7 research outputs found

    High Performance GNRFET Devices for High-Speed Low-Power Analog and Digital Applications

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Recent ULSI (ultra large scale integration) technology emphasizes small size devices, featuring low power and high switching speed. Moore's law has been followed successfully in scaling down the silicon device in order to enhance the level of integration with high performances until conventional devices failed to cop up with further scaling due to limitations with ballistic effects, and challenges with accommodating dopant fluctuation, mobility degradation, among other device parameters. Recently, Graphene based devices o ered alternative approach, featuring small size and high performances. This includes high carrier mobility, high carrier density, high robustness, and high thermal conductivity. These unique characteristics made the Graphene devices attractive for high speed electronic architectures. In this research, Graphene devices were integrated into applications with analog, digital, and mixed signals based systems. Graphene devices were briefly explored in electronics applications since its first model developed by the University of Illinois, Champaign in 2013. This study emphasizes the validation of the model in various applications with analog, digital, and mixed signals. At the analog level, the model was used for voltage and power amplifiers; classes A, B, and AB. At the digital level, the device model was validated within the universal gates, adders, multipliers, subtractors, multiplexers, demultiplexers, encoders, and comparators. The study was also extended to include Graphene devices for serializers, the digital systems incorporated into the data structure storage. At the mixed signal level, the device model was validated for the DACs/ADCs. In all components, the features of the new devices were emphasized as compared with the existing silicon technology. The system functionality and dynamic performances were also elaborated. The study also covered the linearity characteristics of the devices within full input range operation. GNRFETs with a minimum channel length of 10nm and an input voltage 0.7V were considered in the study. An electronic design platform ADS (Advanced Design Systems) was used in the simulations. The power amplifiers showed noise figure as low as 0.064dbs for class A, and 0.32 dbs for class B, and 0.69 dbs for class AB power amplifiers. The design was stable and as high as 5.12 for class A, 1.02 for class B, and 1.014 for class AB. The stability factor was estimated at 2GHz operation. The harmonics were as low as -100 dbs for class A, -60 dbs for class B, and -50dbs for class AB, all simulated at 1GHz. The device was incorporated into ADC system, and as low as 24.5 micro Watt power consumption and 40 nsec rise time were observed. Likewise, the DAC showed low power consumption as of 4.51 micro Watt. The serializer showed as minimum power consumption of the order of 0.4mW. These results showed that these nanoscale devices have potential future for high-speed communication systems, medical devices, computer architecture and dynamic Nano electromechanical (NEMS) which provides ultra-level of integration, incorporating embedded and IoT devices supporting this technology. Results of analog and digital components showed superiority over other silicon transistor technologies in their ultra-low power consumption and high switching speed

    A Low Power Mid-Rail Dual Slope Analog-To-Digital Converter for Biomedical Instrumentation

    Get PDF
    There are an estimated 15 million babies born preterm every year and it is on the rise. The complications that arise from this can be quite severe and are the leading causes of death among children under 5 years of age. Among these complications is a condition known as apnea. This disorder is defined as the suspension of breathing during sleep for usually 10 to 30 seconds and can occur up to 20-30 times per hour for preterm infants. This lack of oxygen in the bloodstream can have troubling effects, such as brain damage and death if the apnea period is longer than expected. This creates a dire need to continuously monitor the respiration state of babies born prematurely. Given that the breathing signal is in analog form, a conversion to its digital counterpart is necessary.In this thesis, a novel low power analog-to-digital converter (ADC) for the digitization and analyzation of the respiration signal is presented. The design of the ADC demonstrates an innovative approach on how to operate on a single polarity supply system, which effectively doubles the sampling speed. The ADC has been realized in a standard 130 nm CMOS process

    Calibrated Continuous-Time Sigma-Delta Modulators

    Get PDF
    To provide more information mobility, many wireless communication systems such as WCDMA and EDGE in phone systems, bluetooth and WIMAX in communication networks have been recently developed. Recent efforts have been made to build the allin- one next generation device which integrates a large number of wireless services into a single receiving path in order to raise the competitiveness of the device. Among all the receiver architectures, the high-IF receiver presents several unique properties for the next generation receiver by digitalizing the signal at the intermediate frequency around a few hundred MHz. In this architecture, the modulation/demodulation schemes, protocols, equalization, etc., are all determined in a software platform that runs in the digital signal processor (DSP) or FPGA. The specifications for most of front-end building blocks are relaxed, except the analog-to-digital converter (ADC). The requirements of large bandwidth, high operational frequency and high resolution make the design of the ADC very challenging. Solving the bottleneck associated with the high-IF receiver architecture is a major focus of many ongoing research efforts. In this work, a 6th-order bandpass continuous time sigma-delta ADC with measured 68.4dB SNDR at 10MHz bandwidth to accommodate video applications is proposed. Tuned at 200 MHz, the fs/4 architecture employs an 800 MHz clock frequency. By making use of a unique software-based calibration scheme together with the tuning properties of the bandpass filters developed under the umbrella of this project, the ADC performance is optimized automatically to fulfill all requirements for the high-IF architecture. In a separate project, other critical design issues for continuous-time sigma-delta ADCs are addressed, especially the issues related to unit current source mismatches in multi-level DACs as well as excess loop delays that may cause loop instability. The reported solutions are revisited to find more efficient architectures. The aforementioned techniques are used for the design of a 25MHz bandwidth lowpass continuous-time sigma-delta modulator with time-domain two-step 3-bit quantizer and DAC for WiMAX applications. The prototype is designed by employing a level-to-pulse-width modulation (PWM) converter followed by a single-level DAC in the feedback path to translate the typical digital codes into PWM signals with the proposed pulse arrangement. Therefore, the non-linearity issue from current source mismatch in multi-level DACs is prevented. The jitter behavior and timing mismatch issue of the proposed time-based methods are fully analyzed. The measurement results of a chip prototype achieving 67.7dB peak SNDR and 78dB SFDR in 25MHz bandwidth properly demonstrate the design concepts and effectiveness of time-based quantization and feedback. Both continuous-time sigma-delta ADCs were fabricated in mainstream CMOS 0.18um technologies, which are the most popular in today?s consumer electronics industry

    Convertisseurs de données de type flash basés sur les cellules normalisées et application

    Get PDF
    L'avancement de la recherche dans le domaine des convertisseurs de données privilégie des architectures simples, facilement intégrables sur puce et dont les performances dans diverses applications spécifiques sont nettement appréciables. C'est dans cette optique que cette thèse propose de nouvelles architectures de convertisseurs de données de type flash en utilisant uniquement les cellules normalisées. Les convertisseurs de données sont généralement classés en deux grandes familles : les convertisseurs analogique-numériques (CAN) et les convertisseurs numérique-analogiques (CNA). Ces composants occupent une place cruciale dans les circuits électroniques et le choix de leurs architectures est intimement lié à la nature de l'application. En particulier, l'utilisation des CAN de faible consommation de puissance ne cesse de s'accroître dans le domaine médical. Cette tendance est motivée par le souci permanent de faciliter l'analyse et l'interprétation des signaux physiologiques. Dans le cadre des applications telles les télécommunications et la mesure de la température interne du corps humain, les convertisseurs de données de type flash sont de bons candidats. Ces convertisseurs analogique-numériques doivent être intégrés sur la même puce que d'autres circuits numériques. Ce qui nécessite de nouvelles contraintes dans leur conception. Par conséquent, pour les applications de système sur puce (SoC), les convertisseurs analogique-numériques doivent être rapides, avoir une faible tension d'alimentation et une consommation de puissance considérablement réduite. La conception des convertisseurs de données de type flash liés aux applications de systèmes sur puce a fait l'objet d'importants travaux de recherche ces dernières années. Parmi les types de convertisseurs numérique-analogiques rencontrés dans la littérature, ceux à capacités commutées utilisant le principe de redistribution de charges sont les plus utilisés notamment pour des applications de faible puissance. Ces CNA utilisent essentiellement des composants analogiques. Ce qui rend complexe leurs conceptions et leurs implémentations sur puce. En ce qui concerne les CAN, une structure simple utilisant des inverseurs comme comparateurs a été proposée très récemment. Cette technique de quantification, basée sur la variation de la taille des transistors, remplace valablement les comparateurs analogiques conventionnels. Le manque de flexibilité de cette approche est un préjudice si l’on désire passer d’une technologie à l’autre. L'objectif de ce travail de recherche consiste à proposer de nouveaux convertisseurs de données qui permettront grâce aux cellules normalisées de s’arrimer avec l’avancement de la technologie, afin d’offrir une très grande portabilité et d’être compatible avec le flot de conception numérique. La méthodologie de recherche est axée sur deux principaux axes: La première repose sur la conception de nouvelles architectures de convertisseurs de données utilisant uniquement des cellules normalisées. Un CNA de type flash utilisant un code thermomètre à l'entrée est présenté. Une méthode d'optimisation a été proposée en vue d'améliorer la linéarité de ce CNA. C’est ainsi qu’une amélioration de la linéarité de 96% a été obtenue comparativement à la configuration non optimisée. Les résultats issus des simulations sont présentés. Par ailleurs, un CAN à 3 bits de type flash est présenté de même que son optimisation dans le but de réduire les effets de variations de procédé. Un CAN à 4 bits de type flash est aussi présenté avec une technique de réduction de sa consommation de puissance. La réduction de puissance obtenue varie entre 44 et 66 % par rapport à la littérature. De plus, les résultats de simulations et ceux issus de la fabrication du convertisseur à 4 bits sont présentés. Les résultats obtenus montrent que ce convertisseur a les caractéristiques désirées. Toutes ces architectures utilisent une plage de tension d'entrée variant approximativement de VTH à VDD − VTH. Pour terminer, une autre architecture de CAN ayant une plus grande plage dynamique (de VSS à VDD) a été proposée. Le deuxième axe est beaucoup plus axé sur l’application de ces convertisseurs de données à savoir: l'utilisation du CNA dans la réduction de la gigue dans un système de génération d'horloge (FRPS)

    Low-power adaptive control scheme using switching activity measurement method for reconfigurable analog-to-digital converters

    Get PDF
    Power consumption is a critical issue for portable devices. The ever-increasing demand for multimode wireless applications and the growing concerns towards power-aware green technology make dynamically reconfigurable hardware an attractive solution for overcoming the power issue. This is due to its advantages of flexibility, reusability, and adaptability. During the last decade, reconfigurable analog-to-digital converters (ReADCs) have been used to support multimode wireless applications. With the ability to adaptively scale the power consumption according to different operation modes, reconfigurable devices utilise the power supply efficiently. This can prolong battery life and reduce unnecessary heat emission to the environment. However, current adaptive mechanisms for ReADCs rely upon external control signals generated using digital signal processors (DSPs) in the baseband. This thesis aims to provide a single-chip solution for real-time and low-power ReADC implementations that can adaptively change the converter resolution according to signal variations without the need of the baseband processing. Specifically, the thesis focuses on the analysis, design and implementation of a low-power digital controller unit for ReADCs. In this study, the following two important reconfigurability issues are investigated: i) the detection mechanism for an adaptive implementation, and ii) the measure of power and area overheads that are introduced by the adaptive control modules. This thesis outlines four main achievements to address these issues. The first achievement is the development of the switching activity measurement (SWAM) method to detect different signal components based upon the observation of the output of an ADC. The second achievement is a proposed adaptive algorithm for ReADCs to dynamically adjust the resolution depending upon the variations in the input signal. The third achievement is an ASIC implementation of the adaptive control module for ReADCs. The module achieves low reconfiguration overheads in terms of area and power compared with the main analog part of a ReADC. The fourth achievement is the development of a low-power noise detection module using a conventional ADC for signal improvement. Taken together, the findings from this study demonstrate the potential use of switching activity information of an ADC to adaptively control the circuits, and simultaneously expanding the functionality of the ADC in electronic systems

    Diseño CMOS de un sistema de visión “on-chip” para aplicaciones de muy alta velocidad

    Get PDF
    Falta palabras claveEsta Tesis presenta arquitecturas, circuitos y chips para el diseño de sensores de visión CMOS con procesamiento paralelo embebido. La Tesis reporta dos chips, en concreto: El chip Q-Eye; El chip Eye-RIS_VSoC.. Y dos sistemas de visión construidos con estos chips y otros sistemas “off-chip” adicionales, como FPGAs, en concreto: El sistema Eye-RIS_v1; El sistema Eye-RIS_v2. Estos chips y sistemas están concebidos para ejecutar tareas de visión a muy alta velocidad y con consumos de potencia moderados. Los sistemas resultantes son, además, compactos y por lo tanto ventajosos en términos del factor SWaP cuando se los compara con arquitecturas convencionales formadas por sensores de imágenes convencionales seguidos de procesadores digitales. La clave de estas ventajas en términos de SWaP y velocidad radica en el uso de sensores-procesadores, en lugar de meros sensores, en la interface de los sistemas de visión. Estos sensores-procesadores embeben procesadores programables de señal-mixta dentro del pixel y son capaces tanto de adquirir imágenes como de pre-procesarlas para extraer características, eliminar información redundante y reducir el número de datos que se transmiten fuera del sensor para su procesamiento ulterior. El núcleo de la tesis es el sensor-procesador Q-Eye, que se usa como interface en los sistemas Eye-RIS. Este sensor-procesador embebe una arquitectura de procesamiento formada por procesadores de señal-mixta distribuidos por pixel. Sus píxeles son por tanto estructuras multi-funcionales complejas. De hecho, son programables, incorporan memorias e interactúan con sus vecinos para realizar una variedad de operaciones, tales como: Convoluciones lineales con máscaras programables; Difusiones controladas por tiempo y nivel de señal, a través de un “grid” resistivo embebido en el plano focal; Aritmética de imágenes; Flujo de programación dependiente de la señal; Conversión entre los dominios de datos: imagen en escala de grises e imagen binaria; Operaciones lógicas en imágenes binarias; Operaciones morfológicas en imágenes binarias. etc. Con respecto a otros píxeles multi-función y sensores-procesadores anteriores, el Q-Eye reporta entre otras las siguientes ventajas: Mayor calidad de la imagen y mejores prestaciones de las funcionalidades embebidas en el chip; Mayor velocidad de operación y mejor gestión de la energía disponible; Mayor versatilidad para integración en sistemas de visión industrial. De hecho, los sistemas Eye-RIS son los primeros sistemas de visión industriales dotados de las siguientes características: Procesamiento paralelo distribuido y progresivo; Procesadores de señal-mixta fiables, robustos y con errores controlados; Programabilidad distribuida. La Tesis incluye descripciones detalladas de la arquitectura y los circuitos usados en el pixel del Q-Eye, del propio chip Q-Eye y de los sistemas de visión construidos en base a este chip. Se incluyen también ejemplos de los distintos chips en operaciónThis Thesis presents architectures, circuits and chips for the implementation of CMOS VISION SENSORS with embedded parallel processing. The Thesis reports two chips, namely: Q-eye chip; Eye-RIS_VSoC chip, and two vision systems realized by using these chips and some additional “off-chip” circuitry, such as FPGAs. These vision systems are: Eye-RIS_v1 system; Eye-RIS_v2 system. The chips and systems reported in the Thesis are conceived to perform vision tasks at very high speed and with moderate power consumption. The proposed vision systems are also compact and advantageous in terms of SWaP factors as compared with conventional architectures consisting of standard image sensor followed by digital processors. The key of these advantages in terms of SWaP and speed lies in the use of sensors-processors, rather than mere sensors, in the front-end interface of vision systems. These sensors-processors embed mixed-signal programmable processors inside the pixel. Therefore, they are able to acquire images and process them to extract the features, removing the redundant information and reducing the data throughput for later processing. The core of the Thesis is the sensor-processor Q-Eye, which is used as front-end in the Eye-RIS systems. This sensor-processor embeds a processing architecture composed by mixed-signal processors distributed per pixel. Then, its pixels are complex multi-functional structures. In fact, they are programmable, incorporate memories and interact with its neighbors in order to carry out a set of operations, including: Linear convolutions with programmable linear masks; Time- and signal-controlled diffusions (by means of an embedded resistive grid); Image arithmetic; Signal-dependent data scheduling; Gray-scale to binary transformation; Logic operation on binary images; Mathematical morphology on binary images, etc. As compared with previous multi-function pixels and sensors-processors, the Q-Eye brings among other the following advantages: Higher image quality and better performances of functionalities embedded on chip; Higher operation speed and better management of energy budget; More versatility for integration in industrial vision systems. In fact, the Eye-RIS systems are the first industrial vision systems equipped with the following characteristics: Parallel distributed and progressive processing; Reliable, robust mixed-signal processors with handled errors; Distributed programmability. This Thesis includes detailed descriptions of architecture and circuits used in the Q-Eye pixel, in the Q-Eye chip itself and in the vision systems developed based on this chip. Also, several examples of chips and systems in operation are presented

    Analog Readout for the ATLAS Semiconductor Tracker

    Get PDF
    The context of the work, described in this document, is the development of electroniccomponents for future high-energy physics experiments.The first part deals with design and evaluation of an electronic device for reading and processingthe signals, created by charged elementary particles in solid state detectors. This device has to workwithin an experimental environment, which imposes very rigorous requirements in terms of signalprocessing speed, noise performance, power dissipation, radiation hardness and size as well as interms of system complexity. These constraints force its realization as a VLSI integrated circuit. Anemphasis is put on the major problem, which occurs when dealing with extremely small signals, as theones produced by a semiconductor detector..
    corecore