptation board to facilitate the connection of the sensors to the node. Through the Internet, researchers and beekeepers can access the cloud data server to find out the condition of their hives in real time

    The MAGCLOUD wireless sensor network

    Get PDF
    Initially, the aim of this project consisted in manufacturing some nodes for a wireless sensor network by hand. If this document concludes that they can be properly produced in the EETAC lab, the cost of a future large deployment using raw components would be much lower than in the case of acquiring the genuine factory assembled hardware. Also, the future students involved in the process could learn many useful advanced techniques along the way. The project ended sowing a future WSN concept, so powerful that even could end competing on the market. We designed an almost unlimited scalable platform in terms of range, number of nodes, connectivity and measuring capabilities that is 100% free, open and environment sustainable. We called this unique wireless magnitude acquisition cloud: THE MAGCLOUD. The whole system cannot be fully finished within the time and budget restrictions of a single PFC but slicing it into diverse future upgrades is a completely realistic approach. In this document, sticking to the original idea, we explain how to produce the functional hardware and software skeleton but also guide the reader on the future upgrades required to complete the MAGCLOUD system. During the realization of the project we found countless problems that luckily end up solved. Those are carefully treated so can be avoided in the future

    Towards a Recommender System for In-Vehicle Antenna Placement in Harsh Propagation Environments

    Get PDF
    This paper presents a novel approach to improving wireless communications in harsh propagation environments to achieve higher overall reliability and durability of wireless battery powered sensor systems in the context of in-vehicle communication. The goal is to investigate the physical layer and establish an antenna recommendation system for a specific harsh environment, i.e., an engine compartment of a vehicle. We propose the usage of electromagnetic (EM) and ray tracing simulations as a computationally cost-effective method to establish such a recommendation system, which we test by means of an experimental testbed—or test environment—that consists of both a physical, as well as its identical simulation, model. A pool of antennas is evaluated to identify and verify antenna behavior and properties at specified positions in the harsh environment. We use a vector network analyzer (VNA) for accurate measurements and a received signal strength indicator (RSSI) for a first estimation of system performance. Our analysis of the experimental measurements and its EM simulation counterparts shows that both types of data lead to equivalent antenna recommendations at each of the defined positions and experimental conditions. This evaluation and verification process by measurements on an experimental testbed is important to validate the antenna recommendation process. Our results indicate that—with properly characterized antennas—such measurements can be substituted with EM simulations on an accurate EM model, which can contribute to dramatically speeding up the antenna positioning and selection process

    Wireless Charging Of Batteries On Military Vehicles

    Get PDF
    Recent developments, in the field of wireless charging, have led to increasing use of this technology across different areas of research. The search for improvement in Soldier Combat Systems has seen major investments in recent years, to find a standard architecture that can enhance military capabilities, such as in power management systems. This work is part of the C4I program of the Portuguese army, having had the primary objective of studying an alternative power supply option based on wireless technology, capable of charging man-portable devices in military vehicles. On this dissertation, it was conducted a study on the behavior of the components of a wireless power transfer, focusing on different configurations and geometries of the charging coils, as well as the optimization of key parameters in a wireless power module. For this, key operating principles and charging methods were approached. Using distance as a variable parameter, it was possible to study the variation in signal amplitude and compare the performances of each coil, reaching promising conclusions on which coil geometry is best suited in terms of shape, reach, and intensity of the generated magnetic field of the power transfer. Also, the matching outcomes from the theoretical deductions and the experimental work done in a controlled environment led to a strengthening of the obtained results. After fabricating and testing prototype 3D structures for the coils, a proposal for a wireless charging system was conceived. This proposal includes architecture, protocols, and its implementation taking into account the characteristics of the charging environment

    Development of a Wireless Power Transfer System using Resonant Inductive Coupling

    Get PDF
    Access to power is a fundamental requirement for the effective functioning of any electrical/electronic circuit. The conduit of transfer of power can be either physical (wires, cables etc.) of non-physical (i.e. wireless). Wireless power transfer is a broad term used to describe any means used to transmit power to electricity dependent systems and devices. In this paper, a wireless power transfer system is developed to provide an alternative to using power cords for electrical/electronic devices. With this technology, challenges like damaged or tangled power cords, sparking hazards and the extensive use of plastic and copper used in cord production are resolved and also the need for batteries in non-mobile devices is eliminated. In this system, electromagnetic energy is transmitted from a power source (transmitter) to an electrical load (receiver) via resonant inductive coupling. The performance achieved is a good indication that power can still be transmitted over a medium range. In addition, possible ways of improving the efficiency of the system are discussed

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0
    corecore