5,882 research outputs found

    Reliability based robust design optimization based on sensitivity and elasticity factors analysis

    Get PDF
    In this paper, a Reliability Based Robust Design Optimization (RBRDO) based on sensitivity and elasticity factors analysis is presented. In the first step, a reliability assessment is performed using the First-and Second Order Reliability Method (FORM)/ (SORM), and Monte Carlo Simulation. Furthermore, FORM method is used for reliability elasticity factors assessment, which can be carried out to determine the most influential parameters, these factors can be help to reduce the size of design variables vector in RBRDO process. The main objective of the RBRDO is to improve both reliability and design of a cylindrical gear pair under uncertainties. This approach is achieved by integration of two objectives which minimize the variance and mean values of performance function. To solve this problem a decoupled approach of Sequential Optimization and Reliability Assessment (SORA) method is implemented. The results obtained shown that a desired reliability with a robust design is progressively achieved

    Time-Staging Enhancement of Hybrid System Falsification

    Full text link
    Optimization-based falsification employs stochastic optimization algorithms to search for error input of hybrid systems. In this paper we introduce a simple idea to enhance falsification, namely time staging, that allows the time-causal structure of time-dependent signals to be exploited by the optimizers. Time staging consists of running a falsification solver multiple times, from one interval to another, incrementally constructing an input signal candidate. Our experiments show that time staging can dramatically increase performance in some realistic examples. We also present theoretical results that suggest the kinds of models and specifications for which time staging is likely to be effective

    Conformance Testing as Falsification for Cyber-Physical Systems

    Full text link
    In Model-Based Design of Cyber-Physical Systems (CPS), it is often desirable to develop several models of varying fidelity. Models of different fidelity levels can enable mathematical analysis of the model, control synthesis, faster simulation etc. Furthermore, when (automatically or manually) transitioning from a model to its implementation on an actual computational platform, then again two different versions of the same system are being developed. In all previous cases, it is necessary to define a rigorous notion of conformance between different models and between models and their implementations. This paper argues that conformance should be a measure of distance between systems. Albeit a range of theoretical distance notions exists, a way to compute such distances for industrial size systems and models has not been proposed yet. This paper addresses exactly this problem. A universal notion of conformance as closeness between systems is rigorously defined, and evidence is presented that this implies a number of other application-dependent conformance notions. An algorithm for detecting that two systems are not conformant is then proposed, which uses existing proven tools. A method is also proposed to measure the degree of conformance between two systems. The results are demonstrated on a range of models

    Multi-Objective Robust Optimization for a Dual-Flux-Modulator Coaxial Magnetic Gear

    Get PDF

    Some Remarks about the Complexity of Epidemics Management

    Full text link
    Recent outbreaks of Ebola, H1N1 and other infectious diseases have shown that the assumptions underlying the established theory of epidemics management are too idealistic. For an improvement of procedures and organizations involved in fighting epidemics, extended models of epidemics management are required. The necessary extensions consist in a representation of the management loop and the potential frictions influencing the loop. The effects of the non-deterministic frictions can be taken into account by including the measures of robustness and risk in the assessment of management options. Thus, besides of the increased structural complexity resulting from the model extensions, the computational complexity of the task of epidemics management - interpreted as an optimization problem - is increased as well. This is a serious obstacle for analyzing the model and may require an additional pre-processing enabling a simplification of the analysis process. The paper closes with an outlook discussing some forthcoming problems

    Control of a mechanical hybrid powertrain

    Get PDF
    • …
    corecore